
Stacks and Frames
Demystified

CSCI 3753 Operating Systems
Spring 2005

Prof. Rick Han

Announcements

• Homework Set #2 due Friday at 11 am -
extension

• Program Assignment #1 due Tuesday
Feb. 15 at 11 am - note extension

• Read chapters 6 and 7

Multiple Processes
Main Memory

Code

Data

Process
P1

Heap

Stack

Code

Data

Process
P2

Heap

Stack

Code

More Data,
Heap, Stack

OS

PCB for P2

PCB for P1

CPU
Execution

Program
Counter (PC)

ALU

Threads

• Process P1 is
multithreaded

• Process P2 is
single
threaded

• The OS is
multiprogram
med

• If there is
preemptive
timeslicing,
the system is
multitasked

Main Memory

Code
Data

Process P1’s Address Space

Heap Code

Data

Process
P2

Heap

Stack

Stack

PC1

Reg.
State

Thread 1

Stack

PC2

Reg.
State

Thread 2

Stack

PC3

Reg.
State

Thread 3

Stack Behavior

User stack

Heap

Read/write .data, .bss

Read-only .init, .text, .rodata

Unallocated

Run-time memory

• Run-time
memory image

• Essentially code,
data, stack, and
heap

• Code and data
loaded from
executable file

• Stack grows
downward, heap
grows upward

max address

address 0

unallocated

unallocated

Stack
Relating the Code to the Stack

max memory

unallocated

S
ta

ck
 g

ro
w

s
do

w
nw

ar
d

fro
m

th
re

ad
-s

pe
ci

fic
 m

ax
 m

em
or

y

main()’s local
variables are

allocated here,
e.g. int a1

main() {
int a1;
...
foo1();
...

}

space for main()’s
local variables
gets allocated
on the stack

foo1()’s local
variables are

allocated here

space for foo1()’s
local variables
is allocated
below main()
on the stack top

of
stack

Relating the Code to the Stack
• The CPU uses two registers to keep track of a thread’s

stack when the thread is executing
– stack pointer register (%esp) points to the top of the stack, i.e.

contains the memory address of top of the stack
– frame/base pointer register (%ebp) points to the bottom or base

of the current frame of the function that is executing
• this frame pointer provides a stable point of reference while the

thread is executing, i.e. the compiled code references local
variables and arguments by using offsets to the frame pointer

• These two CPU registers are in addition to the thread-
specific state that we’ve already seen the CPU keeps
track of:
– program counter (PC)
– instruction register (IR),
– status registers

unallocated

unallocated

Relating the Code to the Stack

main() {
int a1;
...
foo1();
...

}

Stack
max memory

unallocated

main()’s local
variables are

allocated here,
e.g. int a1

foo1()’s local
variables are

allocated here

top
of
stack

%ebp

%esp

main’s
frame

foo1’s
frame

While executing
foo1(), the CPU’s
base/frame
pointer points to
the beginning of
foo1()’s frame,
and the stack
pointer points to
the top of the
frame (which is
also the top of
the stack)

Calling a Function
• When main() calls function foo1(), the calling

function (a.k.a. caller) has to:
– pass arguments to foo1()

• these can be passed on the stack
• can also be passed via additional CPU registers

– make sure it informs foo1() where to resume in main()
after returning from foo1()

• save the return address, i.e. PC, on the stack
– save any register that would have to be restored after

returning into main()
• these are called caller registers. Half of the six integer

register for IA32 CPU’s are caller registers whose contents
should be saved on the stack by the calling function before
entering the called function.

Calling a Function
Stackmax memory

unallocated

unallocatedmain() {
int a1;
...
foo1(a1);
...

}
unallocated

main()’s local
variables are

allocated here,
e.g. int a1

%ebp

%esp

main’s
frame

When the PC
is here, just
before calling
foo1(), the
stack looks
as follows

PC

top of the stack

Calling a Function
Stackmax memory

unallocated

unallocatedmain() {
int a1;
...
foo1(a1);
...

}
unallocated

main()’s local
variables are

allocated here,
e.g. int a1

%ebp

%esp

main’s
frame

When the PC causes foo1 to be
called with argument a1, the
assembly code actually contains
several steps to set up arguments on
the stack, save the return address,
then jumps to the called function

PC
top of the stack

unallocated

Calling a Function

main() {
int a1, b2;
...
foo1(a1, b2);
...

}

PC

unallocated

Stackmax memory

unallocated

main()’s local
variables are

allocated here,
e.g. int a1

%ebp

main’s
frame

%esp
top of the stack

• save caller
registers on stack
(not shown)

• call foo1, e.g. jump
to called function
foo1 (changes PC)

assembly code:
• push

arguments
onto the stack

arg 2
arg 1%esp

top of the stack

• push the
return
address onto
the stack return address%esp

top of the stack

Entering a Function
• When foo1() begins executing, it first needs to:

– save the old frame pointer so that it can be restored
once foo1() is done executing and main() resumes

• this is saved onto the stack, i.e. pushed onto the stack
– reset the frame pointer register to point to the new

base of the current frame
– save any register state that would have to be restored

before exiting the function
• these are called callee registers. Half of the six integer

registers for IA32 CPUs are callee registers whose contents
should be saved on the stack by the called function after it is
has begun execution

Entering a Function

foo1(int v1, v2) {
local var’s
...

}

PC

unallocated

unallocated

Stackmax memory

unallocated

main()’s local
variables are

allocated here,
e.g. int a1

%ebp

main’s
frame

%esp
top of the stack arg 2

arg 1%esp
top of the stack return address%esp
top of the stack

assembly code:
• foo1 first saves the

old frame pointer by
pushing it onto the
stack: pushl %ebp

saved fr ptr %ebp%esp
top of the stack

foo1’s
frame

• foo1 resets frame
ptr to new base
(current stack ptr):
movl %esp, %ebp

%ebp and

• foo1 saves any callee CPU registers
on stack (not shown)

PC

• foo1 allocates local variables by
decrementing stack ptr

%ebp

%esp
local var’s

PC

Entering a Function
• Each time a function calls another function, the same set of

operations is repeated, causing the stack to grow frame by
frame:
– push arguments and return address and caller register state onto the

stack
– push the old frame pointer onto the stack
– reset the frame pointer to the base of the current frame
– push callee register state onto the stack
– decrement stack pointer to allocate local variables

• Note: pushl %src_reg is equivalent to the following pair of
instructions:
– subl $4, %esp // decrement stack ptr to create space on stack
– movl %src_reg, (%esp) // store reg.value in newly created space

Entering a Function

• Just to recap, the assembly code after
entry into a function typically has at least
the following two instructions:
– pushl %ebp // save the old frame ptr on

the stack
– movl %esp, %ebp // reset frame ptr to serve

as a base reference for the new frame

Exiting a Function
• When foo1() finishes executing and wants to exit/return, it

needs to:
– restore any callee register state
– deallocate everything off the stack

• the stack pointer is reset to point to the address that the base frame
register is currently pointing at

• note that this contains the saved old frame pointer
– restore the frame pointer to the value that it had before entering

foo(), so that main() sees a familiar restored value for the base/frame
pointer

• since the stack ptr is now pointing to the saved old frame pointer, then
pop the saved old frame pointer off the stack and into the base frame
register

• popping also increments the stack pointer
– Now the stack pointer is pointing at the return address. Invoke the

“ret” system call to exit the function, which
• pops the return address off the stack and jumps to this location, which is

the address of the first instruction in main() immediately after the call to
foo()

Exiting a Function
• Note: popl %dest_reg is equivalent to the following pair of

instructions:
– movl (%esp), %dest_reg // store mem contents pointed to by stack ptr

into destination
– addl $4, %esp // increment the stack pointer to deallocate

space off stack

Exiting a Function

unallocated

unallocated

Stackmax memory

unallocated

main()’s local
variables are

allocated here,
e.g. int a1

%ebp

%esp

main’s
frame

arg 2
arg 1

return address
saved fr ptr %ebp

local var’s
foo1’s
frame

assembly code:
• foo1 restores callee

save registers (not
shown)

foo1(int v1, v2) {
local var’s
...

}PC

• deallocate local variables off of
the stack, which resets stack ptr
equal to current base/frame ptr %esp and

unallocated• pop saved frame pointer off the
stack and into the base/frame
register

%ebp

%esp

• pop the saved return address off the
stack and jump to this location (PC
changes)

%esp

Exiting a Function
• Assembly code for exiting a function typically looks like

the following three instructions:
– movl %ebp, %esp // deallocate local var’s by incrementing stack

ptr all the way up to base/frame ptr
– popl %ebp // pop saved frame ptr from stack into

base/frame register
– ret // pop return address from stack and jump to

this location

Reentering the Calling Function
• When main() begins again after foo1() has

exited, main() has to:
– restore any caller registers
– inspect any arguments that may have been

passed back
• these arguments are still accessible in its frame!

User/Kernel Level Threads

• This material will be posted in an
addendum to these slides

	Stacks and Frames Demystified
	Announcements
	Multiple Processes
	Threads
	Stack Behavior
	Relating the Code to the Stack
	Relating the Code to the Stack
	Relating the Code to the Stack
	Calling a Function
	Calling a Function
	Calling a Function
	Calling a Function
	Entering a Function
	Entering a Function
	Entering a Function
	Entering a Function
	Exiting a Function
	Exiting a Function
	Exiting a Function
	Exiting a Function
	Reentering the Calling Function
	User/Kernel Level Threads

