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Abstract 

Several recent proposals for an “active networks” architecture ad- 
vocate the placement of user-defined computation within the net- 
work as a key mechanism to enable a wide range of new applica- 
tions and protocols, including reliable multicast transports, mecha- 
nisms to foil denial of service attacks, intra-network real-time sig- 
nal transcoding, and so forth. This laudable goal, however, creates a 
number of very difficult research problems, and although a number 
of pioneering research efforts in active networks have solved some 
of the preliminary small-scale problems, a large number of wide 
open problems remain. In this paper, we propose an alternative to 
active networks that addresses a restricted and more tractable sub- 
set of the active-networks design space. Our approach, which we 
(and others) call “active services”, advocates the placement of user- 
defined computation within the network as with active networks, 
but unlike active networks preserves all of the routing and forward- 
ing semantics of current Internet architecture by restricting the com- 
putation environment to the application layer. Because active ser- 
vices do not require changes to the Internet architecture, they can 
be deployed incrementally in today’s Internet. 

We believe that many of the applications and protocols targeted 
by the active networks initiative can be solved with active services 
and, toward this end, we propose herein a specific architecture for 
an active service and develop one such service in detail -the Me- 
dia Gateway (MeGa) service - that exploits this architecture. In 
defining our active service, we encountered six key problems - 
service location, service control, service management, service at- 
tachment, service composition, and the definition of the service en- 
vironment - and have crafted solutions for these problems in the 
context of the MeGa service. To verify our design, we implemented 
and fielded MeGa on the UC Berkeley campus, where it has been 
used regularly for several months by real users who connect via 
ISDN to an “on-line classroom”. Our initial experience indicates 
that our active services prototype provides a very flexible and pro- 
grammable platform for intra-network computation that strikes a 
good balance between the flexibility of the active networks archi- 
tecture and the practical constraints of incremental deployment in 
the current Internet. 
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1 Introduction 

One of the key strengths of the Internet service model is that it ab- 
stracts away the details of how messages are forwarded through the 
network. On the one hand, this design principle is extremely pow- 
erful because it divorces applications from much of the complexity 
of the underlying communication system, but at the same time, it 
constrains applications because they cannot exploit detailed knowl- 
edge of the underlying network to enhance their performance. One 
application class that is constrained in this way are so-called “video 
gateways” [3], which are computational elements that adjust the bit 
rate of video stream or collection of video streams to accommodate 
the constrained capacity of communication links at strategic loca- 
tions within the network. Becausevideo gateways perform their op- 
timization directly on the underlying data stream from within the 
network itself, they must be physically situated at an appropriate, 
perhaps arbitrary, point within the network. However, even though 
these agents are deeply embedded within the network infrastruc- 
ture, they are actually created, configured, and controlled dynam- 
ically by the user application on the end-system at the edge of the 
network, for instance, by employing application-specific protocols 
to convey “receiver interest” into the network to best configure the 
agent for the receiving user’s preferences and capabilities [2]. 

Unfortunately, the Internet service model has no native support 
for deploying agents within the network in this fashion. To over- 
come this limitation, the “Active Networks” initiative [30] pro- 
poses that the Internet service model be replaced with a new ar- 
chitecture in which the network as a whole becomes a fully pro- 
grammable computational environment. In this framework, not 
only do application-defined entities run on arbitrary nodes in the 
network but individual packets can be programmed to perform ar- 
bitrary actions as they propagate through the network - “pro- 
grammability” migrates down the protocol stack from the applica- 
tion layer across the transport layer and into the network and data- 
link layers. 

While the requirements of video gateways are often cited in the 
active networks literature as proof of a pressing need for this new 
infrastructure, the far-reaching implications of uprooting and sup- 
planting over twenty years of Internet design experience begs the 
question: Is active networks both sufJicient and necessary for de- 
ploying scalable, flexible, and robust services, like the video gate- 
way service, within the network on behalf of the user? While we 
concede that a comprehensive active networks framework would 
immediately solve this problem and is therefore sufficient, we ar- 
gue that for a large and important sub-class of the active networks 
design space - namely those applications like the video gateway 
that provide an application-level service - the active networks ar- 
chitecture is not strictly necessary. Instead, we argue that these 
applications are adequately and effectively supported by a “pro- 
grammable service architecture,” built on top of and in harmony 
with the existing Internet service model, that allows users to down- 
load and run code on their behalf at strategic locations within the 
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network. We and others call this programmable network infrastruc- 
ture active services because we restrict the design to application- 
level services yet we inherit the novelty of the active networks 
programmability[ 161. 

While we believe that the active services framework holds the 
promise to enable many active networks-like applications, we do 
not propose this framework as an outright replacement for active 
networks because it cannot possibly meet all of the goals and sup- 
port all of the applications targeted by active networks. The abil- 
ity to quickly re-program and deploy new protocols at any level in 
the network architecture is not possible in nor is it the goal of active 
services, and applications like nomadic routing [22], localized TCP 
optimizations (e.g., “snoop” [8]), SYN-flooding avoidance,etc. are 
not naturally amenable to our framework. Nevertheless, we believe 
that the active service framework is an important new networking 
technology not only because solving active networks sub-problems 
in this domain will contribute to the overall understanding of the ac- 
tive networks problem, but also because it is a valuable and useful 
technology in its own right - active services can solve a number of 
pressing networking problems in a way that is fully compatible with 
today’s Internet. In fact, we have built, deployed, and extensively 
exercised an experimental active service framework - the media 
gateway system described later in this paper - that has provided a 
tangible application to a real user community who used it to do real 
work and collaboration on a regular basis for the past six months. 

In the remainder of this paper, we develop the design rationale 
for our active research framework and present a detailed overview 
of its architecture and use. The next section describes our active 
service framework. Section 3 describes the design of a prototype 
service that runs on our framework: the MeGa service for media 
gateway deployment. Section 4 presents implementation details. In 
Section 5 we present a brief survey of related work and then con- 
clude. 

2 An Active Service Framework 
A video gateway mitigates bandwidth heterogeneity by adjusting 
each video flow’s bit-rate in a controlled fashion to meet each link’s 
available capacity [3, 321. While mechanisms to accomplish such 
rate adaptation are well understood, companion mechanisms for in- 
stantiating the transcoding agents at the appropriate places in the 
network and for flexibly configuring and controlling them once run- 
ning are comparatively underdeveloped. After a number of years 
of experimentation with techniques for deploying and configuring 
video gateways and drawing upon emerging ideas in active net- 
works and the success of Java’s platform-independent computing 
model [2, 31, we refined our creation and control protocols into a 
programmable infrastructure that became the active services pro- 
totype presented herein. Because we believe our service architec- 
ture is useful for a broad range of applications beyond simple video 
transcoding, we developed a re-usable framework where the “ac- 
tive” multimedia gateway service consists of two key levels of ab- 
straction: 

l an active service framework, which provides the pro- 
grammable substrate on which to build arbitrary network 
services, and 

l the specialization of that framework for the particular problem 
at hand, in our case, a media gateway service. 

In this section, we describe a specific design for an action service 
that we call “ASl” (i.e., “active service version 1”) and in the sub- 
sequent section we describe the specialization of AS 1 for the par- 
ticular task of media transcoding manifested in our Media Gateway 
(MeGa) active service. 
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Figure 1: The AS1 active service framework: clients rendezvous 
with AS1 clusters via well-known point-of-contact unicast or mul- 
ticast addresses to create computational entities called “service 
agents” or servents that implement the desired service. A client can 
simultaneously interact with multiple clusters to create and inter- 
pose servents across the network to effect more complex services. 

The key abstractions of and vocabulary for our AS 1 framework 
are illustrated in Figure 1. Users that require an active service 
are called clients and within the network reside one or more pools 
of active service nodes each called a cluster. Clients instantiate 
application-level service agents, called servents (i.e., the contrac- 
tion of wice agent) on one or more clusters. A servent’s behavior 
is defined by its arbitrary active-service program, and once created, 
the servent is controlled by the clients in a servent-specific fashion, 
i.e., the control implementation is embedded in the servent defini- 
tion. Multiple servents may be composed either within the same 
cluster or across different cluster to implement more complex ser- 
vices. To support robust operation and graceful reaction to system 
failures, the servent’s ongoing existence is continually refreshed by 
the client, and when refresh messages cease, AS1 detects the lost 
client and terminates the corresponding servent. 

To facilitate the design process of the AS1 architecture, we de- 
composed the framework into six core but interdependent compo- 
nents: 

Service Environment: The service environment defines the 
“active” part of active services, i.e., the programming model 
and interfaces to programming resources available to the ser- 
vents that run within AS 1. 

Service Location: To instantiate a new servent, the client 
must first locate an AS1 cluster. The service location sub- 
system provides a mechanism for the client to rendezvous 
with AS 1. 

Service Management: The service management sub-system 
allocates the finite computational resources of the cluster 
across servents to implement load balancing, mechanisms for 
graceful degradation under high load, and admission control. 

Service Control: Once a servent is instantiated on AS 1, the 
client must be able to dynamically re-configure and control it 
via the service control subsystem. 
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Service Attachment : If a client is does not have direct access 
to the service infrastructure (i.e., because of lack of multicast 
support or because of an administrative firewall), a client uti- 
lizes the service attachment sub-system to “tunnel” through 
the barrier for general network connectivity. 

Service Composition: Some services are best implemented 
as a collection of agents spread across the network. The ser- 
vice composition sub-system allows clients to contact multi- 
ple service clusters and interconnect servents running within 
and across clusters. 

To illustrate the role of each component within our active service 
framework, we will outline a simple scenario where a bandwidth- 
impoverished, multicast-incapable client wishes to join a global 
multicast video session. To initiate the process, the client con- 
tacts the active service through a well-defined rendezvous mech- 
anism (service location), which by default employs an exchange 
of messages over a well-known multicast address. But since the 
client is not directly attached to a multicast-capable network, it must 
rely upon a unicast point-of-contact, which it might obtain from 
DNS, DHCP, or some other service location protocol. This point- 
of-contact information returned by this query includes a list of ad- 
dresses so that the client can “round robin” over multiple contact 
points for simple load balancing and fault recovery. The client then 
submits its service request on the rendezvous address in the form 
of a program (service environment) that defines the servent to be 
instantiated, namely a video gateway. In response, ASI creates a 
single instance of the specified video gateway according to its inter- 
nal load-balancing algorithms (service management). For the du- 
ration of the session, the client runs a servent-defined protocol to 
dynamically control transcodingparameters of the gateway; that is, 
the control protocol is embedded in the active program running on 
the service and its semantics are orthogonal to and independent of 
AS 1. Finally, the client may create multiple gateways on multiple 
multicast groups chaining them together to accommodate a range of 
bandwidth requirements (service composition). While our architec- 
ture admits such configurations, we have not yet worked out all the 
details of service composition, how clients and/or servents would 
interact with the session directory service [ 181 to allocate multicast 
address, and so forth; these problems are topics of future work. 

In the remainder of this section, we detail the design of five of 
the six components in the AS1 active service framework, with the 
exception of service composition, which remains a topic of future 
work. 

2.1 Service Environment 
A crucial capability of active services is flexible and simple deploy- 
ment of application-level computation within the network. To this 
end, we follow the lead of other projects in this area [16, 17, 341 
by implementing an environment that consists of a programmable 
substrate that the servents program to implement complex compu- 
tation. But we diverge from the active networks approach by con- 
straining our environment to the application layer. That is, the en- 
vironment does not allow the servent to manipulate routing tables, 
forwarding functions, network management functions, etc. We be- 
lieve that this constrained approach strikes a good balance between 
the flexibility of the active networks architecture and the practical 
constraints of incremental deployment in the current Internet. 

Because our principal research efforts revolve around real-time 
multimedia networking applications, we implemented our AS 1 pro- 
grammable substrate using the “MASH platform” [23]. MASH is 
a Tel [26] interpreter extended with real-time multimedia and net- 
working related capabilities. Tel provides a simple, flexible and 
easy-to-use programming model based on scripting, while the in- 
terface to the AS1 resources consists of a method API to a set 

of Object Tel classes [33] that can be invoked from the servent’s 
Tel program. Under this model, servents are simply Object Tel 
scripts interpreted by MASH, which we call “mashlets”. The use 
of a scripting language for plumbing together components in our 
programmable substrate strikes a good balance between the power 
of low-level “system” languages such as C++, and the flexibil- 
ity and ease of use of high-level “scripted” languages such as 
TcVOTcl [27]. 

Our experiences with MASH have led us to conclude that a 
fully general active service programming environment would un- 
duly burden the active service developer and lead to unavoidable 
performance constraints. In contrast, a domain-specific program- 
ming model simplifies the problem of defining a set of APls to ev- 
ery possible resource that might be required of a servent. Conse- 
quently, just as we have narrowed down our design space from ac- 
tive networks to active services, we also believe that each instance 
of an active service should be further narrowed in scope to a spe- 
cific domain. In our case, AS1 is tailored for real-time multime- 
dia networking. Other service environments and design decisions 
might be made to support domains like web caching or application- 
defined reliable multicast. 

Finally, an important property of the service environment not yet 
addressed in our work is the safety of untrusted, third-party code. 
While we have not included a solution to this problem in our cur- 
rent design, nothing in our service environment model precludes 
the use of type-safe languages such as Safe-Tel [lo], Java [5], or 
Python [28] and as such we view this problem as important, yet or- 
thogonal to our current endeavor. As part of our future work, we 
plan to leverage ongoing work in the active networks research com- 
munity to incorporate safe languages into our service environment, 

2.2 Service Location 

Before a client can instantiate a servent, it must first locate the ac- 
tive service. That is, the client must obtain bootstrap configuration 
information that enables it to rendezvous with an AS 1 cluster. 

We have identified two basic approaches to this problem. The 
first relies on a centralized server at a well-known location that pro- 
vides the necessary bootstrap. In this approach, the client obtains 
necessary rendezvous information from a server, e.g., using the Dy- 
namic Host Configuration Protocol (DHCP) [6]. 

In contrast to this approach where a client “pulls” down service 
location information from a well-known point, multicast communi- 
cation can be exploited to “push” service location information out to 
multicast listeners. In this model, a client listens on a well-known 
multicast address over which the required configuration informa- 
tion is periodically transmitted. Hodes et al. [ 191 describe a gener- 
alized scheme for service location using this approach based on the 
Service Location Protocol (SLP) [7]. 

In AS 1, we decouple the physical location of the active service 
from the control communication channel by leveraging the level 
of indirection offered by multicast communication. This greatly 
simplifies the service location problem. Now, the AS1 bootstrap 
requires just a single, location independent, piece of information: 
the network address for this control channel. If clients do not have 
multicast service, they communicate with the AS1 cluster through 
application-level forwarders (see Section 2.5) that enable unicast 
clients to “join” the control multicast group. In this case, we sup- 
ply the clients with list of addresses of these forwarders or point- 
of-contacts, e.g., using DHCP. In our prototype, we implemented 
static configuration for simplicity (e.g., a file in /etc for Unix or a 
property in the registry for Windows). 
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2.3 Service Management 
Once clients rendezvous with the active service, they can create ar- 
bitrary instances of servents within and across the service cluster. 
But because servents can induce an arbitrary computational load, 
the cluster must intelligently apportion its computing resources 
across service requests to properly balance load and gracefully de- 
grade (or deny) service under high load. 

We decomposed this service management problem into two sub- 
tasks: 

l the processor sharing task allocates a subset of nodes from a 
general purpose and shared cluster to act as the active service 
infrastructure, and 

. the serventcreation task creates servents within the cluster on 
behalf of a user client. 

The remainder of this section develops these two components in de- 
tail. 

2.3.1 Servent Launching: The Active Service Control 
Protocol (ASCP) 

One approach to resource management in a distributed system 
such as AS 1 is a centralized control model where all control flows 
through a single “resource manager”. Here, each client would issue 
servent requests to the resource manager that in turn would create 
servents on processors chosen through some load balancing algo- 
rithm. While this approach is relatively simple to construct, it has 
several disadvantages. First, the existence of a single resource man- 
ager presents a single point of failure in the system. Second, it cre- 
ates a bottleneck in the control path since all resource management 
decisions must flow through it. Finally, since the state of the system 
is managed by a single entity -the resource manager- that entity 
must also implement thorough error detection and recovery, which 
incurs protocol complexity and implementation overhead. 

In contrast to a centralized resource manager approach, AS 1 em- 
ploys a distributed control protocol, the Active Service Control Pro- 
tocol (ASCP), which does not hold any of the undesirable proper- 
ties of the centralized approach. Rather, ASCP relies exclusively 
upon decentralized control through the exploitation of three impor- 
tant protocol building blocks: announce-listen communication, soft 
state, and multicast damping. 

The announce-listen communication model is embodied in a 
number of common network protocols including the protocol 
suite that used for multicast-based Internet conferencing applica- 
tions. These multicast applications assume a communication model 
where parties in the collaboration session simply “tune-in to” or 
“tune-out of” the multicast group without any explicit group no- 
tification operation. This loosely coupled, light-weight, real-time 
multimedia communication model is known as the light-weight ses- 
sions architecture [21]. 

Announce-listen communication serves as the primary protocol 
building block for light-weight session applications. The model 
is characterized by several properties: a shared (multicast) com- 
munication channel over which all parties communicate; periodic, 
self-descriptive (i.e., temporally independent) protocol messages; 
timer-based aging of state; and reconfigurable components. To- 
gether these constructs comprise a communication framework that 
is particularly robust and resilient with regard to network hetero- 
genelty, scale, and pathologies like communication partitions and 
packet loss and reordering. 

In a sense, announce-listen communication is a form of reliable 
multicast where sources simply retransmit their data indefinitely. 
We formalize this view by modeling the state of an announce-listen 
protocol as a (key,value) table. As illustrated in Figure 2, each mem- 
ber of the session maintains its own copy of the table. Each table 

entry has associated with it an “owner” that identifies the originator 
of the state contained in the entry. At periodic intervals, each mem- 
ber transmits the entries that it owns. When a member receives an 
announcement, it inserts the entry in the state table, indexed by the 
key. If the table does not contain an entry with the same key, or the 
value of the corresponding entry has changed, the received entry is 
classified as an update. If, on the other hand, there already exists an 
entry in the table with the same key, the received entry is classified 
as a refresh. In the event that an entry has not been refreshed or up- 
dated for a configured period of time, it is removed from the table, 
a process called aging. 

The goal of an announce-listen protocol is to maintain consis- 
tency across all members’ tables. In the presence of plentiful net- 
work capacity and low packet loss, this is trivially achieved, but 
when the announce-listen update rate is constrained or packet loss 
is non-negligible, inconsistencies between tables will inevitably 
arise. Nevertheless, inconsistencies are rectified over time by the 
periodic announcements of the protocol that update the inconsis- 
tent entries, thus ensuring eventual consistency and resilience to 
packet loss. Simultaneously, these updates enable new members 
joining the announce-listen session (i.e., with an “empty” table) to 
be quickly brought up to date with the state of the system. 

Figure 2: The Announce Listen Protocol Model. 

As shown in Figure 2, each member maintains its own copy of 
the protocol state table and periodically transmits the (key,value) 
pairs (K V) that it owns (0). The figure shows two inconsistencies 
in the current state of the protocol: member 2 is missing the (A,v) 
entry from member 3, and the entire group is missing the update to 
the B entry owned by member 3. These inconsistencies are eventu- 
ally rectified by the next transmission of member 3’s entries. 

Announce-listen protocols, in general, combine timer-based ag- 
ing of state with periodic message refresh and update. This implic- 
itly subsumes both error detection and error recovery. Timer-based 
aging implies that failures of members in the session cause certain 
entries of the state table to eventually be deleted while new mem- 
bers or members recovering from failures are quickly brought up to 
date with the current state by the periodic announcements. Because 
state retained at each member site in the announce-listeneventually 
expires but is continuously refreshed it is often called sof stute [ 131. 

The simplicity and robustness of the announce-listen metaphor 
make it ideally suited to serve as the bedrock of the ASCP protocol. 
Figure 3 illustrates how the announce-listen communication model 
is exploited in ASCP. In this example, the AS1 cluster consists of 
two hosts and each host runs an agent called a host manager (HM). 
ASCP runs among the HM, the client, and the servent as follows: 

(a) In response to a client request, the HM creates an instance of a 
servent on the local host. As described later, multicast damp- 
ing ensures that exactly one host manager responds to a client 
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Figure 3: The basic operation of the Active Service Control Pro- 
tocol, ASCP. Clients announce “requests” for service instances and 
host managers (HM) respond to these announcements by instantiat- 
ing a single servent for each unique request. Servents (SA) in turn 
announce their existence to both the client and to other potential ser- 
vent sites on the cluster to avoid duplicate servents. 

request. Each request carries with it the program (or a refer- 
ence to the program) that embodies the servent. 

(b) The HM notifies the client of the servent’s existence. 

(c) The client configures the newly created servent as well as it- 
self. 

ASCP handles stages (a) and (b) by forming a state table whose 
(key,vulue) pairs are of the form (S, , A, ) that designate that the ser- 
vice request S, is served by the servent A,. These pairs are suffi- 
cient state to inform the HMs as to whether a servent exists for any 
given client’s request. This prevents the HMs from instantiating re- 
dundant servents for a given client service request. Consequently, 
only one servent is instantiated for each unique request. 

To construct the state tables, clients and servents each periodi- 
cally transmit ASCP messages containing the following two pieces 
of information: an “agent ID” (AID) for the each A, and a “service 
instance ID” (SID) for each S,. The AID is a unique identifier for 
each servent while the SID is a unique identifier for each instanceof 
a particular service requested by a particular client. SIDs are one- 
to-one with the servents that are instantiated on the platform and are 
typically chosen in a way that effects the desired deployment policy 
across a set of clients. Section 3.1 gives a concrete example of how 
SlDs are determined with regard to the MeGa service. 

A client message contains an additional Service Name (SNAME) 
field, which names the code that implements the requested servent. 
Since servents are simply Tel scripts, the SNAME field specifies the 
name of a MASH script. In our prototype, we recognize two types 
of service name specifications: location-dependent names, such as 
URLs, and location-independent names, specifying a generic name 
of a script, e.g., vgv-1 . 0, for a video gateway. The resolution of a 
location-independent name to the actual code is performed through 
an orthogonal mechanism. In our prototype, the HM searches a 
fixed set of locations, or “script repositories”, for the existence of a 
script with a matching name. Finally, an additional manner in which 
scripts can be specified is to embed them directly in the ASCP an- 
nouncement. The disadvantageof this scheme is that it significantly 
increases the size of the ASCP announcements, and thus the control 
traffic overheadof the system. Therefore, while in principal this ap- 
proach is viable, a better approach is to simply specify a location- 
dependent name that points to the client and then to transmit the 
script on demand to the requesting HM. 

Once a servent is instantiated, it must rendezvous with the client. 
To this end, ASCP includes a Service Specific Data (SSD) field 
whose role is to convey the initial servent configuration and ren- 
dezvous information between the client and servent. After the ren- 
dezvous has occurred, client control of the servent can be estab- 
lished and performed independently of ASCP. We demonstrate the 
use of this field in the context of the MeGa service in Section 3.2. 

The soft-state approach to our design yields a particularly robust 
system with a relatively simple implementation. We illustrate this 
robustness by describing how the announce-listen/soft-state frame- 
work recovers from the three primary sources of system failure in 
ASCP: 

Network Failure: After a failure of network connectivity and 
a subsequent recovery, the system automatically heals itself 
since client and servent announcements are self-descriptive 
and simply update and refresh the ASCP state tables. Any ser- 
vents that have been terminated due to aged state are promptly 
restarted just as if they were created from scratch. 

Servent Failures: If a servent fails, the state representing that 
servent will time out, and subsequently the next client an- 
nouncement serve as a service request to the cluster. 

Client Failures: If a client fails, its ASCP messages subside 
and the client state in the system will expire, thereby trigger- 
ing the termination of the servent. 

The key property of ASCP and the hallmark of announce-listen pro- 
tocols is that there is no distinction between regularprotocol oper- 
ation and error detection and recovery. This yields a particularly 
robust and fault tolerant system. In contrast to the explicit and often 
complex error handling code in many protocols, announce-listen 
protocols, ASCP included, provide implicit error detection and re- 
covery, thereby greatly simplifying the protocol design. In sum- 
mary, we have shown how to exploit the announce-listen commu- 
nication model and soft state to instantiate servents across an ASI 
cluster without explicit connections between clients and servents. 

2.3.2 Servent Floods 

Although the decentralization of resource management yields a ro- 
bust design, it induces a new problem. If each host manager in 
the cluster creates a servent immediately upon receiving a request, 
many duplicate servents would be simultaneously created and run. 
Instead, for each service instance request, the HMs should, as a 
whole, create exactly and only one servent. 

This duplication effect, which we call a serventjood, is analo- 
gous to the well-known multicast implosion problem where a syn- 
chronous protocol event causes a flood of traffic. For example, if 
the automatic repeat/request protocol primitive is extended to mul- 
ticast in a naive fashion, acknowledgment messages from the re- 
ceivers would concentrate back at the source, resulting in an “im- 
plosion” effect. More generally, any sort of control actions taken 
synchronously across a multicast group can result in implosion. 

These implosion effects have been combated in a number of net- 
work protocols through a technique called multicast damping, first 
introduced in the IGMP [ 141 protocol and later used in the multicast 
version of XTP [ 121 and the SRM reliable multicast protocol [ 151. 
The key to multicast damping is that responders wait a random time 
interval before acting. After the random wait, the responder multi- 
casts its message to the group. If a responder sees an equivalent 
message from another member of the group, that responder sup- 
presses its redundant response. In this way, most all the responses 
from the group are suppressed. The degree of suppression and time- 
liness of the response are controlled by the probability distribution 
of response timers. 

182 



(4 @I (cl 

Figure 4: Servent launches. A naive implementation (a) yields launch floods while ASCP prevents servent floods through multicast damping 
(b). Duplicate gateways can still be launched if the launch timers expire closely enough so that the damping messages are not received within 
the difference in the timers (c). 

In AS 1, the analog of a flood of duplicate control messages is a 
flood of duplicate servents instantiated across the cluster. To avoid 
this pathology, we employ multicast damping in ASCP as depicted 
in Figure 4. 

Figure 4(b) shows how ASCP avoids servent floods. Upon re- 
ceipt of a client announcement that requires the creation of a new 
servent (i.e., the HM does not have any record of a servent handling 
the service instance requested by the client), each host manager sets 
a randomized launch timer. When the launch timer expires, the HM 
creates the servent and multicasts a message with the servent’s SID. 
Upon receipt of this message, all other host managers cancel their 
launch timers, thereby circumventing a servent flood. 

The servent flood prevention scheme does not guarantee that 
all duplicate servents are eliminated. As illustrated in Figure 4(c), 
when two or more launch timers expire within a round-trip time in- 
terval of each other, the damping messages from the HMs do not 
arrive in time to suppress each other. In this case, redundant ser- 
vents are created. However, the periodic servent ASCP messages 
ensure that these servents will learn about each others’ existence. 
The servents can then use a simple, deterministic rule to eliminate 
all but one of them (e.g., a servent that sees another servent with a 
larger AID terminates itself). 

40 6” 80 
Number of Host Managers 

Figure 5: Expected Number of Duplicate Launches (dashed) and 
Expected First Launch Latency (solid) vs. Number of Host Man- 
agers with uniformly distributed launch timers over a five second 
interval with a transmission latency between HMs of 10 ms. 

The problem of minimizing the number of duplicate servents is 
equivalent to the problem of minimizing the number of duplicate 
feedback messages in a multicast damping protocol; fortunately, 
this problem has been extensively studied [15,29,25]. In our case, 

we want to choose the launch timer distribution that minimizes the 
number of duplicate servents while maintaining acceptable bounds 
on the mean time until a servent is created. In general, this is a dif- 
ficult problem, but fortunately for our domain, we can assume that 
the maximum number of HMs does not exceed a few hundred and 
that all HMs are on a LAN, i.e., the transmission latencies are con- 
stant and small. In this case, a simple uniform probability distribu- 
tion is adequate. As indicated in Figure 5, the expected number of 
duplicate launches is low for the range of HMs we are considering 
and the latency until the servent is created decreases rapidly even 
for small HM set sizes. 

An attractive consequence of the multicast damping scheme is 
that servents are uniformly distributed across the cluster in a ran- 
domized fashion. Thus, even without a centralized resource man- 
ager, we achieve a coarse-grained load balancing. Moreover, we 
can achieve fine-grained load balancing that accounts for measured 
load on the individual nodes. To this end, each HM monitors the 
load on its host and biases its launch timer to reflect the measured 
load. If an HM is lightly loaded, its launch timers are short, but 
as the load increases, the launch timer distribution is biased toward 
larger values. In addition, we perform simple admission control by 
setting the launch timer to infinity when a host is at or near full ca- 
pacity (as defined by a configured-in target load value). This simple 
yet powerful mechanism implements load balancing without any 
additional complexity. 

To evaluate our load balancing algorithm, we conducted an ex- 
periment where we created a large number of media gateway ser- 
vents on clusters of varying sizes and recorded the resulting num- 
ber of duplicates. The result, shown below, indicate an even spread 
of servents per node and low variance in servent distributions. This 
confirms our intuition that ASCP can implement reasonable load- 
balancing policies without the aid of a centralized resource man- 
ager. 

Nodes Mean GW/Node Variance GW/Node 
1 9.0 0.00 
2 8.5 0.25 
3 9.3 0.22 
4 8.8 0.56 
8 8.5 0.50 

I I I I 
. 

2.3.3 Processor Sharing 

Structuring active services as a cluster environment is attractive 
since a cluster is easily expandable and our framework gracefully 
accommodates such expansion; hence, this approach is scalable. In 
ASI, we can add a processor to the service by merely running an 
HM on it. To remove a processor from the service, we simply ter- 
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minate the HM on that host. Thus, the number of processors allo- 
cated to the service is one-to-one with the HM “population” on the 
cluster. 

However, a cluster is often available for general use and we 
would thus like to share the cluster with other applications and po- 
tentially with other active services. A simple way to allocate some 
lixed number of processors to the service is to statically run that 
number of HMs on the cluster and monitor the cluster to make sure 
that these HMs are all running. While straightforward, this ap- 
proach requires supervision to maintain service availability. 

A more desirable alternative is to have the HM population mon- 
itor itself and maintain its level of availability on its own. In our 
model, an HM can perform two population maintenanceoperations: 
it can copy itself onto another node and it can terminate itself. Us- 
ing these primitives, we developed an algorithm to maintain the HM 
population at a target level using the metaphor of a “birth-death” 
process. 

The core mechanism for our birth-death process is announce- 
listen communication. In this framework, each HM transmits a pe- 
riodic announcement, and collectively, the HMs estimate the global 
population. At randomized adaptation intervals, each HM updates 
its population estimate, n, and compares it with the target, N. This 
comparison implies an action as follows: 

l if n < N, the HM forks a copy of itself on a randomly se- 
lected host from the set of available hosts on which there is 
no current HM; the new HM is created with probability pl, 

pt = min(1, N - 1) 
n 

l if n > N, the HM terminates with probability pr, 

l if n = N, the HM does nothing. 

Under this framework, if n < N (i.e., there are less HMs than the 
target), then the number of HMs increases quickly toward the target 
at the rate prescribed by the adaptation interval until n > N/2; at 
this point, the expected number of new HMs per adaptation interval 
is N - n, thus the population size rz quick converges to the target 
level N. Likewise, if rz > N, the expected number of HMs that 
terminate is rr - N, and we quickly converge to N. 

Though this algorithm is decentralized and robust, it can fail with 
non-zero probability because all HMs could conceivably terminate 
at precisely the same time. However, this is unlikely because it 
requires the adaptation intervals of all active HMs to be precisely 
aligned and further that all these HMs decide simultaneously to ter- 
minate. The probability of this event is (r/T)np: where T is the 
adaptation interval and r is the round-trip time between HMs. But, 

pr = (1 - F)n z eeNfor large n 

Thus, we can make the probability of total failure of the system van- 
ishingly small by either adjusting N or by increasing the adaptation 
interval. Since the HM growth process can run very slowly in the 
background, we can easily make the adaptation adequately large. 

Our algorithm has several desirable properties. First, to popu- 
late the cluster, we simply start a single HM on a single host. Next, 
to add more HMs, we simply increase the target number parame- 
ter in the existing host managers. This can easily be performed in a 
dynamic fashion with network management tools. Similarly, if we 
want to decrease the number of HMs we decrease the target num- 
ber and the HM deployment algorithm will remove the excess HMs 

automatically for us. Removing a machine from the AS1 cluster is 
trivial since the system will automatically reconfigure itself on the 
remaining unallocated processors. Similarly, adding a machine to 
the cluster automatically increases the number of processors avail- 
able to the system. Finally, since the overall system is based exclu- 
sively upon soft-state, the movement and redeployment of HMs on 
different machines in the cluster does not affect the overall opera- 
tion of the system. For example, you could decommission a ma- 
chine with active servents and the system quickly heals itself. 

The relationship between the announcement and adaptation in- 
terval is critical to the algorithm’s performance, since the algorithm 
depends on the accuracy of the HM population estimate which is 
computed based on the periodic HM announcements. Increasing 
the adaptation interval leads to increased “healing” latency in the 
event of a change of state in the HM deployment, e.g., as a result 
of a HM failure or change in target number. On the other hand, 
choosing an adaptation interval that is too small with respect to the 
announcement interval announcement interval could lead to oscil- 
latory adaptation behavior as a result of instabilities in the control 
feedback loop. 

6 I 

Figure 6: The effects of modifying the ratio of the adaptation to 
announcement intervals on the launch overhead factor. 

To quantify this relationship, we define a metric called the 
“launch overhead factor” which represents the number of HMs cre- 
ated redundantly before the population converges, divided by N. 
For example, a launch overhead factor of 1.5 implies that 2.5N 
HMs were created before the algorithm stabilized at N HMs. Fig- 
ure 6 plots the relationship between the ratio of the adaptation to 
announcement intervals and the launch overhead factor obtained in 
an ns [24] simulation of the HM deployment algorithm on a cluster 
of 40 machines with a target population size of 10. The error bars 
designate the standard deviation of our simulations. As the ratio of 
adaptation to announcement intervals decreases, the number of re- 
dundant launches increases. On the other hand, increasing the ra- 
tio decreases the launch overhead, which becomes negligible when 
the adaptation interval is roughly twice as large as the announce- 
ment interval. This makes intuitive sense since this is the small- 
est adaptation interval large enough to ensure that within it at least 
one announcement is received from all other HMs. At that point, 
the performance of the algorithm depends solely on the termination 
and launch probabilities. Therefore, given an announcement inter- 
val, we choose an adaptation interval that is twice as long. 

2.4 Service Control 

Once a servent has been created, it must be controlled dynamically 
for the duration of the session. By its definition, the service control 
component of the AS1 architecture is service-specific. That said, 
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in order to maintain the overall robustness of the system, we would 
like to design the service control protocols according to the same 
principles of robustness and simplicity. In Section 3.3 we describe 
an instance of such a protocol in the context of the MeGa service. 

Figure 7: Using soft state gateways (SSG) to bridge two 
announce-listen control sessions across a bottleneck link. 

2.5 Service Attachment: Soft-State Gateways 

ASCP relies on multicast communication and a well-known mul- 
ticast address to rendezvous between clients and the AS1 plat- 
form Clients without multicast service must thus exploit some 
other mechanism to rendezvous with AS 1. Furthermore, a second 
problem arises if the aggregate bandwidth of the ASCP control traf- 
fic might congest a bottleneck link on the path between the AS1 
cluster and the client. In this case we must provide mechanism to 
limit the rate of the ASCP control traffic that is forwarded to the 
client. 

In our design, we solve both these problems through the use of 
an application-level soft slate gateway (SSG). The SSG’s function 
is twofold. First, it outputs the incoming ASCP control traffic at a 
rate that maintains specific bandwidth constraints. Second, it serves 
as a rendezvous point for clients without multicast service to join 
the ASCP session. Thus, the SSG serves as alternate mechanism 
for a client to “attach” to AS 1. 

Figure 7 illustrates an abstract scenario that demonstrates the 
functronality of a SSG. Two sessions are connected across a bot- 
tleneck link and are both running a common announce-listen (AL) 
control protocol. If we simply forwarded the announce-listen con- 
trol traffic across the bottleneck, the link would quickly saturate as 
the number of group members in either session grew. However, we 
prevent this condition by placing SSGs that limit the rate of the con- 
trol traffic across the bottleneck link in an intelligent manner to meet 
the bit-rate constraints. 

Using our state table model of an announce-listen protocol, the 
goal of the SSG is to minimize the number of inconsistencies in 
the protocol state table entries on both sides of the bottleneck link. 
More specifically, the goal of the SSG is to minimize the state 
update and refresh delay, subject to the input/output bit-rate con- 
straints and potential packet loss between the servent and client. 
The SSG achieves this by building a cache of the (key,value) table 
and transmitting the contents of the table in a manner that obeys the 
bit-rate limits. The policy that determines how the table values are 
transmitted is the critical performance factor for the SSG. 

To perform efficient rate control for announce-listen traffic, the 
SSG must take into account the semantics of the underlying com- 
munication. Indiscriminately dropping ASCP messages could re- 
sult in potentially long latencies in the state table updates, thereby 
negatively impacting the operation of the system. For example, 
dropping new servent announcements would prevent a client from 
learning about the existence of a servent handling its service re- 
quest. Consequently, we must be careful in the rate-limiting algo- 
rithm to favor event-triggered updates as opposed to background re- 
freshes. 

The structure of the AS1 SSG is as follows. The SSG out- 
put channel (OC) manages communication between servents and 
clients and is responsible for the rate-limiting of the ASCP control 
traffic. The creation and persistence of the output channel structure 
is driven by the ASCP announcements from the client, i.e., an out- 
put channel is a soft state structure. 

The first level of rate-limiting that the OC performs is to filter out 
all the servent announcements that are of no interest to clients re- 
ceiving the transmissions of the OC. This is easily performed since 
the client-side ASCP announcements define the set of SIDs that an 
output channel’s associated clients are interested in. This in turn 
exactly defines the set of servents whose control traffic should be 
forwarded on the output channel. Since the ASCP announcements 
arc soft-state, the resulting filter is a soft-state structure as well. 

Once the OC has determined which state announcements should 
potentially be output from the SSG, it must output these announce- 
ments in a manner that obeys the bit-rate constraints. In the event 
the these constraints force some announcements to be dropped at 
the SSG, the OC must select for transmission announcements that 
maximize the state update rate of the clients. 

To perform this selection, the OC maintains an announce-listen 
state table, in our case the ASCP state table. This table is main- 
tained according to all the timer/refresh rules of the announce-listen 
protocol whose state it represents. Thus, the table represents a cache 
of the current state of the protocol. Using this state table, announce- 
ments are classified into two groups: stew announcements, repre- 
senting state that is not in the cache, and r-efresh announcements, 
representing state that is already in the cache. In ASCP, this classi- 
fication is particularly easy since a servent transmits only one type 
of announcement, which specifies the SID that it is associated with. 
Therefore, the announcement classification is performed by a sim- 
ple lookup into the state table keyed by the SID. 

Once announcements have been classified, the OC performs ratc- 
control using a leaky bucket mechanism. Each channel has associ- 
ated with it two token buckets, or queues, NEW and REFRESH, for 
new and refresh announcements respectively. The queues are then 
serviced, i.e., announcements in the queue transmitted, at the token 
bucket rate. 

The partition of the aggregate channel bandwidth among the 
NEW and REFRESH queues directly affects the tradeoff between 
update and refresh latencies. Allocating a higher bit-rate to the 
NEW bucket decreases the latency for new state, but increases the 
latency for refreshes. Alternatively, allocating a higher bit-rate to 
the REFRESH bucket maintains a high refresh rate, but delays the 
update of new state at the client. In our current design, we stati- 
cally allocate 75% of the output rate to background refreshes and 
25% to new state announcements. However. in the future we plan to 
leverage the schemes developed by Sharma et al. [29], which adapt 
the update timers in soft-state protocols based on channel topology 
models, to explore methods for dynamically varying the update and 
refresh rate allocation. 

In summary, the SSG serves both as a point-of-contact for rate- 
limited control traffic and as a rendezvous point for client that do not 
have multicast service. Despite the fact that the SSG offers the ap- 
pearancc of a centralized control model, its soft-state structure en- 
ables trivial regeneration and replication, thereby avoiding a “single 
point of failure” design, and maintaining the overall robustness of 
the AS 1 architecture. 

3 The MeGa Active Service 
Media gateways [3] are application-level agents that transparently 
bridge two MBone RTP sessions and process the media streams 
between the sessions. Having defined the AS1 re-usable frame- 
work, we now describe how this framework is specialized to the de- 



ployment of media gateways in the Media Gateway active service 
(MeGa). 

In our framework, a media gateway is cast as a servent. We im- 
plemented MeGa to run on top of AS 1 and thus provide a robust and 
scalable architecture for media gateway deployment that serves as 
a fully operational and deployed “proof of concept” for the AS 1 de- 
sign, Moreover, the use of RTP as the media transport protocol at 
the gateway guarantees the seamless integration of MeGa into the 
Internet multimedia infrastructure. 

In this sectton, we describe the design of the MeGa service within 
the AS 1 framework and focus on the service-specific components 
of the AS I framework: the SID and SSD specifications for ASCP, 
and the service control protocol. 

3.1 SID Naming 
Section 2.3. I described how the ASCP SID field is used to deter- 
mine whether or not a servent should be instantiated in response to 
a client message Thus, the SID naming scheme fully determines 
the number of servents deployed in response to a given number of 
client requests. 

In MeGa, we use SID naming to implement a gateway “deploy- 
ment policy”. Specifically, a client may request that the output ad- 
dress of the gateway be unicast or multicast. A gateway is deployed 
on behalf of every unicast request, while a single gateway per ses- 
sion is shared among all clients requesting a multicast output ad- 
dress. In other words there exists only one SID for each session 
while for unicast requests there exists a unique SID for every client. 
This leads to the following specification of the SID in MeGa. For 
multicast requests, the SID is: 

sspec:media 

while for unicast requests the SID is 

sspec:media:localaddr/rport 

where sspec is the unique session name given by the session 
creator (e.g., the o= field in an SDP [IS] announcement), media is 
the type of media, localaddr is the local IP addressof the client 
host, and rport is the port on which it will receive the data. 

Even though the design of ASCP is independent of the MeGa 
goals, through appropriate naming of the service instances, the one- 
to-one relationship between SIDs and servents enables us to estab- 
lish a MeGa-specific set-vent deployment policy. 

3.2 SSD Data 
The role of the ASCP SSD field is to exchange initial configura- 
tion and rendezvous information between the client and servent. In 
McGa, the initial servcnt configuration information consists of the 
“global” session address information, so that the gateways can join 
the requested session. The gateways then transmit the transcoded 
version of the session on a local address, which depending on the 
service request, might be either a multicast or unicast address. In 
either case, the gateway must notify the client of this address so that 
the client can receive session data. This exchangeof global and lo- 
cal session information between client and gateway is performed 
using the SSD field of the ASCP announcements. Specifically, the 
McGa client transmits the global session address in its SSD field, 
while the gateway SSD field contains its local transmission address. 

Figure 8 illustrates a specific example of how ASCP operates 
in MeGa. The ligure details the exchange of MeGa-specific infor- 
mation contamed in the SSD fields to emphasize how the MeGa 
clients and media gateways rendezvous. The figure shows four 
MeGa clients: three video clients, labeled vie, and one audio client, 
labeled var. The clients announce their interest in MBone sessions 

Figure 8: ASCP in MeGa. MeGa clients announce interest in ses- 
sions while media gateways announce the session for which they 
are a gateway along with their local transmission address. Clients 
“join” the global session by reconfiguring themselves to listen to the 
appropriate local address. 

(in the ASCP SSD field). These announcements are received by the 
HMs who then can look in their table and see if there already exists 
a gateway for the given session. If no such gateway exists, the HM 
launches the gateway, and configures it to listen on the appropriate 
session address given in the client SSD field. 

The next stage of the gateway launch is the selection of an out- 
put transmission address for the transcoded version of the session. 
In the event that the client request specified a unicast address, this 
involves little more than a unique port selection. However, if the 
request was for a multicast transmission address, we must select 
a unique multicast address. Obtaining this address is part of the 
larger multicast address allocation problem which is currently un- 
der review in the IETF and we intend to leverage their results when 
they become available. In the mean time we use an ad hoc solu- 
tion where addresses are chosen randomly from a fixed block of ad- 
dresses and rely on the servent announcements to detect and correct 
collisions. In our current prototype we have co-located the address 
allocation mechanism at the HM, though in the future these mech- 
anisms can be separated. Thus, the HM launches the gateway and 
notifies it of the output transmission address. 

Once the gateway has obtained a local transmission address, it 
announces this address in its SSD field. Since the MeGa SIDs are 
chosen so that a client and gateway SID match if there is a match 
between the session the gateway is handling and the session the 
client is interested in, the client can detect that an appropriate gate- 
way already exists and use it to receive transcoded transmissions of 
the session. Thus, in the figure, the clients for sessions A, B, and 
C: configure themselves to join group addresses X, Y, and Z, re- 
spectively, thereby completing the rendezvous between the MeGa 
clients and gateways. 

3.3 Service Control 

Service control protocols are embedded in the servents to enable 
the clients to implement service-specific control of the servents. In 
MeGa, the principal goal is the allocation of constrained link band- 
width among the media sources from a gateway to a client. Since 
video streams dominate bandwidth consumption on the link, we fo- 
cus on a control protocol for video gateways. In the MeGa archi- 
tecture, this control is carried out by the Scalable Consensus-based 
Bandwidth Allocation (SCUBA) protocol. Reference [2] provides 
a comprehensive description of the protocol. In this section, we 
briefly describe its operation and focus on how it relates to gateway 
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Figure 9: Receiver-driven dynamic allocation: sources dynami- 
cally adjust their transmission rate in response to receiver interest. 

control in MeGa. 
The basic premise of SCUBA is to reflect receiver interest back 

to the sources in a multicast session using a scalable control proto- 
col. In current MBone sessions, bandwidth is allocated in a fixed 
fashion. Each receiver transmits at some fixed rate, where the rates 
are chosen either manually or through sender-based adaptation in 
a fashion; in either case, an equal amount of bandwidth is typi- 
cally allocated to each source. Clearly, this approach is subopti- 
ma1 if all sources are not equally important to the receivers. But, 
by integrating receiver feedback into the adaptation process, we can 
weight each source’s transmission rate in proportion to receiver in- 
terest This approach is illustrated in Figure 9, where receivers gen- 
erate feedback that causes source SO to transmit at a higher rate than 
source ,S, ; moreover, because there is no interest in source Sz, its 
transmission is disabled entirely. 

As with ASCP, SCUBA is an announce-listen protocol using 
only soft state. Receiver interest is expressed back to the sources in 
periodic, self-descriptive announcements. As a result, sources and 
receivers can join and leave the session at will without impacting 
other session members. No individual piece of the state maintained 
by the source is critical to the correct execution of the algorithm 
since all state eventually times out (or is explicitly replaced) and 
must be refreshed by receiver reports. As in ASCP, failure recovery 
is built into the protocol; we need no further mechanism to handle 
network partitions, host failures, and so forth. Finally, SCUBA con- 
trol messages are idempotent - each message supersedes all previ- 
ously sent messages - further enhancing the protocol’s scalability 
and its resilience to packet loss. 

SCUBA was designed for both session-wide deployment and 
media gateway control. Because we can model each media source 
as originating from the servent, we can run SCUBA locally be- 
tween the receivers and the transcoders in the media gateways in 
order to partition the managed link bandwidth among the sources 
being transcoded by the gateway. By running SCUBA between the 
low bandwidth linked receivers and the gateway, scarce bottleneck 
bandwidth can be dynamically apportioned in an intelligent manner 
among the transcoders. In this way SCUBA provides a robust and 
distributed control mechanism for the gateway free from the vulner- 
abilities of centralized control. 

4 Implementation Status 
The AS 1 framework and the MeGa service have been fully imple- 
mented and in regular use on the UC Berkeley campus for several 
months. The service is deployed on the Berkeley Network of Work- 
stations (NOW) [4] using the host manager deployment algorithm 
described in Section 2.3.3. The only unimplemented portion of the 

design described above is service composition and the use of an au- 
tomatic service location mechanism as detailed in Section 2.2. 

In its current form the MeGa architecture contains four clients 
and four matching gateways for each of the following media: video, 
audio, whiteboard and SDP. 

The audio and video gateways are implemented using the RTP 
gateway architecture described in [3]. The SDP gateway is imple- 
mented as a reflector. The requirements of whiteboard gateways 
differ significantly from the other three due to the fact that white- 
board data must be transmitted reliably, as opposed to the unreliable 
transmission requirements of audio, video and SDPdata. In our cur- 
rent prototype we focussed only on the design and implementation 
on “stateless” audio and video media gateways, As a result, our 
whiteboard gateway is implemented a simple reflector, However, 
in the future we intend to leverage the initial efforts by Chawathe 
et al. [I l] to develop an architecture for reliable real-time multicast 
gateways as a component of our service. 

ASCP is as a string-based protocol. Our choice of a string for- 
mat over a binary format was motivated by several factors. String- 
based protocols offer a much greater degree of flexibility in mes- 
sage construction. Messages can be read and written using com- 
mon text-based tools which significantly reduces the amount of ef- 
fort required for prototype development (e.g., one way to “send” a 
message is to simply type the message to the receiver’s port using 
the t&et protocol). Many times the protocol information is funda- 
mentally text-based, e.g., URL’s, user names, and free text. As a 
result, the overhead of the text information dominates the savings 
that would be gained by compacting the messages to a binary packet 
format. Many such protocols have been designed, including HTTP, 
SDP, RTSP, and SIP. 

The MeGa SSD field of the ASCP announcements is derived 
from SDP due to the close relationship between an SDP session an- 
nouncements and the information required by the clients and gate- 
ways in MeGa. Thus we avoided having to design an entirely new 
message format and could leverage our existing SDP parser for 
message parsing. 
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Figure 10: Host manager population changes on the Berkeley Net- 
work of Workstations over a 2.5 day period. 

The host manager deployment algorithm has proven to be ex- 
tremely robust in the presence of pathological operating conditions 
on the Berkeley NOW. The NOW consists of 1 14 UltraSparcs used 
by several departments on the Berkeley campus. Machines are re- 
booted irregularly and without notice. We deployed 10 HMs on a 
set of 40 machines in this cluster. The system stayed up for approxi- 
mately six weeks providing robust and reliable user service until we 
brought it down for an upgrade. The vast majority of the time, the 
system was stable. Despite the occasions when machines running 
HMs were rebooted, the population adapted flawlessly. 
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Figure 10 illustrates the adaptation over the 25 days of this period 
(alter this period there were no changes in the number of host man- 
agers). The figure plots a time series of the number of host man- 
agers present in the system. Throughout the 25 days, the system 
survived many system reboots and utilized 17 of the 40 hosts at one 
point or another. Two specific points of interest demonstrate the re- 
silience of our system. First, on day 12 the entire cluster was re- 
booted. As illustrated by the downward “spike” in the graph, the 
population was able to survive due to the fact that the interval over 
which the cluster was rebooted was sufficiently long so that the ran- 
domization in the selection of nodes on which HMs replicate them- 
selves enabled the HM population to replicate itself on the newly 
rehooted machines before the old population was entirely termi- 
nated - thereby ensuring the “survival” of the HM population. The 
second point of Interest is the final configuration, in which we no- 
ticc the presence of five HMs in the system. It turns out that the 
NOW system administrators upgraded the system’s security on all 
but tive machines, and subsequently gradually rebooted machines 
m the cluster. This upgrade prevented the HMs from replicating to 
reach the target number of 10. However, the resilience of the sys- 
tcm was demonstrated in that the HMs attempts to replicate on ran- 
dom nodes of the cluster caused the system to eventually populate 
ex:lctly those five machines that the system administrators did not 
upgrade! 

5 Related Work 
As we stated in the introduction, our active service framework rep- 
resents an attempt to provide “active” functionality within a re- 
strlctcd, yet useful, subspace of active networks goals - deploy- 
mcnt of application-level computation - while maintaining com- 
patibility with the current Internet. In this section we present cur- 
rent research in active networks and describe how it relates to active 
scrvIccs. 

Govindan PI (E/. [I 61 give a high level description of a framework 
Ibr apphcation-level active services. The report outlines an archi- 
tecture for the active nodes in their network and discusses some of 
the research issues involved, including service deployment and the 
dealgn ol the service platform. 

In contrast to our focus on application-level deployment and 
fault tolerance, most research on active networks addresses support 
for the more ambitious goal of enabling efficient and safe compu- 
tallon on arbitrary nodes at the network layer. 

The SwitchWare project [17] is developing an architecture for 
programmable switches and routers. SwitchWare takes a language- 
based approach towards exploring the most extreme version of ac- 
tivc networks where each packet executes a program. In addition 
to “active packets,” the SwitchWare architecture defines middle- 
ware “switchlets” that provide support for relatively simple and 
lightweight packets to embody complex functionality. Alexander 
rt (I/. 1 I] describe an implementation of an “active bridge” imple- 
tnented entirely by switchlcts running within the SwitchWare archi- 
tccture. A related effort is the BBN “smart packets” and “active 
router” projects [ 201 

Bhattacharjec et al. [9] describe an active networks architecture 
thr dealing with congestion in the network. They detail the use of 
“active processors” -- software modules that implement applica- 
tion specific processing on a packet-level basis. These packets are 
lab&d and are dropped in the face of congestion according to a 
“unit-level drop” function that enables the user to specify the gran- 
ularity of adaptation. One of their examples is the use of an ac- 
tlve processor for MPEG streams to control packet loss in the face 
of congestion. This problem is obviously very similar to that ad- 
dressed by MeGa and, in a sense, media gateways are active proces- 
sors. The main difference is that this approach comes from the net- 

work up, while MeGa addresses the problem from the application- 
level down. While the former achieves increased generality, it does 
so by sacrificing the ability to leverage useful information from 
higher-level protocols such as SCUBA. 

The NetScript [35] project’s goal is the design of a common lan- 
guage and execution environment to provide a universal abstraction 
of a programmable networking environment. NetScript is orthogo- 
nal to and complementary to our work and we foresee a possibility 
of leveraging it in our active service framework when it becomes 
more refined. 

Finally, Wetherall and Tennenhouse describe a mechanism for 
deploying computation in the network using an new option in the 
IP header: the ACTIVE IP option [34] in conjunction with embed- 
ding the actual code, or “capsules” [3 11, in the network-level packet 
header. Similar to our goals, this approach is motivated in part by 
the goal of compatibility with today’s Internet. 

6 Summary 
In this paper we described Active Services, an architecture for 
deployment of application-level computation within the network. 
Our active service architecture draws upon three important proto- 
col building blocks - announce-listen communication, soft-state, 
and multicast damping-which together yield a particularly robust 
and flexible design. To demonstrate the efficacy of our architecture, 
we implemented an active service for media gateways called MeGa. 
MeGa incorporates the core components of an active service and 
serves as a fully functional and deployed “proof of concept” for our 
work. Active Services address an important subset of the problems 
targeted by the active networking initiative while preserving com- 
patibility with the current Internet infrastructure. 
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