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Abstract 

The widespread deployment of inexpensive communica- 
tions technology, computational resources in the net- 
working infrastructure, and network-enabled end de- 
vices poses an interesting problem for end users: how to 
locate a particular network service or device out of hun- 
dreds of thousands of accessible services and devices. 
This paper presents the architecture and implementa- 
tion of a secure Service Discovery Service (SDS). Service 
providers use the SDS to advertise complex descriptions 
of available or already running services, while clients 
use the SDS to compose complex queries for locating 
these services. Service descriptions and queries use the 
extensible Markup Language (XML) to encode such 
factors as cost, performance, location, and device- or 
service-specific capabilities. The SDS provides a highly- 
available, fault-tolerant, incrementally scalable service 
for locating services in the wide-area. Security is a core 
component of the SDS and, where necessary, communi- 
cations are both encrypted and authenticated. Further- 
more, the SDS uses an hybrid access control list and 
capability system to control access to service informa- 
tion. 

1 Introduction 

The decreasing cost of networking technology and net- 
work-enabled devices is enabling the large-scale deploy- 
ment of such networks and devices (321. Simultaneously, 
significant computational resources are being deployed 
within the network infrastructure; this computational 
infrastructure is being used to offer many new and in- 
novative services to users of these network-enabled de- 
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vices. We define such “services” as applications with 
well-known interfaces that perform computation or ac- 
tions on behalf of client users. For example, an applica- 
tion that allows a user to control the lights in a room is 
a service. Other examples of services are printers, fax 
machines, and music servers. 

Ultimately, we expect that, just as there are hun- 
dreds of thousands of web servers, there will be hun- 
dreds of thousands (or millions) of services available to 
end users. Given this assumption, a key challenge for 
these end users will be locating the appropriate service 
for a given task, where “appropriate” has a user-specific 
definition (e.g., cost, location, accessibility, etc.). In ad- 
dition, trustworthy and secure access to such services 
are critical requirements. Clients cannot be expected to 
track which services are running or to know which ones 
can be trusted. 

Thus, clients will require a directory service that en- 
ables them to locate services that they are interested in 
using. We have built such a service, the Ninja’ Service 
Discovery Service (SDS) to provide this functionality 
and enable clients to more effectively search for and use 
the services available in the network. Like the rest of the 
major components of Ninja, the SDS is implemented in 
Java [lo]. 

The SDS is a scalable, fault-tolerant, and secure in- 
formation repository, providing clients with directory- 
style access to all available services. It stores two types 
of information: descriptions of services that are avail- 
able for execution at computational resources embed- 
ded in the network (so-called “unpinned” services), and 
services that are .already running at a specific location. 
The SDS also supports both push-based and pull-based 
access; the former allows passive discovery, while the 
latter permits the use of a query-based model. 

Service descriptions and queries are specified in eX- 
tensible Markup Language (XML) [4], leveraging the 
flexibility and semantic-rich content of this self-describ- 
ing syntax. 

The SDS also plays an important role in helping 
clients determine the trustworthiness of services, and 
vice versa. This role is critical in an open environment, 
where there are many opportunities for misuse, both 
from fraudulent services and misbehaving clients. To 

‘The Ninja project is developing a scalable, fault-tolerant, 
distributed, composable services platform [30). 
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address security concerns, the SDS controls the set of 
agents that have the ability to discover services, allow- 
ing capability-based access control, i.e., to hide the ez- 
istence of services rather than (or in addition to) disal- 
lowing access to a located service. 

As a globally-distributed, wide-area service, the SDS 
addresses challenges beyond those of services that op- 
erate solely in the local area. The SDS architecture 
handles network partitions and component failures; ad- 
dresses the potential bandwidth limitations between re- 
mote SDS entities; arranges the components into a hi- 
erarchy to distribute the workload; and provides appli- 
cation-level query routing between components. 

This paper presents the design of the SDS, focusing 
on both the architecture of the directory service and 
the security features of the system. Section 2 begins 
our discussion by describing the design concepts used 
in order to achieve our goals. The SDS architecture is 
described in Section 3. Wide-area operation is discussed 
in Section 4. Performance measurements from the SDS 
prototype implementation are presented in Section 5, 
followed by a discussion of related systems in Section 6. 
Finally, we summarize and conclude in Section 7. 

2 Design Concepts 

The SDS system is composed of three main components: 
clients, services, and SDS servers. Clients want to dis- 
cover the services that are running in the network. SDS 
servers enable this by soliciting information from the 
services and then using it to fulfill client queries. In 
this section, we will discuss some of the major concepts 
used in the SDS design to meet the needs of service 
discovery, specifically accounting for our goals of scal- 
ability, support for complex queries, and secure access 
for clients and services. 

2.1 Announcement-based Information Dissemination 

In a system composed of hundreds of thousands of serv- 
ers and services, the mean time between component 
failures will be small. Thus, one of the most impor- 
tant functions of the SDS is to quickly react to faults. 
The SDS addresses this issue by using periodic multicast 
announcements as its primary information propagation 
technique, and through the use of information caching, 
rather than reliable state maintenance, in system enti- 
ties. The caches are updated by the periodic announce- 
ments or purged based on the lack of them. In this 
manner, component failures are tolerated in the nor- 
mal mode of operation rather than addressed through a 
separate recovery procedure [l]: recovery is enabled by 
simply listening to channel announcements. The com- 
bination of periodicity and the use of multicast is of- 
ten called the “announce/listen” model in the litera- 
ture, and is appropriate where “eventual consistency” 
rather than a transactional semantic suffices. The an- 
nounce/listen model initially appeared in IGMP (61, and 
was further developed and clarified in systems such as 
the MBone Session Announcement Protocol [15]. Re- 
finement of the announce/listen idea to provide for tol- 
erance of host faults (leveraging multicast’s indirection 
along with cluster computing environments [2]) appear- 
ed in the context of the AS1 “Active Services” frame- 

work [l]. We will describe our use of announce/listen in 
Sections 3.1 and 3.2. 

2.2 Hierarchical Organization 

As a scalability mechanism, SDS servers organize into a 
hierarchical structure; service announcements and client 
queries are assigned to go to a particular SDS server. 
The “domain” of an SDS server is the network extent 
(e.g., the fractional subnet, subnet, or subnets) it covers. 
If a particular SDS server is overloaded, a new SDS 
server will be started as a “child” and assigned a portion 
of the network extent (and, thus, a portion of the load). 
See Figure 1 for an example configuration. 

Section 3.1 discusses how domains are mapped to 
the multicast channels that are used by all services in 
the domain. Discussion of hierarchical organization is 
treated in Section 4. 

2.3 XML Service Descriptions 

Rather than use flat name-value pairs (as in, e.g., the 
Session Description Protocol [12]), the SDS uses XML [4] 
to describe both service descriptions (the identifying 
information submitted by services) and client queries. 
XML allows the encoding of arbitrary structures of hi- 
erarchical named values; this flexibility allows service 
providers to create descriptions that are tailored to their 
type of service, while additionally enabling “subtyping” 
via nesting of tags. 

Valid service descriptions have a few required stan- 
dard parameters, while allowing service providers to 
add service-specific information - e.g., a printer service 
might have a color tag that specifies whether or not the 
printer is capable of printing in color. An important ad- 
vantage of XML over name-value pairs is the ability to 
validate service descriptions against a set schema, in the 
form of Document Type Definitions (DTDs). Unlike a 
database schema, DTDs provide flexibility by allowing 
optional validation on a per tag granularity. This allows 
DTDs to evolve to support new tags while maintaining 
backwards compatibility with older XML documents. 

Services encode their service metadata as XML doc- 
uments and register them with the SDS. Typical meta- 
data fields include location, required capabilities, time- 
out period, and Java RMI address. Clients specify their 
queries using an XML template to match against, which 
can include service-specific tags. A sample query for a 
color Postscript printer and its matching service descrip- 
tion are presented in Figure 2. 

2.4 Privacy and Authentication 

Unlike many other directory services, the SDS assumes 
that malicious users may attack the system via eaves- 
dropping on network traffic, endpoint spoofing, replay- 
ing packets, making changes to in-flight packets (e.g., 
using a “man-in-the-middle” attack to return fraudu- 
lent information in response to requests), and the like. 
To thwart such attacks, privacy and integrity are main- 
tained via encryption of all information sent between 
system entities (i.e., between clients and SDS servers 
and between services and SDS servers). To reduce the 
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Figure 1: Components of the secure Service Discovery Service. Dashed lines correspond to periodic multicast com- 
munication between components, while solid lines correspond to one-time Java RMI connections. 

Figure 2: An example XML query (A), matching service 
description (B), and failed match (C). 

overhead of the encryption, a traditional hybrid of asym- 
metric and symmetric-key cryptography is used. 

However, encryption alone is insufficient to prevent 
fraud. Thus, the SDS uses cryptographic methods to 
provide strong authentication of endpoints. Associated 
with every component in the SDS system is a princi- 
pal name and public-key certificate that can be used to 
prove the component’s identity to all other components 
(see Section 3.3). By making authentication an integral 
part of the SDS, we can incorporate trust into the pro- 
cess used by clients to locate useful services. Clients can 
specify the principals that they both trust and have ac- 
cess to, and when they pose queries, an SDS server will 
return only those services that are run by the specified 
principals. 

For example, if a CS Division principal is used for 
CS division-wide services, then a client with access to 
all C’S Division services looking for an ‘Lofficial” e-mail 
server would specify the CS Division principal. SDS 
servers would only return CS Division servers, instead of 

including e-mail servers being run by, e.g., individuals. 
The SDS also supports the advertisement and loca- 

tion of private services, by allowing services to specify 
which “capabilities” are required to learn of a service’s 
existence. These capabilities are basically signed mes- 
sages indicating that a particular user has access to a 
class of services. Whenever a client makes a query, it 
also supplies the user’s capabilities to the SDS server. 
The SDS server ensures that it will only return the 
services for which the user has valid capabilities. Sec- 
tion 3.4 elaborates on the use of capabilities. 

Section 3.5 provides details of our use of authenti- 
cation and encryption in the architecture, while Sec- 
tion 5.1 presents our measurements of the cost of these 
security components. 

3 Architecture 

Figure 1 illustrates the architecture of the Service Dis- 
covery Service, which consists of five components: SDS 
servers, services, capability managers, certificate author- 
ities, and clients. In the following sections, we describe 
the components that compose the SDS, focusing on their 
roles in the system and how they interact with one an- 
other to provide SDS system functionality. 

3.1 SDS servers 

Each server is responsible for sending authenticated mes- 
sages containing a list of the domains that it is responsi- 
ble for on the well-known global SDS multicast channel. 
These domain advertisements contain the multicast ad- 
dress to use for sending service announcements, the de- 
sired service announcement rate, and contact informa- 
tion for the Certificate Authority and Capability Man- 
ager (described in Sections 3.3 and 3.4). The messages 
are sent periodically using announce/listen. The aggre- 
gate rate of the channel is set by the server administra- 
tor to a fixed fraction of total available bandwidth; the 
maximum individual announcement rate is determined 
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by listening to the channel, estimating the message pop- 
ulation, and from this estimate, determining the per- 
message repeat rate: ala SAP [15] and RTCP [26]. (SDS 
servers send this value out as a part of their advertise- 
ments so individual services do not have to compute 
it.) Varying the aggregate announcement rate exhibits 
a bandwidth/latency trade-off: higher rates reduce SDS 
server failure discovery latency at a cost of more network 
traffic. Using a measurement-based periodicity estima- 
tion algorithm keeps the traffic from overloading the 
channel as the number of advertisers grows, allowing 
local traffic to scale. 

In the SDS server hierarchy, when the service load 
reaches a certain threshold on an SDS server, one or 
more new “child” servers are spawned. Each new server 
is allocated a portion of the existing service load. Servers 
keep track of their child nodes through periodic “heart- 
beat” messages. 

If a server goes down, its parent will notice the lapse 
in heartbeats and restart it (possibly elsewhere if the 
node itself has failed). As an additional measure of 
robustness, server crashes can also be recovered by a 
“peer” workstation in the same manner described by 
Amir t&al. [l]: have the peer workstations listen in on 
the announce/listen messages and, leveraging the mul- 
ticast indirection, transparently select amongst them- 
selves. Restarted servers populate their databases by 
listening to the existing service announcements, thereby 
avoiding the need for an explicit recovery mechanism. 
Additionally, because the services are still sending to the 
original multicast address while this transition occurs, 
the rebuilding is transparent to them. If more than one 
server goes down, recovery will start from the top of 
the hierarchy and cascade downwards using the regular 
protocol operation. 

Once an SDS server has established its own domain, 
it begins caching the service descriptions that are ad- 
vertised in the domain. The SDS server does this by 
decrypting all incoming service announcements using 
the secure one-way service broadcast protocol (see Sec- 
tion 3.5.2), a protocol that provides service description 
privacy and authentication. Once the description is 
decrypted, the SDS server adds the description to its 
database and updates the description’s timestamp. Pe- 
riodically, the SDS flushes old service descriptions based 
on the timestamp of their last announcement. The flush 
timeout is an absolute threshold which currently de- 
faults to five times the requested announcement period. 

The primary function of the SDS is to answer client 
queries. A client uses Authenticated RMI (Section 3.5.3) 
to connect to the SDS server providing coverage for its 
area, and submits a query in the form of an XML tem- 
plate along with the client’s capabilities (access rights). 
The SDS server uses its internal XSet XML (341 search 
engine to search for service descriptions that both match 
the query and are accessible to the user (i.e., the user’s 
capability is on the service description’s ACL). Depend- 
ing upon the type of query, the SDS server returns either 
the best match or a list of possible matches. In those 
cases where the local server fails to find a match, it for- 
wards the query to other SDS servers based on its wide- 
area query routing tables (as described in Section 4). 

Note that SDS servers are a trusted resource in this 
architecture: services trust SDS servers with descrip- 

tions of private services in the domain. Because of this 
trust, careful security precautions must be taken with 
computers running SDS servers - such as, e.g., physi- 
cally securing them in locked rooms. On the other hand, 
the SDS server does not provide any guarantee that a 
“matched” service correctly implements the service ad- 
vertised. It only guarantees that the returned service 
description is signed by the certificate authority speci- 
fied in the description. Clients must decide for them- 
selves if they trust a particular service based on the 
signing certificate authority. 

3.2 Services 

Services need to perform three tasks in order to partic- 
ipate in the SDS system. The first task is to continu- 
ously listen for SDS server announcements on the global 
multicast channel in order to determine the appropri- 
ate SDS server for its service descriptions. Finding the 
correct SDS server is not a one-time task because SDS 
servers may crash or new servers may be added to the 
system, and the service must react to these changes. 

After determining the correct SDS server, a service 
then multicasts its service descriptions to the proper 
channel, with the proper frequency, as specified in the 
SDS server’s announcement. The service sends the de- 
scriptions using authenticated, encrypted one-way ser- 
vice broadcasts. The service can optionally allow other 
clients to listen to these announcements by distributing 
the encryption key. 

Finally, individual services are responsible for con- 
tacting a Capability Manager and properly defining the 
capabilities for individual users (as will be described be- 
low in Section 3.4). 

3.3 Certificate Authority 

The SDS uses certificates to authenticate the bindings 
between principals and their public keys (i.e., verifying 
the digital signatures used to establish the identities of 
SDS components). Certificates are signed by a well- 
known Certificate Authority (CA), whose public key is 
assumed to be known by everyone. The CA also dis- 
tributes encryption key certijicates that bind a short- 
lived encryption key (instead of a long-lived authentica- 
tion key) to a principal. This encryption key is used to 
securely send information to that principal. These en- 
cryption key certificates are signed using the principal’s 
public key. 

The operation of the Certificate Authority is fairly 
straightforward: a client contacts the CA and specifies 
the principal’s certificate that it is interested in, and the 
CA returns the matching certificate. Since certificates 
are meant to be public, the CA does not need to au- 
thenticate the client to distribute the certificate to him; 
possessing a certificate does not benefit a client unless 
he also possesses the private key associated with it. Ac- 
cepting new certificates and encryption key certificates 
is also simple, since the certificates can be verified by 
examining the signatures that are embedded within the 
certificates. This also means the administration and 
protection of the Certificate Authority does not have to 
be elaborate. 
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ID Ciphered Secret Payload 
[ Sender Name ] {Sender, Destination, Expire, SK, Sign(Cp)}E, ] {Data, Time, MAC}s, J 

Figure 3: Secure One-Way Broadcast Packet format: SK - shared client-server secret key, Sign(Cp) - signature of 
the ciphered secret using the client public key, EK - server public key, and MAC - message authentication code. 

3.4 Capability Manager 

The SDS uses capabilities as an access control mecha- 
nism to enable services to control the set of users that 
are allowed to discover their existence. In traditional 
access control, services would have to talk to a central 
server to verify a user’s access rights. Capabilities avoid 
this because they can be verified locally, eliminating the 
need to contact a central server each time an access con- 
trol list check is needed. 

A capability proves that a particular client is on the 
access control list for a service by embedding the client’s 
principal name and the service name, signed by some 
well-known authority. To aid in revocation, capabilities 
have embedded expiration times. 

To avoid burdening each service with the require- 
ment that it generate and distribute capabilities to all 
its users, we use a Capability Manager (CM) to per- 
form the function Each service contacts the CM, and 
after authentication, specifies an access control list (a 
list of the principals allowed to access the service’s de- 
scription). The CM then generates the appropriate ca- 
pabilities and saves them for later distribution to the 
clients. Since the signing is done on-line, the host run- 
ning the CM must be secure. Capability distribution 
itself can be done without authentication because ca- 
pabilities, like certificates, are securely associated with 
a single principal, and only the clients possessing the 
appropriate private key can use them. 

3.5 Secure SDS Communication 

The communication methods used by the SDS balance 
information privacy and security against information 
dissemination efficiency. In the following sections, we 
discuss the various types of communication used by the 
SDS. 

3.5.1 Authenticated Server Announcements 

Due to the nature of SDS servers, their announcements 
must have two properties: they must be readable by 
all clients and non-forgeable. Given these requirements, 
SDS servers sign their announcements but do not en- 
crypt them. In addition, they include a timestamp to 
prevent replay attacks. 

3.5.2 Secure One-way Service Description Announce- 
ments 

Protecting service announcements is more complicated 
than protecting server announcements: their informa- 
tion must be kept private while allowing the receiver to 
verify authenticity. A simple solution would be to use 
asymmetric encryption, but the difficulty with this is 
that asymmetric cryptography is extremely slow. Effi- 
ciency is an issue in this case, because SDS servers might 
have to handle thousands of these announcements per 

hour. Using just symmetric key encryption would en- 
sure suitable performance, but is also a poor choice, 
because it requires both the server and service to share 
a secret, violating the soft-state model. 

Our solution is to use a hybrid public/symmetric key 
system that allows services to transmit a single packet 
describing themselves securely while allowing SDS serv- 
ers to decrypt the payload using a symmetric key. Fig- 
ure 3 shows the packet format for service announce- 
ments. The ciphered secret portion of the packet con- 
tains a symmetric key (SK) that is encrypted using the 
destination server’s public encryption key (EK). This 
symmetric key is then used to encrypt the rest of the 
packet (the data payload). 

To further improve efficiency, services change their 
symmetric key infrequently. Thus, SDS servers can cache 
the symmetric key for a particular service and avoid per- 
forming the public key decryption for future messages 
for the lifetime of the symmetric key. Additionally, if 
the service desires other clients to be able to decrypt 
the announcements, the service needs only to distribute 
SK. 

The design of one-way service description announce- 
ments is a good match to the SDS soft-state model: 
each announcement includes all the information the SDS 
server needs to decrypt it. 

3.5.3 Authenticated RMI 

For communication between pairs of SDS servers and 
between client applications and SDS servers, we use 
Authenticated Remote Method Invocation (ARMI), as 
implemented by the Ninja project (33]*. ARM1 allows 
applications to invoke methods on remote objects in a 
two-way authenticated and encrypted fashion. 

Authentication consists of a short handshake that 
establishes a symmetric key used for the rest of the ses- 
sion. As with the other components in the SDS, ARM1 
uses certificates to authenticate each of the endpoints. 
The implementation also allows application writers to 
specify a set of certificates to be accepted for a connec- 
tion. This enables a client to set a policy that restricts 
access to only those remote SDS servers that have valid 
“sds-server” certificates. The performance of ARM1 is 
discussed in Section 5. 

3.6 Bootstrapping 

Clients discover the SDS server for their domain by lis- 
tening to a well-known SDS global multicast address. 
Alternatively, as a discovery latency optimization, a 
client can solicit an asynchronous SDS server announce- 
ment by using expanding ring search (ERS) [7]: TTL- 

‘The choice of ARM1 for client-server communication is a 
function of our use of Java. This implementation choice is or- 
thogonal to the system design; the necessary functionality can 
be mapped onto most other secure invocation protocols. 
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limited query messages are sent to the SDS global mul- 
ticast address, and the TTL is increased until there is 
a response. This is analogous to “foreign agent solic- 
itation” and “foreign agent advertisement” in Mobile 
IP [19] extended beyond the local subnet. 

An SDS server’s domain is specified as a list of CIDR- 
style network-address/mask pairs (e.g., 128.32.0.0/16 
for the entire Berkeley campus). Newly spawned child 
SDS servers claim a portion of the parent’s region, where 
the specific portion is specified by the parent. This 
syntax allows for complete flexibility in coverage space 
while providing efficient representation when domains 
align to the underlying topology. 

4 Wide-Area Support 

The previous section detailed the local interactions of 
SDS servers, SDS clients, and services. In this section, 
we focus on how SDS servers could interact with one an- 
other as a whole in order to support scalable, wide-area 
service discovery. (A caveat: this section is a design 
overview. We have implemented portions of it but not 
incorporated it with the local-area SDS code or mea- 
sured it.) 

Using the SDS as a globally-distributed service re- 
quires that it be able to scale to support a potentially 
huge number of clients and services using it while adapt- 
ing as the underlying entities that comprise it change 
(e.g., due to network partitions and node failures). We 
would like clients to be able to discover all services on all 
SDS servers, so we cannot simply partition the informa- 
tion and queries. Additionally, neither maintaining all 
service information at all servers, nor sending queries to 
all servers, scales as the number of such servers grows. 
One approach to reducing this scaling problem is to 
leave service information partitioned amongst the indi- 
vidual SDS servers, while propagating summaries of the 
contents to one another. Even if such summarization 
were possible, there is quadratic growth in such mes- 
saging, and queries would still have to go to all servers. 
This is again a scaling problem. A further step, then, is 
to have the servers arrange themselves into a multi-level 
hierarchy. Summary information would be propagated 
only to parents, and queries partitioned amongst the 
servers for further forwarding. It is this latter approach 
that we employ for wide-area service discovery. 

There are two major components to achieving this 
goal: the dynamic construction and adaptation of a hi- 
erarchy of SDS servers, and providing an application- 
level routing infrastructure that allows servers to prop- 
agate information through the hierarchy. The informa- 
tion propagation problem can be further decomposed 
into two sub-problems: providing lossy aggregation of 
service descriptions as they travel up the hierarchy (to 
prevent the root nodes from becoming a bottleneck for 
updates or queries), and dynamically routing client quer- 
ies to the appropriate servers based on the local aggre- 
gate data. In short, the problems of building routing 
tables and then interpreting them. 

We now discuss our proposed solutions to these prob- 
lems. 

4.1 Adaptive Server Hierarchy Management 

Two key questions arise given the use of hierarchy. The 
first is the choice of what hierarchy, or hierarchies, to 
build. The second is determining how to build and 
maintain the chosen hierarchies given their semantics. 
The first question is a policy decision that must be de- 
termined by whoever is running the SDS server itself (or 
defaulted if no configuration is specified); the second is 
a choice of mechanism that will be shared by whoever 
participates in that hierarchy. Because the first decision 
is policy-based, we contend that the best solution to it 
is to allow for the use of multipZe hierarchies. Examples 
of possible useful hierarchies include those based on ad- 
ministrative domains (e.g., company, government, etc.), 
network topology (e.g., network hops), network mea- 
surements (e.g., bandwidth, latency), and geographic lo- 
cation (e.g., using location and distance metrics). They 
are independently useful because they enable users to 
make queries that resolve based on them - i.e., query- 
ing for a service based on geographic proximity rather 
than ownership. 

Individual SDS servers can choose to participate in 
one or more of these hierarchies by maintaining sepa- 
rate pointers to parents and children for each hierarchy 
(along with any associated “routing table data” for each 
link, as will be described below). Due to the fact that 
routing may be performed differently in each hierarchy, 
a single “primary” hierarchy is required to guarantee 
that queries can get to all portions of the tree. Our 
current choice is to use an administrative primary hi- 
erarchy, but a better choice would be one based on the 
underlying network characteristics - such as topology - 
because such a hierarchy requires no manual setup and 
is robust to network partitions. 

Our previous descriptions of SDS client/server op- 
eration does not address how parent/child relationships 
are determined, only the mechanisms used to maintain 
them once they are known. Examples of possible mech- 
anisms for constructing these parent/child relationships 
include using manual specification in configuration files 
(i.e., to indicate administrative hierarchies) or an ap- 
proach based on external information. Such external 
information could be geographic data (e.g., through the 
use of GPS or DNS LOC records [5]), topological data 
(e.g., using topology discovery [14, 211, multicast ad- 
ministrative scoping 1171, a variant of expanding ring 
search [7]), or network measurement (e.g., using a tool 
such as SPAND (271 to derive bandwidth and latency in- 
formation). In these latter cases, such information can 
be shared via a global multicast address and the neigh- 
bor relationships (and resulting tree) inferred from it in 
a manner analogous to Internet link-state routing [16]. 

Individual node failures can be tolerated in the same 
manner as is used to tolerate single-server failure in the 
local-area case: have a cluster of workstations listen in 
on the announce/listen messages and leverage the indi- 
rection to transparently select amongst themselves. 

4.2 Description Aggregation and Query Routing 

To prevent the servers in the upper tiers of the hierar- 
chy from being overloaded by update or query traffic, 
the SDS architecture must keep updates localized. This 
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implies that individual service descriptions and queries 
must be filtered as they propagate up the hierarchy. We 
describe this process as the lossy aggregation function 
of the hierarchy. At the same time, the aggregation 
function must be designed such that the summarized 
information (aka indez) can be queried as to whether a 
given piece of information is, or is not, contained in it. 
Applied to the SDS, this means that 1) service descrip- 
tion data must be summarized/indexed as it travels up 
the hierarchy, allowing control over the rate of updates 
to the root, and 2) queries must be able to be compared 
against these indices to determine whether the branch 
they are summarizing contains a match for that query. 
Performing the former operations as updates occur at 
the leaves is called “description aggregation;” perform- 
ing the latter function while iterating through the tree 
is called “query routing.” In all cases, service descrip- 
tions are only stored at the servers where they are being 
periodically refreshed; only summaries are sent up the 
tree. 

The SDS has a far more difficult problem than most 
systems that build an application-level routing infras- 
tructure and use it. This is due to the allowance for 
multi-criteria selection (arbitrary attribute-value pairs) 
in queries. The novelty of the SDS is that it is attack- 
ing the wide-area discovery problem for the case where 
queries do not have a hierarchical strwture embedded in 
them. Multiple systems have solved wide-area scaling 
and non-hierarchical queries independently [18, 31, 131; 
none that we know of have succeeded at addressing 
both. 

We now look at one approach to lossy aggregation 
and query routing. This approach is based on the use 
of hashing and hash summarization via Bloom filtering. 

Hashing summarizes data by creating a unique N-to- 
M mapping of data vales, where M is a short fixed length 
bitstring and N can be arbitrarily long. Unfortunately, 
because SDS queries contain subsets of the tags rather 
than exact matches, just computing a hash for each ser- 
vice description is not sufficient: all possible matching 
query values hashes - so-called “subset hashes” - would 
have to be computed. (TO clarify the problem, imagine a 
service description with three tags. There are seven pos- 
sible queries that should “hit” it: each tag individually, 
the three combinations of pairs of tags, and all three tags 
together. Each of these possible queries would need to 
be hashed and these hashes stored to guarantee correct- 
ness.) There are two obvious problems with computing 
all possible subset hashes: the amount of computation 
required, and the amount of space required to store the 
large number of hashes produced (seen as memory usage 
at local servers and update bandwidth on the network). 

Our solution the computation problem is to limit 
the number of subset hashes by limiting the number of 
cross-products of tags that are hashed (e.g., only singles 
and pairs). Incoming queries must be similarly broken 
up into groups of tag combinations and checked to en- 
sure there are no false misses. Limiting the computa- 
tion in this manner increases the probability of false 
positives, but addresses the exponential computational 
growth in a manner that gives a “knob” that can trade 
reduced probability of false positives for additional com- 
putation and vice-versa. The knob is the “depth” of the 
cross product (number of tag combinations hashed). 

Figure 4: Aggregation of Bloom filter tables. 

Even given a solution to the computation problem, 
there still remains the second problem: space. Each 
service has tens (or even hundreds) of hashes, and all 
these hashes must be stored locally; more worrisome, 
the hashes must be propagated up the hierarchy be- 
cause they are our index. Our approach to solving 
this problem is to use Bloom filters [3, 81. A Bloom 
filter is a summarization method that uses a bit vec- 
tor with bits set in positions corresponding to a set of 
hash values of the data. The key property of Bloom 
filters is that they provide hashed summarization of a 
set of data, but collapse this data into a fixed-size ta- 
ble, trading off an increased probability of false posi- 
tives for index size - exactly the knob we need to ad- 
dress the issue of long hash lists. This approach never 
causes false misses, thereby maintaining the correctness 
of our lossy aggregation function. The basic probability 
of false positives (independent of limiting the number 
of tag cross-products hashed) can be reduced by us- 
ing more hash functions and/or longer bit vectors (91, 
though these numbers must be sized based on the root 
node - i.e., sized based on the acceptable false positive 
rate at the root, which knows about all service hashes 
and shouldn’t just be “too full of ones.” 

To summarize how these ideas are applied to the 
SDS: each SDS server applies multiple hash functions 
(e.g., using keyed MD5 and/or groups of bits from a 
single MD5 as in [9]) to various subsets of tags in the 
service announcements, and uses the results to set bits 
in a bit vector. The resulting bit vector (the index) sum- 
marizes its collection of descriptions. A query against 
this bit vector is resolved by multiply hashing it and 
checking that all the matching bits are set. If any are 
not set, then the service is definitely not there - it is a 
“true miss.” If all are set, then either the query hit, or a 
“false positive” may have occurred due to aliasing in the 
table. The latter forces unneeded additional forwarding 
of the query (i.e., makes the routing non-optimal), but 
does not sacrifice correctness. 

If an SDS server is also acting as an internal node 
in the hierarchy, it will have pointers to its children. 
Associated with each child will be a similar bit vec- 
tor. To perform index aggregation, each server takes all 
its children’s bit vectors and OBs them together with 
each other and its own bit vector. This fixed-size ta- 
ble is passed to the parent (in the form of differential 
updates to conserve bandwidth), who then associates it 
with that branch of the tree. This is illustrated in Fig- 
ure 4. To route queries, the algorithm is as follows: if 
a query is coming up the hierarchy, the receiving SDS 
server checks to see if it hits locally or in any of its chil- 
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DSA Verification 
RS.4 Encryption 
RSA Decryption 
Blowfish Encryption 

Table 1: Timings of cryptographic routines 

dren; if not, it passes it upward. If it is coming down 
the hierarchy, the query’s computed bit locations are 
checked against the local and child tables. If there is 
a hit in the local table, the query is resolved locally. 
If there is a hit in any children’s tables, the query to 
routed down the matching children’s links. If neither of 
these occur, it is a known miss. 

A final problem to address: the bit vectors must 
be cleaned when a service dies (i.e., we would like to 
zero their matching bits). Bits cannot be unset, though, 
because another hash operation may have also set them, 
and zeroing them would not preserve correctness (i.e., 
could cause a false miss). To address this, the tables 
must either be periodically rebuilt, or per-bit counts 
must be tallied and propagated along with the tables. 

5 System Performance 

In this section, we examine the performance of the SDS 
and the XSet XML search engine. The results we present 
are for single client to single SDS server interactions, 
and are used to calculate the number of clients an SDS 
system can handle and to verify that the security fea- 
tures of the system do not greatly reduce performance. 

The measurements we will present were averaged 
over 100 trials and were made using Intel Pentium II 
350Mhz machines with 128 MB of RAM, running Slack- 
ware Linux 2.0.36. We used Sun’s JDK 1.1.7 with the 
TYA JIT compiler to run each component of the SDS 
system. For security support, we use the java. security 
package, where possible, and otherwise we use the Cryp- 
tix security library. For the XML parser, we use Mi- 
crosoft’s MSXML version 1.9. We assert that the ma- 
jority of SDS queries will contain a small number of 
search constraints, and use that model for our perfor- 
mance tests. Our tests on XSet were done on a large set 
of small XML files, similar in complexity to typical ser- 
vice descriptions. Finally, SDS uses an authenticated 
RMI implementation developed by the Ninja research 
group [33], which we modified to use Blowfish [24] (in- 
stead of Triple DES) for encrypting the data sent over 
the network. 

5.1 Security Component 5.3 Performance and Throughput 

In this section, we take a closer look at the cost of the 
security mechanisms used in the SDS. Specifically, we 
examine the individual costs of using Java implemen- 
tations of certificates and asymmetric/symmetric cryp- 
tography. As our results show, the costs are relatively 
high, but for the most commonly used component, sym- 
metric encryption, the cost is small enough to allow the 
system to scale reasonably well. 

Table 3 lists the performance of handling various types 
of SDS queries: both null queries and full queries, in 
both secure and insecure versions of the SDS. We also 
measured the service announcement processing time to 
be 9.2 ms, which is the time the SDS takes to decrypt 
and process a single service announcement. This was 
measured using 1.2 KB service announcements 

Files ms / query 
1000 1.17 
5000 1.43 

10000 2.64 
20000 2.76 
40000 4.40 
80000 5.64 

160000 6.24 

Table 2: XSet Query Performance 

Query 
Null Full 

Insecure 24.5 ms 36.0 ms 
Secure 40.5 ms 82.0 ms 

Table 3: Query Latencies for Various Configurations 

Table 1 lists the various costs of the security mech- 
anisms. As it shows, we profiled the use the DSA cer- 
tificates [23] for both signing and verifying informa- 
tion, RSA [23] encryption and decryption as used in the 
service broadcasts, and Blowfish which is used in au- 
thenticated RMI. Note, both DSA and RSA are asym- 
metric key algorithms, while Blowfish is a symmetric 
key algorithm. All execution times were determined by 
verifying/signing or encrypting/decrypting 1 KB input 
blocks. The measurements verify what should be ex- 
pected: the asymmetric algorithms, DSA and RSA, are 
much more computationally expensive than the sym- 
metric key algorithm. This is an especially important 
result for our system, since the SDS was designed to 
leverage the fast performance of symmetric key algo- 
rithms. We also note that the DSA verification time 
is especially high because it verifies multiple signatures 
per certificate: the certificate owner’s signature and the 
certificate authority’s signature. 

5.2 XML Search Component Using XSet 

We use the XSet XML [34] search engine to perform 
the query processing functionality needed by the SDS. 
To maximize performance, XSet builds an evolutionary 
hierarchical tag index, with per tag references stored in 
treaps (probabilistic self-balancing trees). As a result, 
XSet’s query latency increases only logarithmically with 
increases in the size of the dataset. The performance 
results are shown in Table 2. To reduce the cost of query 
processing, validation of a service description against 
its associated Document Type Definition is performed 
only once, the first time it is seen, not per query or per 
announcement. 
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Description 
Query Encryption (client-side) 
Query Decryption [server-sidi) 
RMI Overhead 
Query XML Processing 
Capability Checking 
Query Result Encryption (server-side) 
Query Result Decryption (client-side) 
Querv Unaccounted Overhead 

5.2 ms 
18.3.ms 
9.8 ms 

18.0 ms 
5.6 ms 
5.4 ms 

14.4 ms 
,- LI- I I 

[ Total (Secure XML Query) ) 82.0 ms 1 

Table 4: Secure Query Latency Breakdown 

The other measurements in Table 3 show the perfor- 
mance of various components of the SDS system. For 
example, the null query time on an insecure SDS sys- 
tem demonstrates the RMI and network overhead, since 
no time is spent on encryption or searching. The dif- 
ference between this time and the query time on an 
insecure SDS indicates the time spent on search over- 
head. Likewise, the null query time on the secure SDS 
demonstrates the amount of time spent on the security 
features. We should point out that the time of a secure 
SDS query is much higher than the search time plus 
secure non-query numbers because a secure query per- 
forms more encryption/decryption than the secure null 
query, and also it uses the client’s capabilities to per- 
form the search. Note that these times do not include 
session initialization, since this cost is amortized over 
multiple queries. 

Table 4 shows the average performance breakdown 
of a secure SDS query from a single client. The SDS 
server was receiving service descriptions at a rate of 10 
1.2 KB announcements per second, and the user per- 
formed a search using 7 different capabilities. The SDS 
was only searching twenty service descriptions, but as 
the XSet performance numbers show, additional search 
engine file-handling would contribute very little addi- 
tional latency. Note that the table splits encryption 
time between its client and server components, and that 
RMI overhead includes the time spent reading from the 
network. The unaccounted overhead is probably due to 
context switches, network traffic, and array copies. Not 
shown in table is that server processing time for the 
same operation takesabout 60 ms. 

Using these performance numbers, we approximate 
that a single SDS server can handle a user community 
of about five hundred clients sending queries at a rate 
of of one query per minute per client. 

6 Related Work 

Service discovery is an area of research that has a long 
history. Many of the ideas in the SDS have been influ- 
enced by previous projects. 

6.1 DNS and Globe 

The Internet Domain Naming Service (181 and Globe [31] 
(both conceptual descendents of Grapevine [25]) are ex- 
amples of systems which perform global discovery of 
known services: in the former case, names are mapped 
to addresses; in the latter, object identifiers are mapped 

to the object broker that manages it. An assumption of 
this type of service discovery is that keys (DNS fully- 
qualified domain names or Globe unique object iden- 
tifiers) uniquely map to a service, and that these keys 
are the query terms. Another assumption is that all re- 
sources are publicly discoverable; access control is done 
at the application level rather than in the discovery in- 
frastructure. 

The scalability and robustness of DNS and Globe 
derives from the hierarchical structure inherent in their 
unique service names. The resolution path to the ser- 
vice is embedded inside the name, establishing implicit 
query-routing, thus making the problem simpler than 
that attacked by the SDS. 

6.2 Condor Classads 

The “classads” [20] (classified advertisements) service 
discovery model was designed to address resource allo- 
cation (primarily locating and using off-peak comput- 
ing cycles) in the Condor system. Classads provides 
confidential service discovery and management using 
a flexible and complex description language. Descrip- 
tions of services are kept by a centralized matchmaker; 
the matcher maps clients’ requests to advertised ser- 
vices, and informs both parties of the pairing. Adver- 
tisements and requirements published by the client ad- 
here to a classad specification, which is an extensible 
language similar to XML. The matchmaking protocol 
provides flexible matching policies. Because classads 
are designed to only provide hints for matching service 
owners and clients, a weak consistency model is suffi- 
cient and solves the stale data problem. 

The classads model is not applicable to wide-area 
service discovery. The matchmaker is a single point 
of failure and performance bottleneck, limiting both 
scalability and fault-tolerance. Additionally, while the 
matchmaker ensures the authenticity and confidential- 
ity of services, classads do not offer secure communica- 
tion between parties. 

6.3 JINI 

The Jini [28] software package from Sun Microsystems 
provides the basis for both the Jini connection tech- 
nology and the Jini distributed system. In order for 
clients to discover new hardware and software services, 
the system provides the Jini ‘Lookup Service [29], which 
has functionality similar to the SDS. 

When a new service or Jini device is first connected 
to a Jini connection system, it locates the local Lookup 
service using a combination of multicast announcement, 
request, and unicast response protocols (discovery). The 
service then sends a Java object to the Lookup service 
that implements its service interface boin), which is 
used as a search template for future client search re- 
quests (lookup). Freshness is maintained through the 
use of leases. 

The query model in Jini is drastically different from 
that of the SDS. The Jini searching mechanism uses the 
Java serialized object matching mechanism from JavaS- 
paces [29], which is based on exact matching of serial- 
ized objects. As a result, it is prone to false negatives 
due to, e.g., class versioning problems. One benefit of 
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the Jini approach is that it permits matching against 
subtypes, Avhich is analogous to matching subtrees in 
XML. A detriment of the model is that it requires a 
Java interface object be sent over the network to the 
lookup service to act as the template; such representa- 
tions cannot be stored or transported as efficiently as 
other approaches. 

Security has not been a focus of Jini. Access control 
is checked upon attempting to register with a service, 
rather than when attempting to discover it; in other 
words, Jini protects access to the service but not dis- 
covery pf the service. Furthermore, communication in 
the Jini Lookup service is done via Java RMI, which 
is non-encrypted and prone to snooping. Finally, the 
Jini Lookup Service specifies no mechanism for server-, 
client-, or service-side authentication. 

A final point of distinction is the approach to wide 
area scalability. While the SDS has a notion of dis- 
tributed hierarchies for data partitioning and an aggre- 
gation scheme among them, Jini uses a loose notion 
of federations, each corresponding to a local adminis- 
trative domain. While Jini mentions the use of inter- 
lookup service registration, it’s unclear how Jini will 
use it to solve the wide-area scaling issue. In addition, 
the use of Java serialized objects makes aggregation dif- 
ficult 

Despite the differences in architecture, we believe 
Jini services and devices can be made to cooperate eas- 
ily. By adding a Java object to XML generator proxy 
that speaks the Jini discovery protocol on one end, and 
SDS broadcasts on the other, we can integrate the Jini 
federation into the SDS hierarchy and benefit from the 
strengths of both systems. 

6.4 SLP 

The Service Location Protocol (SLP) [II], and its wide- 
area extension (WASRV) 1221, address many of the same 
issues as the SDS, and some that are not (e.g., interna- 
tionalization). The design of the SDS has benefited from 
many of the ideas found in the IETF SLP draft [ll], 
while attempting to make improvements in selected ar- 
eas. 

The SLP Iocal-area discovery techniques are nearly 
identical to those of the SDS: Multicast is used for an- 
nouncements and bootstrapping, and service informa- 
tion is cached in Directory Agents (DAS), a counterpart 
to the SDS server. Timeouts are used for implicit ser- 
vice deregistration. 

As for the scaling beyond the local area, there are 
actually two different mechanisms: named scopes and 
brokering. SLPv2 (111 has a mechanism that allows 
the local administrative domain to be partitioned into 
named User Agent “scopes.” This scheme was not de- 
signed to scale globally, as it has a flat scoping names- 
pace. Scopes are optional, though, allowing evolution- 
ary growth while retaining backward-compatibility with 
“unscoped” clients. To address wide-area usage, the 
WASRV draft extension has been proposed [22]. The 
suggested approach is to pick an entity in each SLP 
administrative domain (SLPD) to act as an Advertising 
Agent (AA), and for these AAs to multicast selected ser- 
vice information to a wide-area multicast group shared 
amongst them. Brokering Agents (BAs) in each SLPD 

selectively listen to multicasts from other SLPD AAs, 
and advertise those services to the local SLPD as if they 
were S4s in the local domain. While the WASRV strat- 
egy does succeed in bridging multiple SLPDs, it does 
not address the basic problem of a lack of hierarchy 
imposed on the global set of available services. The 
A.4s must be configured to determine which service de- 
scriptions are propagated between SLPDs; in the worst 
case, everything is propagated, each domain will have a 
copy of all services, and thus there is no “lossy aggrega- 
tion” of service information. This inhibits the scheme 
from scaling any better than linearly with the number 
of services advertised, and quadratically in the number 
of AAs/BAs. 

One of the most interesting aspects of SLP is its 
structure for describing service information. Services 
are organized into service types, and each type is asso- 
ciated with a service template that defines the required 
attributes that a service description for that service type 
must contain [ll]. The functionality and expressiveness 
of this framework is almost an exact mapping onto the 
functionality of XML: each template in SLP provides 
the same functionality as an XML DTD. Queries in SLP 
return a service URL, whereas XML queries in the SDS 
returns the XML document itself (which can itself be a 
pointer using the XML XREF facility). There are some 
benefits to using XML rather than a templates for this 
task. First, because of XML’s flexible tag structure, 
service descriptions may, for example, have multiple lo- 
cation values or provide novel extensions such encoding 
Java RMI stubs inside the XML document itself. Sec- 
ond, since references to DTDs reside within XML doc- 
uments, SDS service descriptions are self-describing. 

A final point of contrast between SLP and SDS is 
security. SLP provides authentication in the local ad- 
ministrative domain, but not cross-domain. Authenti- 
cation blocks can be requested using an optional field 
in the service request, providing a guarantee of data in- 
tegrity, but no mechanism is offered for authentication 
of User Agents. Additionally, because of a lack of access 
control, confidentiality of service information cannot be 
guaranteed. 

Though the systems are disparate, we would like 
SLP and the SDS to cooperate rather than compete 
in providing information to clients. We believe that, as 
with Jini, this could be achieved through proxying. 

7 Conclusion 

The continuing explosive growth of networks, network- 
enabled devices, and network services is increasing the 
need for network directory services. The SDS provides 
network-enabled devices with an easy-to-use method for 
discovering services that are available. It is a directory- 
style service that provides a contact point for making 
complex queries against cached service descriptions ad- 
vertised by services. The SDS automatically adapts its 
behavior to handle failures of both SDS servers and ser- 
vices, hiding the complexities of fault recovery from the 
client applications. The SDS is also security-minded; it 
ensures that all communication between components is 
secure and aids in determining the trustworthiness of 
particular services. 
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The SDS soft-state model and announcement-based 
architecture offers superior handling of faults and chang- 
es in the network topology. It easily handles the addi- 
tion of new servers and services, while also recognizing 
when existing services have failed or are otherwise no 
longer available. This feature will be very important 
in the future, where given the number of components, 
failures will be a frequent occurrence. 

The use of XML to encode service descriptions and 
client queries also gives the SDS a unique advantage. 
Service providers will be able to capitalize on the ex- 
tensibility of XML by constructing service-specific tags 
to better describe the services that they offer. Like- 
wise, XML will enable clients to make more powerful 
queries by taking advantage of the semantic-rich service 
descriptions. 

Finally, the SDS integrated security model aids ser- 
vices in protecting sensitive information and clients in 
locating trustworthy services. In this age of integrated 
networks and digital commerce, this feature will be great- 
ly appreciated by both clients and service providers. 

Continuing work on the SDS includes finishing the 
wide area implementation and additional benchmark- 
ing. Once the infrastructure is in place, the SDS will 
be used with components of the Ninja system - and 
other Internet systems - allowing us to gain practical 
experience with real services and client applications. 
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