
More on Semaphores, and
Classic Synchronization

Problems

CSCI 3753 Operating Systems
Spring 2005

Prof. Rick Han

Announcements

• HW #3 is due Friday Feb. 25, a week+
from now

• PA #2 is coming, assigned about next
Tuesday

• Midterm is tentatively Thursday March 10
• Read chapters 8 and 9

From last time...
• We introduced critical sections, atomic locks, and

semaphores
• A semaphore S is an integer variable

– initialize S to some value Sinit = n
– P(S) operates atomically on S to decrement S, but only if S>0.

Otherwise, the process calling P(S) relinquishes control.
– V(S) atomically increments S

• A binary semaphore, a.k.a. mutex lock, can be used to
provide mutual exclusion on critical sections
– Sinit = 1
– value of semaphore varies only between 0 and 1

Semaphores
• Usage example #1: mutual exclusion

Semaphore S = 1; // initial value of semaphore is 1
int counter; // assume counter is set correctly somewhere in code

Process P1:

P(S);
// execute critical section
counter++;

V(S);

Process P2:

P(S);
// execute critical section
counter--;

V(S);

• Both processes atomically P() and V() the semaphore S,
which enables mutual exclusion on critical section code,
in this case protecting access to the shared variable
counter

Semaphores
• Usage example #2: enforcing order of access between two processes

– Suppose there are two processes P1 and P2, where P1 contains code C1 and
P2 contains code C2

– Want to ensure that code C1 executes before code C2
– Use semaphores to synchronize the order of execution of the two processes

Semaphore S=0; // initial value of semaphore = 0

Process P1:

C1; // execute C1
signal(S); // V() the semaphore

Process P2:

wait(S); // P() the semaphore
C2; // execute C2

Semaphores
• In the previous example #2, there are two cases:

1. if P1 executes first, then
• C1 will execute first, then P1 will V() the semaphore, increasing its

value to 1
• Later, when P2 executes, it will call wait(S), which will decrement

the semaphore to 0 followed by execution of C2
• Thus C1 executes before C2

2. If P2 executes first, then
• P2 will block on the semaphore, which is equal to 0, so that C2 will

not be executed yet
• Later, when P1 executes, it will run through C1, then V() the

semaphore
• This awakens P2, which then executes C2
• Thus C1 executes before C2

Semaphores
• Let’s revisit the following intuitive implementation of semaphores

that uses only disabling and reenabling of interrupts
– Note that a process that blocks on this kind of semaphore will spin in a

busy wait while() loop - this type of semaphore is called a spinlock
• Figure 8.25 in the text illustrates a semaphore implemented using a

TestandSet instruction that also exhibits spinlock behavior

P(S) {
disableInterrupts();
while(S==0) {

enableInt();
disableInt();

V(S) {
disableInt();
S++;
enableInt()

}
}
S--;
enableInt()

}

Semaphores
• Spinlock implementations of semaphores can occupy the CPU

unnecessarily
• Instead, sleep the process until it needs to be woken up by a

V()/signal()

V(semaphore *S) {
S->value++;
if (S->value<=0) {

remove a process P from S->list;
wakeup(P);

}
}

P(semaphore *S) {
S->value--;
if (S->value<0) {

add this process to S->list;
block();

}
}

where we have defined the following structure for a semaphore
typedef struct {

int value;
struct process *list;

} semaphore;

Semaphores
• In the previous slide’s redefinition of a semaphore, we

are departing from the classic definition of a semaphore
– Now, the semaphore’s value is allowed to be negative, because

the decrement occurs before the test in P()
– The absolute value of the semaphore’s negative amount can

now be used to indicate the number of processes blocked on the
semaphore

– Processes now yield the CPU if the semaphore’s value is
negative, rather than busy wait

– If more than one process is blocked on a semaphore, then use a
FIFO queue to select the next process to wake up when a
semaphore is V’ed

• Why is LIFO to be avoided?

Deadlock

• Semaphores provide synchronization, but
can introduce more complicated higher
level problems like deadlock
– two processes deadlock when each wants a

resource that has been locked by the other
process

– e.g. P1 wants resource R2 locked by process
P2 with semaphore S2, while P2 wants
resource R1 locked by process P1 with
semaphore S1

Deadlock
Semaphore Q= 1; // binary semaphore as a mutex lock
Semaphore S = 1; // binary semaphore as a mutex lock

Process P1:

P(S);
P(Q);

modify R1 and R2;

V(S);
V(Q);

Process P2:

P(Q);
P(S);

modify R1 and R2;

V(Q);
V(S);

(1)
(3) (4)

Deadlock!

(2)

If statements (1) through (4) are executed in that order, then P1 and
P2 will be deadlocked after statement (4) - verify this for yourself
by stepping thru the semaphore values

Deadlock
• In the previous example,

– Each process will sleep on the other process’s
semaphore

– the V() signalling statements will never get executed,
so there is no way to wake up the two processes from
within those two processes

– there is no rule prohibiting an application programmer
from P()’ing Q before S, or vice versa - the application
programmer won’t have enough information to decide
on the proper order

– in general, with N processes sharing N semaphores,
the potential for deadlock grows

Deadlock
• Other examples:

– A programmer mistakenly follows a P() with a second P()
instead of a V(), e.g.

P(mutex)
critical section

P(mutex) <---- this causes a deadlock, should have been a V()
– A programmer forgets and omits the P(mutex) or

V(mutex). Can cause deadlock if V(mutex) is omitted.
Can violate mutual exclusion if P(mutex) is omitted.

– A programmer reverses the order of P() and V(), e.g.
V(mutex)

critical section <---- this violates mutual exclusion, but is not an
P(mutex) example of deadlock

Classic Synchronization Problems

• Bounded Buffer Producer-Consumer Problem
• Readers-Writers Problem

– First Readers Problem
• Dining Philosophers Problem
• These are not just abstract problems

– They are representative of several classes of
synchronization problems commonly encountered
when trying to synchronize access to shared
resources among multiple processes

Bounded Buffer
Producer/Consumer Problem

• Pool of n buffers, each capable of holding 1 item
• producer takes an empty buffer and produces a full buffer
• consumer takes a full buffer and produces an empty buffer

Empty Pool

ProducerProducer ConsumerConsumer

Full PoolGraphic © Pearson textbook slides

Bounded Buffer
Producer/Consumer Problem

• Synchronization setup:
– Use a mutex semaphore to protect access to

buffer manipulation, mutexinit = 1
– Use two counting semaphores full and empty

to keep track of the number of full and empty
buffers, where the values of full + empty = n

• fullinit = 0
• emptyinit = n

Bounded Buffer
Producer/Consumer Problem

• Why do we need counting semaphores? Why do we
need two of them? Consider the following:

Producer:

while(1) {
// need code here to keep track of
number of empty buffers
P(mutex)

obtain empty buffer and add
next item, creating a full buffer
V(mutex)
...

}

Consumer:

while(1) {
...

P(mutex)
remove item from full buffer,

create an empty buffer
V(mutex)
...

}

Bounded Buffer
Producer/Consumer Problem

• If we add an empty counting semaphore initialized to n, then a producer calling
P(empty) will keep decrementing until 0, replacing n empty buffers with n full ones. If
the producer tries to produce any more, P(empty) blocks producer until more empty
buffers are available - this is the proper behavior that we want

Producer:

while(1) {
P(empty)

P(mutex)
obtain empty buffer and add

next item, creating a full buffer
V(mutex)
...

}

Consumer:

while(1) {
...

P(mutex)
remove item from full buffer,

create an empty buffer
V(mutex)
...

}

Bounded Buffer
Producer/Consumer Problem

• We also need to add V(empty), so that when the consumer is done reading, more
empty buffers are produced.

• Unfortunately, this solution does not prevent a consumer from reading even when
there are no buffers to read. For example, if the first consumer reads before the first
producer executes, then this solution will not work.

Consumer:

while(1) {
...

P(mutex)
remove item from full buffer,

create an empty buffer
V(mutex)
V(empty)

}

Producer:

while(1) {
P(empty)

P(mutex)
obtain empty buffer and add

next item, creating a full buffer
V(mutex)
...

}

Bounded Buffer
Producer/Consumer Problem

• So add a second counting semaphore full, initially set to 0
• Verify for yourself that this solution won’t deadlock, synchronizes properly

with mutual exclusion, prevents a producer from writing to a full buffer, and
prevents a consumer from reading from an empty buffer

Consumer:

while(1) {
P(full)

P(mutex)
remove item from full buffer,

create an empty buffer
V(mutex)
V(empty)

}

Producer:

while(1) {
P(empty)

P(mutex)
obtain empty buffer and add

next item, creating a full buffer
V(mutex)
V(full)

}

The Readers/Writers Problem
• There are several writer processes that want to

write to a shared object, e.g. a file, and also
several reader processes that want to read from
the same shared object

• Want to synchronize access
Shared
object,
e.g. file

ReadersWriters

R1W1 Readers can share
with any other reader
but not a writer

a writer must have
exclusive access

R2W2

The “First Readers/Writers Problem”: no reader is kept waiting unless a writer
already has seized the shared object. We will implement this in the next slides.

The Readers/Writers Problem
• readers share data structures:

– semaphore mutex, wrt; // initialized to 1
– int readcount; // initialized to 0, controlled by mutex

• writers also share semaphore wrt
Writer:

while(1) {
wait(wrt);

// writing
signal(wrt);

}

Reader:

while(1) {
wait(mutex);
readcount++;
if (readcount==1) wait(wrt);
signal(mutex);

// reading

wait(mutex);
readcount--;
if (readcount==0) signal(wrt);
signal(mutex);

}

The Readers/Writers Problem
• If multiple writers seek to write, then the write semaphore

wrt provides mutual exclusion
• If the 1st reader tries to read while a writer is writing, then

the 1st reader blocks on wrt
– if subsequent readers try to read while a writer is writing, they

block on mutex
• If the 1st reader reads and there are no writers, then 1st

reader grabs the write lock and continues reading,
eventually releasing the write lock when done reading
– if a writer tries to write while the 1st reader is reading, then the

writer blocks on the write lock wrt
– if a 2nd or any subsequent reader tries to read while the 1st

reader is reading, then it falls through and is allowed to read

	More on Semaphores, and Classic Synchronization Problems
	Announcements
	From last time...
	Semaphores
	Semaphores
	Semaphores
	Semaphores
	Semaphores
	Semaphores
	Deadlock
	Deadlock
	Deadlock
	Deadlock
	Classic Synchronization Problems
	Bounded Buffer Producer/Consumer Problem
	Bounded Buffer Producer/Consumer Problem
	Bounded Buffer Producer/Consumer Problem
	Bounded Buffer Producer/Consumer Problem
	Bounded Buffer Producer/Consumer Problem
	Bounded Buffer Producer/Consumer Problem
	The Readers/Writers Problem
	The Readers/Writers Problem
	The Readers/Writers Problem

