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Announcements

• HW #3 is due Friday Feb. 25, a week+ 
from now

• PA #2 is coming, assigned about next 
Tuesday

• Midterm is tentatively Thursday March 10
• Read chapters 8 and 9



From last time...
• We introduced critical sections, atomic locks, and 

semaphores
• A semaphore S is an integer variable

– initialize S to some value Sinit = n
– P(S) operates atomically on S to decrement S, but only if S>0.  

Otherwise, the process calling P(S) relinquishes control.
– V(S) atomically increments S

• A binary semaphore, a.k.a. mutex lock, can be used to 
provide mutual exclusion on critical sections
– Sinit = 1
– value of semaphore varies only between 0 and 1



Semaphores
• Usage example #1: mutual exclusion

Semaphore S = 1;  // initial value of semaphore is 1
int counter;             // assume counter is set correctly somewhere in code

Process P1:

P(S);
// execute critical section
counter++;

V(S);

Process P2:

P(S);
// execute critical section
counter--;

V(S);

• Both processes atomically P() and V() the semaphore S, 
which enables mutual exclusion on critical section code, 
in this case protecting access to the shared variable 
counter



Semaphores
• Usage example #2: enforcing order of access between two processes

– Suppose there are two processes P1 and P2, where P1 contains code C1 and 
P2 contains code C2

– Want to ensure that code C1 executes before code C2
– Use semaphores to synchronize the order of execution of the two processes

Semaphore S=0;    // initial value of semaphore = 0

Process P1:

C1;                // execute C1
signal(S);      // V() the semaphore

Process P2:

wait(S);    // P() the semaphore
C2;          // execute C2



Semaphores
• In the previous example #2, there are two cases:

1. if P1 executes first, then 
• C1 will execute first, then P1 will V() the semaphore, increasing its 

value to 1
• Later, when P2 executes, it will call wait(S), which will decrement 

the semaphore to 0 followed by execution of C2
• Thus C1 executes before C2

2. If P2 executes first, then 
• P2 will block on the semaphore, which is equal to 0, so that C2 will 

not be executed yet
• Later, when P1 executes, it will run through C1, then V() the 

semaphore
• This awakens P2, which then executes C2
• Thus C1 executes before C2



Semaphores
• Let’s revisit the following intuitive implementation of semaphores 

that uses only disabling and reenabling of interrupts
– Note that a process that blocks on this kind of semaphore will spin in a 

busy wait while() loop - this type of semaphore is called a spinlock
• Figure 8.25 in the text illustrates a semaphore implemented using a 

TestandSet instruction that also exhibits spinlock behavior

P(S) {
disableInterrupts();
while(S==0) {

enableInt();
disableInt();

V(S) {
disableInt();
S++;
enableInt()

}
}
S--;
enableInt()

}



Semaphores
• Spinlock implementations of semaphores can occupy the CPU 

unnecessarily
• Instead, sleep the process until it needs to be woken up by a 

V()/signal()

V(semaphore *S) {
S->value++;
if (S->value<=0) {

remove a process P from S->list;
wakeup(P);

}
}

P(semaphore *S) {
S->value--;
if (S->value<0) {

add this process to S->list;
block();

}
}

where we have defined the following structure for a semaphore
typedef struct {

int value;
struct process *list;

} semaphore;



Semaphores
• In the previous slide’s redefinition of a semaphore, we 

are departing from the classic definition of a semaphore
– Now, the semaphore’s value is allowed to be negative, because 

the decrement occurs before the test in P()
– The absolute value of the semaphore’s negative amount can 

now be used to indicate the number of processes blocked on the 
semaphore

– Processes now yield the CPU if the semaphore’s value is 
negative, rather than busy wait

– If more than one process is blocked on a semaphore, then use a 
FIFO queue to select the next process to wake up when a 
semaphore is V’ed

• Why is LIFO to be avoided?



Deadlock

• Semaphores provide synchronization, but 
can introduce more complicated higher 
level problems like deadlock
– two processes deadlock when each wants a 

resource that has been locked by the other 
process

– e.g. P1 wants resource R2 locked by process 
P2 with semaphore S2, while P2 wants 
resource R1 locked by process P1 with 
semaphore S1



Deadlock
Semaphore Q= 1;    // binary semaphore as a mutex lock
Semaphore S = 1;   // binary semaphore as a mutex lock

Process P1:

P(S);
P(Q);

modify R1 and R2;

V(S);
V(Q);

Process P2:

P(Q);
P(S);

modify R1 and R2;

V(Q);
V(S);

(1)
(3) (4)

Deadlock!

(2)

If statements (1) through (4) are executed in that order, then P1 and 
P2 will be deadlocked after statement (4) - verify this for yourself 
by stepping thru the semaphore values



Deadlock
• In the previous example, 

– Each process will sleep on the other process’s 
semaphore

– the V() signalling statements will never get executed, 
so there is no way to wake up the two processes from 
within those two processes

– there is no rule prohibiting an application programmer 
from P()’ing Q before S, or vice versa - the application 
programmer won’t have enough information to decide 
on the proper order

– in general, with N processes sharing N semaphores, 
the potential for deadlock grows



Deadlock
• Other examples:

– A programmer mistakenly follows a P() with a second P() 
instead of a V(), e.g.

P(mutex)
critical section

P(mutex)    <---- this causes a deadlock, should have been a V()
– A programmer forgets and omits the P(mutex) or 

V(mutex).  Can cause deadlock if V(mutex) is omitted.  
Can violate mutual exclusion if P(mutex) is omitted.

– A programmer reverses the order of P() and V(), e.g.
V(mutex)

critical section    <---- this violates mutual exclusion, but is not an
P(mutex)                        example of deadlock



Classic Synchronization Problems

• Bounded Buffer Producer-Consumer Problem
• Readers-Writers Problem

– First Readers Problem
• Dining Philosophers Problem
• These are not just abstract problems

– They are representative of several classes of 
synchronization problems commonly encountered 
when trying to synchronize access to shared 
resources among multiple processes



Bounded Buffer 
Producer/Consumer Problem

• Pool of n buffers, each capable of holding 1 item
• producer takes an empty buffer and produces a full buffer
• consumer takes a full buffer and produces an empty buffer

Empty Pool

ProducerProducer ConsumerConsumer

Full PoolGraphic © Pearson textbook slides



Bounded Buffer 
Producer/Consumer Problem

• Synchronization setup:
– Use a mutex semaphore to protect access to 

buffer manipulation, mutexinit = 1
– Use two counting semaphores full and empty

to keep track of the number of full and empty 
buffers, where the values of full + empty = n

• fullinit = 0
• emptyinit = n



Bounded Buffer 
Producer/Consumer Problem

• Why do we need counting semaphores?  Why do we 
need two of them?  Consider the following:

Producer:

while(1) {
// need code here to keep track of 
number of empty buffers
P(mutex)

obtain empty buffer and add 
next item, creating a full buffer
V(mutex)
...

}

Consumer:

while(1) {
...

P(mutex)
remove item from full buffer, 

create an empty buffer 
V(mutex)
...

}



Bounded Buffer 
Producer/Consumer Problem

• If we add an empty counting semaphore initialized to n, then a producer calling 
P(empty) will keep decrementing until 0, replacing n empty buffers with n full ones.  If 
the producer tries to produce any more, P(empty) blocks producer until more empty 
buffers are available - this is the proper behavior that we want

Producer:

while(1) {
P(empty)

P(mutex)
obtain empty buffer and add 

next item, creating a full buffer
V(mutex)
...

}

Consumer:

while(1) {
...

P(mutex)
remove item from full buffer, 

create an empty buffer 
V(mutex)
...

}



Bounded Buffer 
Producer/Consumer Problem

• We also need to add V(empty), so that when the consumer is done reading, more 
empty buffers are produced.  

• Unfortunately, this solution does not prevent a consumer from reading even when 
there are no buffers to read.  For example, if the first consumer reads before the first 
producer executes, then this solution will not work.

Consumer:

while(1) {
...

P(mutex)
remove item from full buffer, 

create an empty buffer 
V(mutex)
V(empty)

}

Producer:

while(1) {
P(empty)

P(mutex)
obtain empty buffer and add 

next item, creating a full buffer
V(mutex)
...

}



Bounded Buffer 
Producer/Consumer Problem

• So add a second counting semaphore full, initially set to 0  
• Verify for yourself that this solution won’t deadlock, synchronizes properly 

with mutual exclusion, prevents a producer from writing to a full buffer, and 
prevents a consumer from reading from an empty buffer

Consumer:

while(1) {
P(full)

P(mutex)
remove item from full buffer, 

create an empty buffer 
V(mutex)
V(empty)

}

Producer:

while(1) {
P(empty)

P(mutex)
obtain empty buffer and add 

next item, creating a full buffer
V(mutex)
V(full)

}



The Readers/Writers Problem
• There are several writer processes that want to 

write to a shared object, e.g. a file, and also 
several reader processes that want to read from 
the same shared object

• Want to synchronize access
Shared
object,
e.g. file

ReadersWriters

R1W1 Readers can share
with any other reader
but not a writer

a writer must have
exclusive access

R2W2

The “First Readers/Writers Problem”: no reader is kept waiting unless a writer
already has seized the shared object.  We will implement this in the next slides.



The Readers/Writers Problem
• readers share data structures:

– semaphore mutex, wrt;   // initialized to 1
– int readcount;                  // initialized to 0, controlled by mutex

• writers also share semaphore wrt
Writer:

while(1) {
wait(wrt);

// writing
signal(wrt);

}

Reader:

while(1) {
wait(mutex);
readcount++;
if (readcount==1) wait(wrt);
signal(mutex);

// reading

wait(mutex);
readcount--;
if (readcount==0) signal(wrt);
signal(mutex);

}



The Readers/Writers Problem
• If multiple writers seek to write, then the write semaphore 

wrt provides mutual exclusion
• If the 1st reader tries to read while a writer is writing, then 

the 1st reader blocks on wrt
– if subsequent readers try to read while a writer is writing, they 

block on mutex
• If the 1st reader reads and there are no writers, then 1st

reader grabs the write lock and continues reading, 
eventually releasing the write lock when done reading
– if a writer tries to write while the 1st reader is reading, then the 

writer blocks on the write lock wrt
– if a 2nd or any subsequent reader tries to read while the 1st

reader is reading, then it falls through and is allowed to read
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