
Practical Robust Localization over Large-Scale 802.11
Wireless Networks

Andreas Haeberlen
Rice University

ahae@cs.rice.edu

Eliot Flannery
Rice University

ef@cs.rice.edu

Andrew M. Ladd
Rice University

aladd@cs.rice.edu

Algis Rudys
Rice University

arudys@cs.rice.edu

Dan S. Wallach
Rice University

dwallach@cs.rice.edu

Lydia E. Kavraki
Rice University

kavraki@cs.rice.edu

ABSTRACT

We demonstrate a system built using probabilistic techniques that
allows for remarkably accurate localization across our entire of-
fice building using nothing more than the built-in signal intensity
meter supplied by standard 802.11 cards. While prior systems
have required significant investments of human labor to build a de-
tailed signal map, we can train our system by spending less than
one minute per office or region, walking around with a laptop and
recording the observed signal intensities of our building’s unmod-
ified base stations. We actually collected over two minutes of data
per office or region, about 28 man-hours of effort. Using less than
half of this data to train the localizer, we can localize a user to the
precise, correct location in over 95% of our attempts, across the
entire building. Even in the most pathological cases, we almost
never localize a user any more distant than to the neighboring of-
fice. A user can obtain this level of accuracy with only two or three
signal intensity measurements, allowing for a high frame rate of lo-
calization results. Furthermore, with a brief calibration period, our
system can be adapted to work with previously unknown user hard-
ware. We present results demonstrating the robustness of our sys-
tem against a variety of untrained time-varying phenomena, includ-
ing the presence or absence of people in the building across the day.
Our system is sufficiently robust to enable a variety of location-
aware applications without requiring special-purpose hardware or
complicated training and calibration procedures.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Network Architec-
ture and Design—Wireless communication; G.3 [Mathematics
of Computing]: Probability and Statistics—Markov pro-
cesses,Probabilistic algorithms; I.2.9 [Computing Methodolo-
gies]: Robotics—Sensors; I.5.1 [Pattern Recognition]: Models—
Statistical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’04, Sept. 26-Oct. 1, 2004, Philadelphia, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-868-7/04/0009 ...$5.00.

General Terms

Algorithms, Design, Experimentation, Measurement

Keywords

802.11, wireless networks, mobile systems, topological localiza-
tion, Bayesian methods, location-aware computing

1. INTRODUCTION

A practical scheme for mobile device location awareness has long
been a target of mobility research. Many interesting applications,
including systems like EasyLiving [6] and the Rhino Project [1],
among others [2,13,14,35], would benefit from a practical location-
sensing system. Until now, however, indoor location-sensing sys-
tems have either required specialized hardware, involved lengthy
training steps, or had poor precision. A practical scheme should
have relatively low training time, achieve high accuracy, use
widely-deployed off-the-shelf hardware, and be robust in the face
of untrained variations.

Most previous indoor location-sensing schemes have been based
on occupancy grid models of the environment. Such schemes di-
vide the environment into a coordinate grid, with one to two meter
precision, and attempt to map a device’s location to a point on that
grid. Occupancy grid systems require lengthy training at each point
in the grid to achieve usable accuracy.

Many location-aware applications, however, do not need one to
two meter precision for the location of a mobile device. We use
a topological model of our environment, in which the building is
divided into cells which each map to a region in our building (i.e.,
a specific office or a hallway segment), and we map a device’s lo-
cation to a cell instead of a point. In this way, we trade off some
metric resolution for a dramatic reduction in training time.

Room- or region-level granularity of location provides sufficient
context for many location-aware applications. Additionally, operat-
ing at a coarser granularity leads to an improvement in localization
robustness, and allows localization to occur with fewer samples,
and thus operate at a higher frame rate.

We present a high-precision topological location inference tech-
nique based on Bayesian inference and using the 802.11 wireless
network protocol. Most significant in our work is the scale. We
deployed our wireless location-sensing system in our entire office
building, which is over 12,000 square meters in area. Our tech-
nique can localize a device to one of 510 cells in the building within

70



seconds; it succeeded in over 95% of all attempts. When the lo-
calization is off, it is almost always off by only one cell (e.g., it
thinks you are in the adjacent office). A training time of around 60
seconds per room is sufficient; thus, a small team can measure an
entire office building in an evening. Our techniques are robust even
against time-of-day variation, including the presence or absence or
large groups of people in the same room as the platform being lo-
calized. Furthermore, our techniques allow us to calibrate and use
802.11 implementations different from the system used to initially
measure the building. Our system supports both static localization
and dynamic tracking at speeds of over 3 m/s.

We describe our basic localization system and report its perfor-
mance in Section 2. Our analysis and experimental results on time-
varying phenomena are presented in Section 3. Section 4 presents
our calibration technique, which is designed to compensate for vari-
ations in hardware and time-varying phenomena. We discuss our
results in Section 5 and present our conclusions in Section 6.

1.1 Related work

Location-aware computing [10,22] is primarily concerned with de-
termining the location of a mobile computing device. Early in-
building location-sensing systems required specialized hardware to
ascertain a device’s location. For example, the Active Badge sys-
tem relied on specialized tags which emitted diffuse infrared pulses
detected by ceiling-mounted sensors [55]. The later Active Bat sys-
tem used ultrasound time-of-flight information [56]. The Cricket
Compass [40, 41] used specialized ultrasound and radio frequency
receivers to detect signals transmitted by fixed beacons. In Spot-
On [23], specialized wireless devices use signal intensity to local-
ize either against fixed base stations or against one another in an
ad-hoc fashion. Finally, EasyLiving [28] uses cameras to deter-
mine location.

Later systems for location-aware computing used off-the-shelf
wireless networking hardware, measuring radio frequency signal
intensity to determine the location of a mobile computing device.
RADAR [4, 5] was one of the first systems to use RF signal in-
tensity for location-sensing. Small et al. [46] and Smailagic et
al. [45] looked at how signal intensity varies over time and de-
veloped a location-sensing system based on these observations.
Gwon et al. [20] discuss two deterministic schemes for aggregat-
ing and improving the output of a location-sensing system.

The most recent systems have used probabilistic techniques for
sensing a device’s location. Nibble [9], one of the first systems of
this generation, used a neural network to estimate a device’s loca-
tion. In our first work on wireless location sensing [31], we devel-
oped a grid-based Bayesian location-sensing system over a small
region of our office building, achieving localization and tracking
to within 1.5 meters over 50% of the time. Roos et al. [43] im-
plemented a similar system and got similar localization results.
They are also the first to compare taking a Gaussian fit of signal
strength to using the full histogram of signal strength, although
they came to no definite conclusion on this. In a follow-up to our
previous work [31], we explored variations in hardware and trans-
mission power, and addressed the symmetry of localizing a lap-
top by measuring the signal intensity of packets transmitted from
a mobile device as received by a base station versus packets trans-
mitted by a base station and received by the device [48]. Cluster-
ing techniques have also been applied to the problem of location
determination [58]. Krumm and Platt [29] introduced a number
of techniques for simplifying the process of training a location-
sensing system, including localizing based on topological regions
(e.g. rooms) rather than grid coordinates. Finally, Ekahau, Inc. [16]
offer a wireless location-sensing system commercially; they claim

1 meter accuracy with a short training time, although they do not
detail how their system works.

A number of localization techniques have been developed for
other wireless technologies. For instance, in part as a result of the
FCC’s E911 initiative [17], a number of systems have used RF sig-
nal intensity to determine the location of cellular phones [33, 57].
However, in the field of outdoor location-sensing, GPS [34] is still
the standard.

Wireless localization techniques have also been explored for lo-
calization in sensor networks. Sensor networks are ad hoc networks
of many autonomous nodes deployed to perform a variety of dis-
tributed sensing tasks [24,27,39]. Some techniques use signal prop-
erties, including signal strength [21], difference in time-of-arrival
for RF versus ultrasound signals [44] and angle of arrival [37], to
determine the physical location of sensor nodes. Other techniques
use such factors as what nodes are in range [7] and routing infor-
mation [36,38] to localize sensor nodes relative to one-another. Se-
quential Monte Carlo localization [25] utilizes the movement of
sensor nodes to get improved accuracy of localization.

Wireless location-sensing is actually a specialized case of a
well-studied problem in mobile robotics, that of robot localiza-
tion — determining the position of a mobile robot given input
from the robot’s various sensors (possibly including GPS, sonar,
vision, and ultrasound sensors). Robot localization has been de-
scribed as the most fundamental problem of building autonomous
robots [12]. Our system and others like it use the signal intensity
readings from 802.11 cards as a sensor and implement Bayesian
localization algorithms commonly used in various robotics appli-
cations [8,15,19,49]. Thrun [49] provides a comprehensive survey
of probabilistic localization methods used in mobile robotics.

Our system creates a topological map for localization. A topo-
logical map models the environment as a graph, with each node
representing a region (such as a particular room or corridor), and
each edge representing regions that are connected in space. Re-
molina and Kuipers [42] present a comprehensive formal theory
of topological mapping. Most work on topological mapping was
originally explored as a means of building a map of an environment
while simultaneously localizing within that map [11,30,50,51,54].

2. LOCALIZATION

In this section, we describe the basic localization framework that
we use and present experimental results for its deployment in an
office building. Similar to our previous work [31], our current sys-
tem uses Markov localization [49]. However, rather than measuring
every base station’s signal intensity distribution at points spaced
1.5 meters apart, we instead collected signal intensity measure-
ments for whole offices and hallway segments, treating the entire
office or hallway segment as a single position. The average area
of each such position was 24.6 square meters (265.1 square feet).
Hallways and large rooms (such as lecture halls) were broken up
and treated as multiple positions, each about the size of a large of-
fice. The distribution of signal intensities for each base station was
then fit to a normal distribution. We experimentally evaluated this
distribution-fitting approach against the histogram approach used
in our previous work, and our results show that it provides a sub-
stantial increase in robustness and a decrease in the number of ob-
servations required to train the sensor model. These improvements
are in addition to the improvements gained by switching to a topo-
logical map from a geometric map.

71



2.1 802.11 wireless networking

Our localization system is based on the 802.11 wireless network-
ing protocol, which is inexpensive and widely deployed on college
campuses and in commercial offices. Likewise, most new laptop
computers and PDAs have built-in support. 802.11 uses 11 chan-
nels in the 2.4 GHz industrial, scientific, and medical (ISM) band.
Signal propagation in this band is complex, as many previous stud-
ies have confirmed [31, 46, 48].

As a part of its normal operation, client-side wireless hardware
measures signal intensity from base stations to determine the best
base station with which to associate. As a result, this mechanism
is a part of the 802.11 specification, and the functionality is read-
ily available in the hardware device driver. The 802.11 network
card tunes into each channel in turn, sends a ProbeRequest packet
and logs any corresponding ProbeResponse packets it receives [26].
Doing this for all 11 channels takes approximately 1.6 seconds with
the combination of hardware and drivers we used, as described in
Section 2.3.1. Our localization system uses the signal intensities
observed from this process.

2.2 Localization models

2.2.1 Bayesian localization framework

The basic localization problem consists of determining an agent’s
state (or position), s∗, given one or more observations. The prob-
lem can be modeled by using a finite state space S = {s1, . . . ,sn}
and a finite observation space O = {o1, . . . ,om}. Each state si cor-
responds to the case of the agent being in cell i.

In a probabilistic localization framework, the agent’s estimate of
its state is represented as a probability distribution�π over S, where
�πi = P(si = s∗). This method is useful since it can quantify the un-
certain relationship between state and observation. In the Markov
localization (ML) approach [49], the probability distribution over
the observation space is determined completely by the current state.
In particular, the relationship between state and observation can be
represented by a matrix of conditional probabilities which encode
the probability of observing oj ∈ O given that the agent is in state
si, which is written P(o j|si). This matrix of conditional probabili-
ties is referred to as the sensor model. Suppose the agent has a prior
estimate π of its state and observes oj . An updated estimate π′ is
computed using Bayes’ Rule as follows:

�π′
i =

P(o j|si)�πi

η
,

where

η =
n

∑
i=1

P(o j|si)�πi.

The quantity η is the normalizer for the estimate and is some-
times referred to as the confidence. The confidence value can be
used to quantify how certain the new position estimate is. In partic-
ular, the confidence value can be used for several different algorith-
mic extensions to Markov localization. By examining confidence,
the localizer can choose between several different strategies in the
case where one strategy is failing systematically. Important exam-
ples include the sensor resetting localizer [32] and various hybrid
Monte Carlo localizers [53]. The confidence is also used to cali-
brate the system, as described in Section 4.

2.2.2 Gaussian fit sensor model

In our implementation, we fix a set B = {b1, . . . ,bk} of base sta-
tions and a set V = {0, . . . ,255} of signal intensity values. The

observation set consists of O = B×V . In this paper, we model the
signal intensity as a normal distribution determined by the state and
base station. Given state si and base station bj , the signal intensity
distribution is determined by its mean µi, j and standard deviation
σi, j . The probability of observing (bj,v) ∈ O at state si is given by

P
(
(b j,v)|si

)
=

Gi, j(v)+β
Ni, j

,

where

Gi, j(v) =
Z v+1/2

v−1/2

e−(x−µi, j)/(2σ2
i, j)

σi, j
√

2π
dx.

Gi, j(v) is a discretization of a Gaussian probability distribution
with mean µi, j and standard deviation σi, j. P

(
(b j,v)|si

)
adds a

null hypothesis and normalizes the resulting distribution. β is small
constant used to represent the probability of observing an artifact
and Ni, j is a normalizer such that

255

∑
v=0

P
(
(b j,v)|si

)
= 1.

2.2.3 Histogram sensor model

Our previous work on localization with 802.11 represented the sen-
sor model explicitly [31]. In this explicit model, each P(oj|si) is
stored in a table. We call this method the histogram method since
for each si, the P(o j|si) are determined by the normalized signal
intensity histograms recorded during the training phase.

The histogram model can accurately represent non-Gaussian sig-
nal intensity distributions which can only be grossly summarized
by a best-fit Gaussian curve. However, as we will see in Sec-
tion 2.4.1, this does not necessarily give increased localization ac-
curacy; the training can capture transient minor modes, or miss mi-
nor modes entirely. Also, the Gaussian model can be described
by only two parameters for each base station and cell; keeping the
entire histogram requires as much as 30 times more storage.

2.3 Experimental setup

2.3.1 Hardware overview

Our building has 27 Cisco Aironet 1200 Series base stations with
802.11a/b support, which were installed over a year ago; their lo-
cations were chosen so as to provide consistent coverage through-
out the building. In addition to these, we used signals from six
other base stations in adjacent buildings that covered at least part
of our building; thus, our signal space has 33 dimensions. During
both training and testing, we occasionally observed transient sta-
tions with ESSIDs like Linksys and itcomputer, which we
ignored. The locations of these base stations remained fixed for all
of our experiments.

On the client side, we used D-Link AirPlus DWL-650+ WLAN
PCMCIA cards with the Texas Instruments ACX100 chipset. Our
experiments were performed on a Dell Latitude X200 laptop run-
ning the Linux 2.4.25 kernel and an IBM Thinkpad T40p running
the Linux 2.4.20 kernel. We used the open-source ACX100 driver
from SourceForge [3] with a few modifications for stability. We
also optimized the code that handles base station scanning to re-
duce the time required for each individual scan.

Base station scans were performed on-demand using a standard
function in the Linux Wireless API; the network card does not need
to be in a special mode to initiate such a scan. As discussed in
Section 2.1, base station scanning is a standard capability of 802.11
wireless network cards. However, while the wireless network card
is performing a scan, it cannot be used for data traffic.

72



(a)

(b)

(c)

Figure 1: Sensor map within Duncan Hall for a base station located on the second floor. Base stations are represented as black
diamonds with white antennas; the base station from which this sensor map was generated is circled. (a) is the first floor; (b) is the
second floor; (c) is the third floor. Each shaded square represents a single training and testing cell. Darker squares indicate stronger
readings.

73



(a)

(b)

(c)

Figure 2: Map showing robustness of the Gaussian localization algorithm in Duncan Hall. (a) is the first floor; (b) is the second
floor; (c) is the third floor. Each shaded square represents a single training and testing cell. The darkness of the square indicates the
percent of trials for which the localizer indicated the correct location at that position.

74



2.3.2 Our building

We deployed our location-sensing system in Duncan Hall on the
Rice University campus, a building which consists of three stories
plus attic and basement utility spaces. Duncan Hall has over 200
offices, as well as several conference rooms, five classrooms, and
an auditorium. The total area of the building is 12,558.4 square
meters (135,178 square feet). Maps of the three floors of Duncan
Hall are shown in Figures 1 and 2.

The most notable feature of our building is its complex geometry.
The building has a large clerestory ceiling; the main hall on the east
side of the building, the wide hallway connected to it, and staircases
beginning at the hall and hallway are all open above. The hallways
surrounding the atrium and the hallways passing over the wide hall-
way on the second and third floors all contain balconies overlook-
ing the first floor, and many of these are open to the clerestory ceil-
ing above. In addition, all of the interior offices on the third floor
are open above, and all but eleven of the interior offices have win-
dows into the interior of the building.

2.3.3 Topology

We divided the building into 510 different cells on the topological
map. This was done manually by placing cells on a floor plan of
the building and took approximately one hour; for larger buildings,
however, this process can be easily automated. Typically there is
one cell per office. For large labs and lecture halls, however, the
standard deviation of reported signal intensities would have been
too high for localization to be usable. As a result, we assigned
different cells to different regions of these rooms; these different
cells were trained separately, but could be treated as a single cell
for the purpose of localization. We also assigned cells to hallway
segments. Figures 1 and 2 show how these training points are dis-
tributed throughout the building.

Cell sizes varied over the building. The typical office size (and
therefore, cell size) is approximately 2.7 by 4.9 meters (9 by 16
feet). The largest room trained as a single cell is approximately 6
by 6 meters (19.7 by 19.7 feet). Most hallways are 1.6 meters (5.3
feet) wide, and are partitioned into cells of segments approximately
5.7 meters (18.7 feet) long. We also trained cells for outdoor loca-
tions, including third-floor balconies and a first-floor arcade.

To track agents as they move, we built a transition graph over
the set of cells. This graph contains 1,159 edges (including self-
transition edges), and the average out-degree is 3.55. It represents
navigable paths in our building, encoding the fact that one cannot
pass through walls except via doors, and one cannot switch floors
except via a staircase.

2.3.4 Training

We obtained a master key for the entire building and collected at
least 100 base station scans in each of the 510 cells. The person
doing the training spent approximately 2.7 minutes in each cell.
This person walked around slowly in order to cover the entire cell.
The main goal in collecting the training data was to get a signal
sample for each part of the cell; we did not concern ourselves with
the relative position of the operator performing the training. Data
collection took 28 man-hours overall; however, we collected many
more scans than we needed to ensure that we would have indepen-
dent data to experiment with. Had we only collected one minute
of training data per office, the minimum we recommend for pro-
duction use, training could have been accomplished in less than
half the time. Keep in mind that data collection can be done con-
currently; we collected our data using two operators, doubling our
throughput.

0 2 4 6 8 10 12
70

75

80

85

90

95

100

Sample size

P
er

ce
nt

 c
or

re
ct

Gaussian
Histogram

Figure 3: Bulk accuracy of localization methods after different
numbers of observations.

We collected a total of 51,249 scans. On average, each scan con-
tains a signal intensity reading from 14.86 of the 33 base stations.
We observed intensity values ranging from 1 to 217; thus, we es-
timate about 7.5 bits of usable information. When examining the
intensity histograms, we found three fundamental types. Most of
them were very close to Gaussian, so the Gaussian fit worked very
well. Some were sparse, indicating that the base stations were al-
most out of range; in these cases, the Gaussian fits had fairly large
standard deviations. A few were bimodal; the estimated mean was
in the middle, with a large standard deviation. Initially, we exper-
imented with a bimodal weighted Gaussian fit, but our results for
the single-mode estimator show that the improvements in accuracy
would be marginal.

The sensor map of the entire building for a second-floor base sta-
tion is shown in Figure 1; the base station in question is circled. As
expected, signal intensity degrades fairly consistently as distance
increases from the base station. There are several interesting phe-
nomena of note. First of all, we can still reliably get a signal from
the base station while outside or in a disconnected part of the build-
ing (that is, through two exterior walls and windows). Second, the
base station can be detected from across the building even on differ-
ent floors. Finally, at long distances, some offices will see the base
station while neighboring offices see nothing. This could be caused
by multipath effects or by other variations in building geometry that
result in favorable signal propagation.

2.4 Experimental results

2.4.1 Localization accuracy

The goal of this experiment was to determine the basic localiza-
tion performance of our system using Gaussian-fit curves and to
compare it with a system using the same training data but retain-
ing the full histogram of signal intensity observations. We chose
five scans at random for each of the 510 cells and removed them
from the training set. The remaining scans were used to train our
localizer. Then, for each cell, we used the scans we had removed
from the training set as input to the localizer and attempted to lo-
cate ourselves. We performed this experiment 100 times, removing
different scans each time.

Figure 2 shows the test cells on the map of our building and the
percentage of experimental trials in which the Gaussian method

75



0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Training Set Size

P
er

ce
nt

 c
or

re
ct

Gaussian
Histogram

Figure 4: Training set size versus accuracy for the Gaussian
and histogram methods.

returned the correct cell after five scans. In all cases, the Gaus-
sian method determined the correct cell in at least 70% of trials;
at all but a few locations, the localizer returned the correct cell
in more than 90% of experimental trials. While the histogram
method was likewise correct in at least 90% of trials at most lo-
cations, there were several cells where the histogram method was
correct in fewer than 50% of trials. Over all experimental trials,
the Gaussian method was correct in over 97% of trials. The his-
togram method was correct in over 95% of trials. While the his-
togram method’s overall accuracy was comparable to the Gaus-
sian method’s accuracy, the Gaussian method has better behavior
in pathological cases, typically returning a cell that is off-by-one
from the correct location. This result is discussed in more detail in
Section 3.1 and illustrated in Figure 8.

We wanted to explore the behavior of our system as we varied the
number of observations from which the system infers location. The
fewer observations required to infer a device’s location, the faster
this inference can be generated; each additional observation adds
an approximately 1.6 second delay in generating each location es-
timate. We ran the same experiment as above, but chose from one
to fifteen random scans for each cell to use for testing the localiza-
tion. We performed this experiment 100 times for each cell. The
results for one through twelve scans are shown in Figure 3; after
twelve scans, the graphs show almost no further variance.

The results show that using one scan, both methods success-
fully infer the location in over 70% of cases. 90% accuracy is
achieved with at least two scans for the Gaussian method, and
with at least three scans for the histogram method. It takes ap-
proximately 1.6 seconds to perform a scan, so at that accuracy, we
can localize the agent once every 3.2 seconds using the Gaussian
method, and once every 4.8 seconds using the histogram method.
Note that different hardware and driver combinations might be able
to perform a scan faster, leading to shorter latencies between usable
localization results.

2.4.2 Training set size

To evaluate the behavior of our localization system with smaller
training sets, we chose training set sizes ranging from six to 90
samples per cell. When it takes 1.6 seconds to collect each sample,
any reduction in the necessary training set size per cell will add
up to a significant reduction in data collection labor over a large

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Training Set Size

P
er

ce
nt

 o
f c

el
ls

 w
ith

 >
95

%
 a

cc
ur

ac
y

Gaussian
Histogram

Figure 5: Training set size versus percent of cells where 95% of
trials returned the correct location.

building. As before, we chose five scans at random from our data
to be our experimental scans. We then pruned the training set to
the appropriate size by removing training points at random and fi-
nally attempted to localize to each cell. We performed this test 100
times. The percentage of correct location estimates over all experi-
mental trials for the Gaussian method versus the histogram method
is shown in Figure 4.

The graph shows that both methods have good overall accuracy
even at low training set sizes. However, the histogram method tends
to require close to twice as large of a training set as the Gaussian
method to attain a similar accuracy. The Gaussian method attains a
90% accuracy using only 16 training points; the histogram method
requires 30 training points to attain this accuracy. Similarly, the his-
togram method requires 84 training points to attain a 95% accuracy;
the Gaussian method requires only 30 training points, correspond-
ing to only 48 seconds in each office.

Accuracy also varies by location. Figure 5 graphs the percent-
age of cells where at least 95% of experimental trials generated a
location estimate corresponding to the actual location. This graph
shows that the Gaussian method requires 24 elements in its training
set to attain a 95% accuracy over 60% of the cells, 32 elements in its
training set to attain a 95% accuracy over 70% of the cells, and 46
elements for a 95% accuracy of 80% of the cells. By contrast, the
histogram method needs 52 elements to attain this accuracy over
60% of cells, and 74 elements in its training set to attain this ac-
curacy over 70% of cells. We did not train with enough points
for histogram to get 95% accuracy at 80% of cells. For other cut-
off percentages (that is, other than 95%), we again observed that
approximately half the number of training points are required to at-
tain comparable levels of accuracy for the Gaussian method versus
the histogram method.

Finally, we compared how many training points are required at
individual cells before the localizer generates a correct location es-
timate in at least 95% of experimental trials. Table 1 shows the
number of cells for which an accuracy of 95% can be achieved with
the histogram method and the Gaussian method as the number of
training points increases; the caption provides detailed information
on how to interpret the numbers in the table. At only two cells does
the Gaussian method require more training data than the histogram
method to attain a 95% accuracy. At over 3/4 of the points, the
Gaussian method requires less than 30 training points. By contrast,

76



Method Histogram Histogram Histogram
# of Training Points < 30 30−60 > 60

Gaussian
234 105 46

< 30
Gaussian

2 17 68
30−60

Gaussian
0 0 67

> 60

Table 1: Table showing number of cells at which the histogram
and Gaussian methods first correctly localize to the cell in 95%
of experimental trials as the training set size increases. The
rows and columns are labeled with the number of scan records
in the training set for each method we used. For instance, the 46
in the top right corner indicates that for 46 cells, the Gaussian
method requires fewer than 30 training points to achieve 95%
accuracy, and the histogram method requires over 60 training
points to achieve this accuracy.

for most of the points, the histogram method requires at least 30
training points for 95% accuracy, and for over 1/3 of the points, it
requires over 60 training points. For most points, therefore, a 60-
second training phase at each point (corresponding to a 37-element
training set) is sufficient to localize most points to very good accu-
racy using the Gaussian method.

2.4.3 Base station density

Localization accuracy is also influenced by the number N of base
stations in the building. If N is reduced, less information is avail-
able to the localizer, and thus the accuracy decreases. To quantify
this effect, we performed another experiment in which we varied N
by randomly removing some of the 33 base stations from our data
set. In doing so, we ensured that at least one base station was still
visible from each cell, and that at least 50 nonzero scans per cell
remained. From the resulting data set, we took five random scans
per cell and ran them through a localizer that was trained with the
remaining scans.

The experiment was performed with both the Gaussian method
and the Histogram method. For each value of N, we chose 20 ran-
dom subsets of base stations and performed five trials for each sub-
set. We report the overall fraction of trials in which the localizer
was able to determine the correct cell, as well as the 20th and 80th
percentiles.

Figure 6 shows our results. Even with only 17 instead of 33
base stations, the Gaussian method can determine the correct cell
in over 90% of the trials. For lower values of N, the accuracy de-
clines rapidly, while the fluctuations are significantly higher. This
is because at lower densities, the exact placement of the base sta-
tions starts to matter; also, the number of scans available to the
localizer decreases because some of them contain only values for
base stations that have been removed. If this were compensated by
using an even larger data set, the results for lower densities would
improve. However, in real-world wireless network deployments, it
is reasonable to expect some redundancy of base station coverage
to improve the quality and robustness of service.

3. TIME-VARYING PHENOMENA

The localizer we have presented in the previous section assumes
a static environment and a stationary agent. Neither assumption
is realistic. The observed signal intensity distributions will often
differ from the distributions estimated in the training phase due

5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Number of Base Stations

P
er

ce
nt

 c
or

re
ct

Gaussian
Histogram

Figure 6: Impact of base station density on localization accu-
racy.

18:00 22:00 02:00 06:00 10:00 14:00 18:00
0

32

64

96

128

160

192

224

256

Time

A
ve

ra
ge

 S
ig

na
l I

nt
en

si
ty

Figure 7: Signal intensity variation over a 24-hour period for
three base stations measured from a laptop in a fixed location.

to a myriad of time-correlated phenomena. These phenomena in-
clude environmental properties such as attenuation due to people in
the building or building residents opening and closing their office
doors. Likewise, transient interference can be caused by other elec-
tronic devices including microwave ovens, Bluetooth devices, and
cordless phones. Furthermore, a 2.4 GHz frequency corresponds to
a 12.5cm wavelength, implying that multipath fading effects may
be experienced even with small changes in the operator’s location.
These dynamic environmental influences can cause the observed
signal intensity to vary over both small and large timescales. The
movement of the operator in the environment further complicates
the task of maintaining an accurate position estimate.

3.1 Signal variations due to office traffic

Over the course of the day and throughout the night, many changes
occur in the environment which affect the observed signal intensity.
Each of these changes tend to be local and transient but since the
nature and frequency of these events varies with the time of day,
we expect that, on average, the signal intensity distribution changes
globally on a larger timescale. In order to estimate the size of this

77



0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Distance to actual location (meters)

P
er

ce
nt

 o
f g

ue
ss

es

Gaussian (Calibrated)
Histogram (Calibrated)
Gaussian (Uncalibrated)
Histogram (Uncalibrated)

Figure 8: Basic daytime performance for 27 cells. The results
marked “calibrated” were obtained using the calibration tech-
nique from Section 4.2.

effect, we collected scans at a fixed location (an office) over a 24-
hour period. The resulting 52,900 scans were divided into groups
of 100, and the signal intensities were averaged over each group.
Figure 7 shows the result for three different base stations. There are
noticeable variations during the day. At nighttime, some of them
become less pronounced or more regular, while others disappear
almost entirely.

Time-varying effects have severe implications on the accuracy of
localization. To quantify these, we performed localization experi-
ments in 27 different cells at around 11:00 AM, when there is rela-
tively heavy traffic in the building, including students either in class
or going to or from class. We collected approximately 30 scans
in each cell and then ran each possible subset of five consecutive
scans through the localizer; the probability vector was initialized
with a uniform distribution each time. The results are presented
in Figure 8. We observed mediocre results; using the Gaussian
method, less than 70% of location estimates were correct, with the
bulk of observed errors within 5.5 meters of the correct location.
These results and techniques to improve them are discussed further
in Section 4.

3.2 Tracking

Another time varying phenomenon we examined is the movement
of the agent. Markov localization works well as a single-shot local-
ization algorithm or for a stationary agent; however, for a moving
agent, the prior position estimate will hamper correct localization.
A simplistic solution can be obtained by resetting the distribution�π
to a uniform distribution over all states between each burst of obser-
vations. A more elegant and effective solution is to update the state
estimate between each set of observations using a Markov chain
that encodes assumptions about how the agent can move from state
to state.

Suppose at time t, the state estimate is �πt . Between time t and
t + 1, the agent moves in some unknown way. At time t + 1, the
observations o1, . . . ,ok are received. The state estimate at time t +1
is computed as follows:

�πt+1
i =

∏k
j=1 P(o j|si)�πt+

i

η
,

B E

H

J MI K L

GF

A C D

Figure 9: The floor plan for part of Duncan Hall and the corre-
sponding Markov chain.

where

�πt+ = A�πt .

As before, η is a normalizer that ensures�πt+1 is a probability vec-
tor. The probability matrix A encodes the Markov chain, which can
be thought of as a finite state machine (Figure 9). States represent
cells, and an edge from state si to state s j indicates that cell j can be
reached directly from cell i. Also, each edge is assigned a transition
probability Ai, j . In our implementation, we gave a fixed probability
to the self-edge at each state and distributed the remaining proba-
bility evenly across its outgoing edges.

3.3 Tracking experiments

We wanted to evaluate the effectiveness of Markov chains when
tracking a moving agent. First, we randomly chose four way-points
in our building. Then we simulated a person following the short-
est path between these way-points; the simulated agent remained
at each way-point between 10 and 15 seconds, and moved with a
constant speed between 0 and 4.5 meters per second (between 0
and 10.1 miles per hour) from one way-point to the next. Every
1.6 seconds, we chose a random scan from the closest cell to the
agent’s simulated location.

This timing simulates the agent performing back-to-back base
station scans. The agent would not be able to communicate over
the network while tracking. As a compromise, the agent could in-
terleave scans and communication, e.g. by using the interface for
data traffic for 1.6 seconds in between each 1.6-second scan. In

78



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
50

55

60

65

70

75

80

85

90

95

100

Walking speed (m/s)

P
er

ce
nt

 c
or

re
ct

With Adjacent
With Lag
Correct

Figure 10: Accuracy of dynamic tracking as a simulated per-
son walks around our test area. Correct is the overall percent
of correct location estimates. Lag is the overall percent of lo-
cation estimates that match either the current or the previous
cell. With Adjacent is the overall percent of location estimates
within one location cell in our topological model.

this experiment, a person using such a system would appear to be
moving at twice her actual speed.

These scans were then run, in order, through the localizer. We
also passed the location estimate through a hidden Markov model
of the agent’s movement through the environment. The initial prob-
abilities for the hidden Markov model were set to 1.0 for the correct
cell and to 0.0 for all other cells. We performed this experiment 250
times for each speed. The results are shown in Figure 10.

The Correct result is the overall percent of correct location es-
timates. This value decreases slowly until a velocity of 4 meters
per second (8.9 mph), and even at this speed, the localizer has an
accuracy of 71%. The Lag result is the overall percent of location
estimates that match either the current or the previous cell. By this
metric, our method experienced a similar drop-off of accuracy at
4 m/s. The localizer had an accuracy of over 79% at this speed.
Finally, the With Adjacent result is the overall percent of location
estimates within one location cell in our topological model; by this
metric, the localizer had an accuracy of 86% at 4 m/s.

This demonstrates that our localization method, when coupled
with a hidden Markov model of motion, can accurately track even
a fast-moving target. As expected, the overall accuracy is lower
than for static localization. Even at a slow walking pace, only four
scans might be registered before the agent enters a new cell, so it
is unsurprising that localization accuracy is lower for moving than
for stationary agents. The hidden Markov model helps the sys-
tem by, in effect, anticipating this movement and rejecting unlikely
measurements when they would otherwise predict impossible tran-
sitions. Also note that different hardware and driver combinations
might be able to complete a scan faster than the 1.6 seconds we
experienced; this would greatly improve our results.

Another interesting phenomenon we were concerned about was
that the tracker might get “stuck” in an office adjacent to the agent’s
current location. Because there were no direct edges connecting ad-
joining offices, the tracker might not make the transition. Although
we considered adding “phantom” edges to the transition matrix A
to account for this behavior, the tracker would, in practice, follow

first the edge from the adjacent office to the hallway, and from there
to the correct office, thus correcting for such errors automatically.

3.4 Miscellaneous effects

To illustrate the impact of time-varying phenomena on tracking per-
formance, we report some insights from our practical experience
with the system. One of the authors was using the tracker over a
normal office day, during which he attended a lecture and a presen-
tation, worked at his desk, and walked from office to office. The
overall performance was very satisfactory; the estimated location
occasionally jumped to an adjacent cell, but generally matched the
true location well.

The presentation, which was held in a conference room full of
students, turned out to be a worst-case scenario. The signal was not
only heavily attenuated, but also changed over time, for example
when a fellow student leaned over and thus moved closer to the
antenna. This caused the estimated location to jump between the
three different cells in the conference room, and occasionally to the
cell right outside the door. Similar effects were observed when the
author met other students in the hallways and was asked to explain
the experiment. As soon as the other person moved close to the
antenna in order to watch the location estimate, the estimate jumped
to an adjacent office.

4. CALIBRATION

The sensor maps built by our method can only be guaranteed to
work for localization if they are used in the same environment as
during the training period. However, as shown in the previous sec-
tion, the environment can change significantly over the course of
the day. Moreover, the signal intensity values reported by the hard-
ware depend on various factors, including the chipset and the an-
tenna, and can vary considerably between different 802.11 imple-
mentations. Therefore, a method is needed to adapt the sensor map
to the environment in which it is to be used.

Fortunately, we observed that the effect of environmental
changes, including both time-varying effects and different hard-
ware, can be closely approximated by a linear relationship. Thus,
the sensor map can be adapted to a new environment simply by
learning two parameters. This process, which we refer to as cal-
ibration, should require little or no user intervention; ideally, it
would be performed in the background, thus enabling the localizer
to work “out of the box.”

In this section, we first describe the model we use for calibra-
tion and give several examples of different configurations and the
corresponding parameters. Then we present three different cali-
bration methods, spanning the range from completely manual to
completely autonomous.

4.1 Model

The calibration problem can be formulated as follows: Given a sen-
sor map and an 802.11 device in a certain environment, find a cali-
bration function c that maps an observed signal intensity value i to
the value c(i) that would have been reported by the device that was
used to generate the sensor map. If c is known, c(i) can be given as
an input to the localizer, and the original sensor map can be used
unmodified.

As Tao et al. [48] first observed, there is a linear relation between
transmission power level and received signal strength as reported
by 802.11 hardware. In our experiments, we discovered that the
effects of hardware variation and some time-varying phenomena
appear to be linear as well. That is, the calibration function can be

79



Chipset Relation

ACX100 c(i) = i
Prism c(i) = 0.85 · i−43.5
Atheros c(i) = 2.77 · i−409.5

Table 2: Linear relationships between several different 802.11
cards and the ACX100 card we used in training. i is the value
reported by the hardware, and c(i) is the equivalent value that
would be reported by the ACX100, and that can be input into
the localization system to accurately determine the device’s lo-
cation.

closely approximated by the linear relationship

c(i) = c1 · i−c2.

Thus, it is sufficient to learn the parameters c1 and c2 in order to
adapt a given sensor map to a new environment. This can be accom-
plished in various ways; for example, one can collect some mea-
surements at well-known locations and compute the least-squares
fit between the observed values and the corresponding values from
the sensor map.

Using this method, we found the parameters for a number of
different cards. These are listed in Table 2. The ACX100 is the
card we used for training, so its calibration function is the identity
function. Prism is a Linksys WPC11 PCMCIA card based on the
Intersil Prism2 chipset. Atheros is a Mini PCI card with an Atheros
chipset and using the IBM Thinkpad T40p’s built-in antenna.

Figure 11 shows the effects of calibration for the Atheros chipset.
This ‘unadjusted’ graph was generated using pairs (iR, iM) of inten-
sity values, where iR is the reference value from the sensor map
for a certain cell and base station, and iM is the corresponding
value measured with the Atheros card. The ‘adjusted’ graph shows
(iR,c(iM)), clearly indicating that after calibration, the two values
are almost identical.

Note that the signal intensities reported by the Atheros chipset
were 8-bit values as in the ACX100 case, but we observed only
values between 163 and 224, so there are only 5.9 bits of usable
information.

That is not to say that the difference in signal strength reporting
between any two cards is always a linear relation. In particular, dif-
ferent cards may use different techniques to actually measure the
signal strength. As Steger et al. [47] demonstrated, different cards
behave differently in the face of varying signal conditions. In addi-
tion, as indicated by our results, the mapping from the actual signal
strength to the number returned by the hardware is arbitrary, will
vary from one chipset to another, and need not be linear. However,
in all the cards we tested, the signal strength readings were linear
relations of one another.

4.2 Manual calibration

As mentioned earlier, the parameters of the calibration function can
be found by computing a linear fit for a set of measured signal in-
tensities and the corresponding values from the sensor map, e.g. by
applying the least-squares method. First, we must collect enough
value pairs to perform this calculation. In our prototype implemen-
tation, this is done by moving the device to several different cells.
In each cell, the user presses the ‘calibrate’ button, prompting the
device to collect a few scans, and then indicates the current cell
on a floor plan of the building. Since in Duncan Hall, each cell
contributes value pairs for 14.86 base stations on average, a small
number of cells (three to five) was usually sufficient.

0 32 64 96 128 160 192 224 256
0

32

64

96

128

160

192

224

256

Signal intensity (reference)

S
ig

na
l i

nt
en

si
ty

 (
ne

w
 c

ar
d)

Unadjusted
Adjusted
Ideal

Figure 11: Effect of calibration on the signal strength values
reported by the Atheros chipset. The intensity values shown
are averages over at least five samples.

0 32 64 96 128 160 192 224 256
0

32

64

96

128

160

192

224

256

Signal intensity (reference)

S
ig

na
l i

nt
en

si
ty

 (
ob

se
rv

ed
)

Unadjusted
Adjusted
Ideal

Figure 12: Average signal intensity values, before and after re-
calibration for time-varying effects.

Figure 12 shows an example result from such a calibration. In
this case, the 802.11 hardware was the same as during the training
period, but the measurements were taken at daytime during heavy
office traffic. Clearly, both the constant offset and the linear factor
changed. Yet, after calibration, the signal intensity values corre-
spond almost exactly to the ones from the training phase.

In order to quantify the effect of calibration for time-varying ef-
fects, we ran the localization with and without performing calibra-
tion. The result is shown in Figure 8. Without calibration, the
results are mediocre: less than 70% of location estimates are cor-
rect, and 90% of estimates are within 5.5 meters for the Gaussian
method. After calibration, results are greatly improved: 88% of
location estimates are correct, and 90% are within 3 meters. This
experiment suggests an important conclusion: that a single linear-
fit captures most of the deviation induced by slow timescale phe-
nomena. In other words, the signal intensity shifts due to slow
time-varying effects seem to be homogeneous on average across
various locations. Qualitatively, we have observed that running lo-
calization without tracking, during the day, is a bit noisy, lags a

80



bit, and is prone to localizing into the room adjacent to the user.
Once we run the calibration in three or four cells, the localization
is extremely stable and very rarely makes mistakes.

4.3 Quasi-automatic calibration

Manual calibration is clearly effective, but has the disadvantage of
requiring the user to specify the current cell. Surprisingly, however,
calibration can be performed without this information and using
only a set of scans from several different – but unknown – cells.

Our second calibration method takes advantage of the fact that
the observation space is both sparse and non-linear, so there is al-
most never a linear mapping between observations from different
cells. Hence, when an incorrect calibration function is used, the
calibrated intensity values do not match any reference values from
the sensor map, and the confidence value η produced by Markov
localization (see Section 2.2.1) is low for all cells; it is high only if
both the calibration function and the cell are correct. Therefore, the
parameters c1 and c2 can be learned by attempting Markov local-
ization and by choosing values such that the confidence η is maxi-
mized.

4.4 Automatic calibration

Although the quasi-automatic method involves less user interaction
than the manual method, it still requires the user to press a ‘cali-
brate’ button from time to time. However, in order to obtain op-
timum performance, the user will have to recalibrate several times
over the course of the day, which is cumbersome and, in the case
of manual calibration, requires a certain familiarity with the build-
ing. It would be clearly preferable to have an entirely hands-off
solution.

Toward this end, we have been investigating the problem of run-
ning localization, tracking, and calibration simultaneously. Our ini-
tial results are promising but do not yet match the results we have
seen with supervised calibration for online localization and track-
ing. The basic technique we have been considering uses a history of
recent observations as a training sample to construct an estimate of
the calibration parameters that are then used to process future data.
This algorithm runs in parallel with the localization process. We
use an expectation-maximization algorithm (E-M) [52] that com-
putes a fixed-point, iterating between inferring a sequence of lo-
cation estimates from the history and then choosing c1,c2 to maxi-
mize the probability of these estimates occurring. The observations
and estimates are stored in a sliding window of between 10 and 45
seconds.

Our current implementation of simultaneous localization and
calibration seems about as good as supervised calibration for static
localization problems. In the tracking implementation, we have ob-
served that the tracker is a bit sluggish and prone to place the user
in adjacent rooms. Also, it seems to occasionally get stuck with
a bad hypothesis that stays until the sliding window fills with new
data. If the size of the sliding window is decreased then the tracker
lags.

Another possible approach that we believe may be attractive is a
Monte Carlo (particle filter) approach [18, 53] that maintains a set
of c1,c2 hypotheses and gathers data to determine which hypoth-
esis should be used. Where our current approach only maintains
one hypothesis at a time, this approach would simultaneously try
a large number of hypotheses, preventing the system from getting
stuck with a local maximum and thereby missing globally optimal
settings. In this framework, the confidence values from the local-
izer (η) could be used to discriminate between two hypotheses. Our

experiments and data analysis suggest that solving the problem of
making a simultaneous localizer and calibrator is tractable.

5. DISCUSSION

5.1 Why a Gaussian fit?

Our most striking departure from previous work is that the most
successful systems in the literature have used the entire signal in-
tensity histogram. On the other hand, we have chosen to fit the
sensor map data to Gaussian distributions. We chose this course
for several reasons.

First, fitting the data to a Gaussian only requires storing two
numbers for each base station and cell. Keeping the entire his-
togram requires at least 30 times as much storage. This reduction
increases the speed and reduces the memory requirements for local-
ization, making it more suitable for low-power embedded devices
that may not have the resources of a modern laptop computer.

Furthermore, fitting to a Gaussian also provides some robust-
ness benefits to our system. The Gaussian method tends to provide
roughly the same accuracy of localizations for half the training ef-
fort (see Section 2.4.2). One reason for this is that if the entire
histogram is used, the training might capture minor modes that are
a result of time varying phenomena and might miss other minor
modes not present in the training set. These minor modes will be
covered by the normal distribution curve to which the data is fit in
the Gaussian method. Also, previous histogram-based systems re-
quired taking as many as 500 scans to train each point. This would
make it impractical to build a sensor map as large as the one we
built without a significantly longer training time.

5.2 Choosing a training set size

Although most of our localization results are based on training sets
with 90 elements, we determined that for our building, taking a 60-
second training set (around 37 elements) was adequate for accurate
localization in most of our building (see Section 2.4.2). The point
of diminishing returns, in terms of accurately capturing the sensor
map, seems to begin around 35 samples per point (see Figure 4).
Of course this is a minimum; having additional training data can
only help.

The optimal number of training points depends on a number
of factors, including building geometry, base station density, and
building usage. Although Duncan Hall has unusual geometry, the
base station density is high; there are rarely fewer than five base sta-
tions in range, even in the corners of the building. Buildings with
fewer base stations, lower base station density, or more opaque con-
struction materials, would likely need larger training sets.

Buildings with interesting geometry, such as large open areas,
tend to dilute differences in signal intensity, and require more train-
ing data. As the sensor map in Figure 1 shows, hallways tend to
channel signals such that signal intensity drops at a regular rate
going down a hallway. Large open areas tend to disperse signal,
leading to much less distinction among cells.

To adequately measure signal maps in other buildings, experi-
mentation may be necessary to determine the ideal set size. For
our own building, we started by first collecting training data in a
small region of the building. By observing the mean and standard
deviations of this data, we could estimate how many samples were
necessary for the system to converge. In our own case, we ob-
served that, with 25 scans, the variation of the mean dropped below
2. For experimental purposes, we captured significantly more than
25 scans per cell to help verify our results.

It would be possible to encode the above technique into the train-
ing system. When the mean and standard deviation stabilize to

81



within a specified threshold, we can conclude that we have col-
lected enough training data to accurately describe a cell. This check
could be run in real-time.

5.3 Changes to the infrastructure

In this paper, we implicitly assumed that the sensor map accurately
reflects the signal intensities throughout the building. However, this
is only true as long as there are no fundamental changes in the en-
vironment, such as base station failures or major reconfigurations.
While changes of this type are infrequent in practice, they may af-
fect localization accuracy where they do occur.

If an individual base station fails, it does not respond to probe re-
quests any more and thus changes the observations made from the
surrounding cells. However, because our method only uses posi-
tive observations, i.e., probe responses actually received, the only
effect this has on the localizer is that there is less information avail-
able, reducing accuracy and convergence speed. As long as enough
other base stations are in range, the effect should be small (see Sec-
tion 2.4.3).

Moving an existing base station requires the cells surrounding
the old and the new position to be re-trained. However, since base
stations are typically wall-mounted and require power and a net-
work connection, they cannot be moved easily, so changes of this
type should be very rare.

The appearance of transient base stations does not affect local-
ization because the localizer can easily determine the set of accept-
able stations from the signal map and ignore unknown stations. If a
permanent station is added after the training phase, it can be used to
improve accuracy by re-training the cells from which it is visible.

Some base stations choose their channels dynamically; thus, a
major failure such as a power outage may cause the channel as-
signment to change. This actually happened once during our ex-
periments, when a maintenance event required the entire building
to be taken off-line. Although the base stations operated on differ-
ent channels afterwards, we did not observe a significant change in
accuracy.

5.4 Passive localization

Passive localization refers to localization in which the mobile de-
vice being localized is a passive participant in the localization pro-
cess. While the device must be transmitting data to be tracked, it is
not explicitly performing any part of the localization algorithm, and
need not be aware that it is being tracked. Since signal propagation
is a reversible operation, the same sensor map data should, after
calibration, allow someone with access to enough receivers to track
any transmitting device. While we’ve performed some experiments
that tend to validate this, more experimentation is in order.

The most obvious application of passive localization is for locat-
ing an intruder on an 802.11 wireless network. Tao et al. [48] per-
formed a study of this issue. Two problems they overcame were dif-
ferences in hardware and differences in transmission power. Since
both of these were fixed by mapping received signal intensity to
the training set via a linear relation, the calibration technique we
discuss in Section 4 should allow us to account for both of these
variations. A promising avenue of future work is applying simulta-
neous localization and calibration (see Section 4.4) to automatically
account for variations in hardware, movement, and transmission
power manipulation on the part of the intruder.

Finally, more ambitious intruders might attack in coalitions,
jointly transmitting packets using the same hardware address. This
would make the attacker appear to be jumping all over the map. We

believe clustering algorithms may be able to adequately determine
the number of attackers and separately localize each one.

There are of course privacy implications to being able to track
any arbitrary device on an 802.11 network. Anyone who has phys-
ical access to a building can deploy an ad hoc network of snoopers
and track every device in the building, with or without the approval
of the building’s management. The only solution is to realize that,
by transmitting a packet on an 802.11 network, a mobile agent is
effectively revealing its location to motivated adversaries.

6. CONCLUSION

In this paper, we presented a practical robust scheme for local-
ization over the entirety of an 802.11 network deployed within a
multi-story office building. We have shown that the use of a topo-
logical model can dramatically reduce the time required to train the
localizer, while the resulting accuracy is still sufficient for many
location-aware applications. We used a Gaussian fit sensor model,
which is more robust and requires less training compared to sensor
models that use the full histogram of signal strengths. Finally we
developed a technique by which the training data can be adapted
for use with totally different receiver hardware, and under different
conditions than during the training phase.

To evaluate our localization technique, we have developed a
methodology which makes use of excess training data to determine
raw localization performance. We deployed our system in a large
office building on the Rice University campus. In our experiments,
we experienced both good overall performance and excellent ro-
bustness; in the rare event that an incorrect position estimate was
generated, it was almost always to an adjacent cell. We also dis-
covered how different variables, including training set size, sample
size, base station density, and time of day affect localization accu-
racy.

Our system is ready to be made available right now in our office
building for people who want to use location-aware applications
on top of it, and it could be made available in the near future for
deployment (after a brief training phase) in any building with an
802.11 network installed.

7. ACKNOWLEDGEMENTS

This paper has benefited considerably from the comments of the
anonymous MobiCom reviewers and our shepherds, Per Gunning-
berg and Farooq Anjum. We would like to thank Kostas Bekris,
Guillaume Marceau, and Ping Tao for contributions to earlier
versions of this work. In addition, thanks to Joseph Cavallaro,
Ashutosh Sabharwal, and Patrick Frantz for their insight into how
wireless network cards measure signal strength. Finally, thanks to
all the residents of Duncan Hall for their cooperation in our exper-
iment, and the department chair, Keith Cooper, for trusting us with
his master key.

Andreas Haeberlen is partly supported by NSF ANI-0338856
and by a fellowship from Rice University. Andrew M. Ladd is
partly supported by NSF 0308237 and a FCAR Fellowship. Algis
Rudys and Dan S. Wallach are supported by generous gifts from
Microsoft and Schlumberger. Lydia E. Kavraki is partly supported
by NSF 0308237 and a Sloan Fellowship.

8. REFERENCES

[1] G. Abowd, K. Lyons, and K. Scott. The Rhino project, Aug.
1998. http://www.cc.gatech.edu/fce/uvid/
rhino.html.

82



[2] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper,
and M. Pinkerton. Cyberguide: a mobile context-aware tour
guide. Wireless Networks, 3(5):421–433, Oct. 1997.

[3] The ACX100/ACX111 wireless network driver project.
http://acx100.sourceforge.net.

[4] P. Bahl and V. N. Padmanabhan. Enhancements to the
RADAR user location and tracking system. Technical Report
MSR-TR-2000-12, Microsoft Research, Feb. 2000.

[5] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-
based user location and tracking system. In Proceedings of the
Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), volume 2, pages
775–784, Tel Aviv, Israel, Mar. 2000.

[6] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Ea-
syLiving: Technologies for intelligent environments. In Pro-
ceedings of the 2nd International Symposium on Handheld
and Ubiquitous Computing, Bristol, UK, Sept. 2000.

[7] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low-cost
outdoor localization for very small devices. IEEE Personal
Communications Magazine, 7(5):28–34, Oct. 2000.

[8] W. Burgard, A. Cremers, D. Fox, D. Hahnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun. The interactive museum
tour-guide robot. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI), Madison, WI,
July 1998.

[9] P. Castro, P. Chiu, T. Kremenek, and R. R. Muntz. A prob-
abilistic room location service for wireless networked en-
vironments. In Proceedings of the Third International Con-
ference on Ubiquitous Computing (Ubicomp), Atlanta, GA,
Sept. 2001.

[10] G. Chen and D. Kotz. A survey of context-aware mobile com-
puting research. Technical Report TR-2000-381, Department
of Computer Science, Dartmouth College, Nov. 2000.

[11] H. Choset and K. Nagatani. Topological simultaneous lo-
calization and mapping (SLAM): Toward exact localization
without explicit localization. IEEE Transactions on Robotics
and Automation, 17(2):125–137, Apr. 2001.

[12] I. Cox. Blanche - An experiment in guidance and naviga-
tion of an autonomous robot vehicle. IEEE Transactions on
Robotics and Automation, 7(2):193–204, 1991.

[13] A. K. Dey and G. D. Abowd. Cybreminder: A context-aware
system for supporting reminders. In Proceedings of the Sec-
ond International Symposium on Handheld and Ubiquitous
Computing, Bristol, UK, Sept. 2000.

[14] A. K. Dey, G. D. Abowd, and D. Salber. A context-based
infrastructure for smart environments. In Proceedings of the
First International Workshop on Managing Interactions in
Smart Environments, Dublin, Ireland, Dec. 1999.

[15] G. Dudek and M. Jenkin. Computational Principles of Mo-
bile Robotics. Cambridge University Press, Cambridge, UK,
2000.

[16] Ekahau, Inc. website. http://www.ekahau.com/.
[17] Federal Communications Commission Report and Order 96-

264: Revision of the commission’s rules to ensure compat-
ibility with Enhanced 911 emergency calling systems, July
1996. http://www.fcc.gov/Bureaus/Wireless/
Orders/1996/fcc96264.txt.

[18] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo
localization: Efficient position estimation for mobile robots.
In Proc. of the Sixteenth National Conference on Artificial In-
telligence (AAAI-99), pages 343–349, Orlando, Florida, 1999.

[19] D. Fox, W. Burgard, and S. Thrun. Markov localization for
mobile robots in dynamic environments. Journal of Artificial
Intelligence Research, (JAIR), 11:391–427, Nov. 1999.

[20] Y. Gwon, R. Jain, and T. Kawahara. Robust indoor location
estimation of stationary and mobile users. In Proceedings The
23rd Conference of the IEEE Communications Society (IN-
FOCOM), Hong Kong, Mar. 2004.

[21] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Ab-
delzaher. Range-free localization schemes for large scale sen-
sor networks. In Proceedings of the Ninth Annual Interna-
tional Conference on Mobile Computing and Networking
(MOBICOM), San Diego, CA, Sept. 2003.

[22] J. Hightower and G. Borriello. Location systems for ubiqui-
tous computing. IEEE Computer, 34(8):57–66, Aug. 2001.

[23] J. Hightower, R. Want, and G. Borriello. SpotON: An indoor
3D location sensing technology based on RF signal strength.
Technical Report UW CSE 00-02-02, Department of Com-
puter Science and Engineering, University of Washington,
Seattle, WA, Feb. 2000.

[24] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter. System architecture directions for networked sensors. In
Proceedings of the Ninth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS-IX), Cambridge, MA, Nov. 2000.

[25] L. Hu and D. Evans. Localization for mobile sensor networks.
In Proceedings of the Tenth Annual International Confer-
ence on Mobile Computing and Networking (MOBICOM),
Philadelphia, PA, Sept. 2004.

[26] Institute of Electrical and Electronics Engineers, Inc.
ANSI/IEEE Standard 802.11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,
1999.

[27] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed dif-
fusion: a scalable and robust communication paradigm for
sensor networks. In Proceedings of the Sixth Annual Inter-
national Conference on Mobile Computing and Networking
(MOBICOM), Boston, MA, Aug. 2000.

[28] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and
S. Shafer. Multi-camera multi-person tracking for EasyLiv-
ing. In Third IEEE International Workshop on Visual Surveil-
lance, Dublin, Ireland, July 2000.

[29] J. Krumm and J. Platt. Minimizing calibration effort for an in-
door 802.11 device location measurement system. Technical
Report MSR-TR-2003-82, Microsoft Research, Seattle, WA,
Nov. 2003.

[30] B. Kuipers and Y.-T. Byun. A robot exploration and mapping
strategy based on a semantic hierarchy of spatial represen-
tations. Journal of Robotics and Autonomous Systems, 8(1–
2):47–63, Nov. 1991.

[31] A. M. Ladd, K. E. Bekris, A. Rudys, G. Marceau, L. E.
Kavraki, and D. S. Wallach. Robotics-based location sensing
using wireless Ethernet. In Proceedings of the Eighth Annual
International Conference on Mobile Computing and Network-
ing (MOBICOM), Atlanta, GA, Sept. 2002.

[32] S. Lenser and M. Veloso. Sensor resetting localization for
poorly modelled mobile robots. In Proceedings of ICRA-
2000, The International Conference on Robotics and Automa-
tion, Detroit, MI, Apr. 2000.

[33] T. Liu, P. Bahl, and I. Chlamtac. Mobility modeling, loca-
tion tracking, and trajectory prediction in wireless ATM net-
works. IEEE Journal on Selected Areas in Communications,
16(6):922–936, Aug. 1998.

83



[34] T. Logsdon. Understanding the Navstar: GPS, GIS and IVHS.
Second edition. Van Nostrand Reinhold, New York, 1995.

[35] N. Marmasse. comMotion: a context-aware communication
system. In CHI Extended Abstracts on Human Factors in
Computing Systems, Pittsburgh, PA, May 1999.

[36] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global
coordinate system from local information on an ad hoc sensor
network. In Proceedings of the Second International Work-
shop on Information Processing in Sensor Networks (IPSN),
Palo Alto, CA, Apr. 2003.

[37] D. Niculescu and B. Nath. Ad hoc positioning system (APS)
using AOA. In Proceedings of the 22nd Annual Joint Con-
ference of the IEEE Computer and Communications Societies
(INFOCOM), San Francisco, CA, Mar. 2003.

[38] D. Niculescu and B. Nath. DV based positioning in ad hoc
networks. Kluwer Journal of Telecommunication Systems,
22(1–4):267–280, Jan. 2003.

[39] G. J. Pottie and W. J. Kaiser. Wireless integrated network sen-
sors. Communications of the ACM, 43(5):51–58, May 2000.

[40] N. Priyantha, A. Chakraborty, and H. Balakrishman. The
Cricket location support system. In Proceedings of the Sixth
Annual International Conference on Mobile Computing and
Networking (MOBICOM), pages 32–43, Boston, MA, Aug.
2000.

[41] N. Priyantha, A. Miu, H. Balakrishman, and S. Teller. The
Cricket Compass for context-aware mobile applications. In
Proceedings of the Seventh Annual International Conference
on Mobile Computing and Networking (MOBICOM), pages
1–14, Rome, Italy, July 2001.

[42] E. Remolina and B. Kuipers. Towards a general theory of
topological maps. Artificial Intelligence, 152(1):47–104, Jan.
2004.

[43] T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and
J. Sievanan. A probabilistic approach to WLAN user loca-
tion estimation. International Journal of Wireless Information
Networks, 9(3), July 2002.

[44] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic
fine-grained localization in ad-hoc networks of sensors. In
Proceedings of the Seventh Annual International Conference
on Mobile Computing and Networking (MOBICOM), Rome,
Italy, July 2001.

[45] A. Smailagic, D. Siewiorek, J. Anhalt, D. Kogan, and
Y. Wang. Location sensing and privacy in a context aware
computing environment. Pervasive Computing, 2001.

[46] J. Small, A. Smailagic, and D. P. Siewiorek. Determining user
location for context aware computing through the use of a
wireless LAN infrastructure, Dec. 2000. http://www-2.
cs.cmu.edu/˜aura/docdir/small00.pdf.

[47] C. Steger, P. Radosavljevic, and P. Frantz. 802.11b operating
in a mobile channel: Performance and challenges. In Commu-
nications Design Conference, San Jose, CA, Sept. 2003.

[48] P. Tao, A. Rudys, A. M. Ladd, and D. S. Wallach. Wire-
less LAN location-sensing for security applications. In Pro-
ceedings of the Second ACM Workshop on Wireless Security
(WiSe), San Diego, CA, Sept. 2003.

[49] S. Thrun. Probabilistic algorithms in robotics. AI Magazine,
21(4):93–109, 2000.

[50] S. Thrun and A. Bücken. Integrating grid-based and topo-
logical maps for mobile robot navigation. In Proceedings of
the AAAI Thirteenth National Conference on Artificial Intelli-
gence, Portland, Oregon, Aug. 1996.

[51] S. Thrun and A. Bücken. Learning maps for indoor mo-
bile robot navigation. Technical Report CMU-CS-96-121,
Carnegie Mellon University, Computer Science Department,
Pittsburgh, PA, Apr. 1996.

[52] S. Thrun, W. Burgard, and D. Fox. A probabilistic approach to
concurrent mapping and localization for mobile robots. Ma-
chine Learning, 31(1-3):29–53, 1998.

[53] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte
Carlo localization for mobile robots. Artificial Intelligence,
101:99–141, 2000.

[54] S. Thrun, J.-S. Gutmann, D. Fox, W. Burgard, and B. Kuipers.
Integrating topological and metric maps for mobile robot nav-
igation: A statistical approach. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence and Tenth Con-
ference on Innovative Applications of Artificial Intelligence,
pages 989–995, Madison, WI, July 1998.

[55] R. Want, A. Hopper, V. Falco, and J. Gibbons. The Active
Badge location system. ACM Transactions on Information
Systems, 10:91–102, Jan. 1992.

[56] A. Ward, A. Jones, and A. Hopper. A new location tech-
nique for the active office. IEEE Personal Communications,
4(5):42–47, Oct. 1997.

[57] R. Yamamoto, H. Matsutani, H. Matsuki, T. Oono, and
H. Ohtsuka. Position location technologies using signal
strength in cellular systems. In Proc. of the 53rd IEEE Ve-
hicular Technology Conference, Rhodes, Greece, May 2001.

[58] M. Youssef, A. Agrawala, and A. U. Shankar. WLAN location
determination via clustering and probability distributions. In
Proceedings of the IEEE International Conference on Perva-
sive Computing and Communications (PerCom), Fort Worth,
TX, Mar. 2003.

APPENDIX

A. PRACTICAL EXPERIENCE

During our large-scale experiment, we learned several practical
lessons that we believe to be relevant when validating our results
or deploying the system in another building.

First of all, it is essential to avoid time-varying effects when col-
lecting the training set; otherwise there may be inconsistencies be-
tween different parts of the building or even between adjacent cells.
We gathered most of our training data in two consecutive nights
during spring break, when the building was empty.

Second, entering all the rooms in a building raises privacy and
trust issues. Before we obtained a master key, we notified all the
residents of the building and gave them an opportunity to object,
or to be present during the experiment. Also, we found that there
were some rooms (such as the dean’s office) that even the official
master key did not open.

Third, battery capacity and notebook weight are limiting factors.
Even a light notebook is impossible to carry with outstretched arms
for an extended period of time. Also, constantly sending radio sig-
nals tends to drain batteries very quickly.

Finally, in gathering the training data, we were continually re-
minded that we were essentially violating the personal space of the
occupants of our building. Offices contained such obscure items
as a paper skeleton and a complete knight’s armor. We were also
exposed to the tendency of some occupants of our building to not
bathe or dispose of spoiled foods.

84


