
AgentCubes: Raising the Ceiling of End-User Development in Education
through Incremental 3D

Alexander Repenning1,2 & Andri Ioannidou2
1University of Colorado, Computer Science Department, Campus Box 430

2AgentSheets Inc, 6560 Gunpark Dr.
Boulder, Colorado 80301

ralex@cs.colorado.edu, andri@agentsheets.com

Abstract

Now that we have end-user programming
environments capable of empowering kids with no
programming background to build games in a matter
of hours, a new quest for raising the ceiling of end-
user development is emerging. Environments not only
focusing on programming, but also including rich
media such as 3D, could work as compelling tools for
introducing information technology at the K-12 level,
addressing even the problem of dwindling numbers of
computer science student enrollments at universities.
The new challenge is raising the ceiling without
raising the threshold. Based on our experience with
AgentSheets, which has been used worldwide for
computational science and game design applications,
we created a new authoring tool called AgentCubes.
This article discusses the notion of Incremental 3D as
a design approach for media-rich end-user
development with low threshold and high ceiling in
education.

1. End-User Programming in Education

One of the most important goals of end-user
programming in education has been to employ the
notion of programming as means of interactive
expression. This kind of literacy [1] could allow kids to
express complex ideas through creating simulations
and models. However, programming turned out to be a
daunting challenge. Early text-based programming
languages, such as Logo, had limited success because
of insufficient scaffolding, making it all too simple to
create programs that did not work. It became clear that
the notion of programming would have to be
reconceptualized for end-users. To make this vision
work, it was instrumental to devise new computational
ideas that would lower the threshold of programming
in order to make it work in educational contexts.
Hence, end-user programming in education was born.
This quest for new programming paradigms explored
various mechanisms to scaffold the programming
process.

1.1 Trapped by Affordances

An effect that we have called “Trapped by
Affordances” [2] has turned out to be common to many
end-user programming approaches aiming for a low
programming threshold. An affordance is a property of
an object that strongly suggests how it could be used.
The idea of being trapped by an affordance means that,
while initially the affordance makes a task
extraordinarily simple, later that same affordance gets
in the way. It either fails to help with more complex
problems, or even worse, it actually makes a task
potentially harder by forcing a user to think about a
problem in a way that is not compatible with the
problem. Affordances can trap users at the syntactic as
well as the semantic level, hence preventing the
programming ceiling from being raised.
Syntactic level: Program syntax was commonly
perceived to be one of the largest end-user
programming challenges. Traditional programming
languages included at the time, and still do, syntactic
intricacies that are part of the language mostly to allow
machine interpretation as opposed to human
interpretation. One little semicolon at the wrong place
and the program would no longer do what the
programmer intended it to do. Programming languages
such as the early BLOX Pascal [3] and the more recent
LEGO Mindstorms strived to eliminate syntactic
problems altogether by conceptualizing programming
languages as puzzle pieces. These pieces are shaped in
a way so that only syntactically correct programs can
be written. The results of numerous variants of this
visual programming idea are mixed at best. Many users
and researches exploring these programming languages
concluded that while they were a great starting point,
they did not scale well. Complex programs quickly
became unwieldy [4]. To a large degree, the very
affordance of the puzzle piece idea that initially helped
in building simple programs would trap users and for
more complex programs would result in convoluted
arrangements dictated by the visual metaphor.

Semantic level: Graphical rewrite rules for
programming agents, initially introduced by
AgentSheets [5] and later adopted by KidSim1 [6], had
users trapped by semantic affordances. Rewrite rules
have employed notions of programming by example.
For instance, an agent could be instructed to move to
the right simply by using the mouse and dragging it to
the right while telling the system to observe, record
and potentially generalize the user actions and turn
them into rewrite rules. Early usability testing
indicated that even young kids quickly, and with
almost no instructions, were able to use this
programming paradigm. However, similar to the
syntactic trap, graphical rewrite rules clearly had a
strong affordance; one with even more severe
limitations. As soon as users had to create more
complex behaviors that either extended or were
completely orthogonal to the graphical rewrite rule
paradigm, the affordance turned into a trap. One such
trap was the need to create a very large set of rules for
generalized behavior such as a car agent trying to
follow a road system including intersections [7].
Another semantic trap was the lack of procedural
abstraction. Rewrite rules did not have a means to
name a behavior and be able to invoke the behavior
through actions.

1.2 Tactile Programming: AgentSheets

After creating the graphical rewrite rule version of
AgentSheets, we realized that because of the Trapped
By Affordances effect we would not be able to have
users build sophisticated applications. At the same time
we had a developer version of AgentSheets that had to
be programmed in AgenTalk (an agent-based version
of Common Lisp). This allowed a number of power
users to make sophisticated applications including
games, scientific simulations, and even new authoring
environments [5, 8] that would have never been
possible with the graphical rewrite rules. Analyzing
these Lisp-based applications and synthesizing ideas
found in spreadsheets, rule-based programming and
bottom up programming we devised the idea of Tactile
Programming [9-11] exhibiting the following
principles:
• Composition: In AgentSheets’ Visual AgenTalk

language components such as conditions and
actions are elevated to the level of highly
manipulatable objects. Users program by
composing these objects via drag and drop
operations into complete programs. Interactive

1 Later known as Stagecast Creator

feedback guides users to create syntactically
correct programs.

• Comprehension: Tactile programming languages
enable programs to be composed incrementally.
The ability to perceive the consequences of
incremental programming supports an exploratory
style of programming, where users are allowed to
play with the language and explore its
functionality. Perception by manipulation afforded
by tactile programming allows end-users to
efficiently examine functionality in a direct
exploration fashion in the same spirit as bricolage
in Logo [12, 13], but with more support
mechanisms. Tactile programming with
decomposable test units at different levels of
granularity of the programming language
(individual commands, rules, methods) provides
easy debugging for end-user programmers who do
not posses the skills of professional programmers
in debugging.

• Decomposability: Decomposable units of behavior
in tactile programming enable both testing, as
mentioned above, and sharing. We found rule-
based languages especially decomposable.
Individual conditions and actions can be taken
much more easily out of context and tested
compared to more traditional imperative
programming approaches. Additionally,
decomposability promotes sharing. Users are able
to share simulation components locally or over a
web-based repository [14, 15] making agents a
form of currency in a community of simulation
and game developers.

1.3 Empirical Evidence of Low-Threshold

Given that AgentSheets has been used for over a
decade, perhaps just as important as theoretical
perspectives are empirical results based on experiences
with AgentSheets in game design and computational
science applications. Over the years, the applications
that users have produced have exceeded our own
expectation. AgentSheets has been employed by a
broad spectrum of users ranging from elementary
school kids [16] simulating ecosystems to NASA
scientists simulating experiments aboard the Discovery
space shuttle [17]. AgentSheets has been used in
different types of educational settings including
elementary school science, introductions to
information technology, middle school computer clubs,
high school social studies curriculum and
programming courses, science discovery after school
programs, undergraduate game design courses, and
graduate learning technology design courses.

Initially, we mostly focused on the end-user
programming mechanisms themselves, assuming that
this would be the most important aspect of enabling
end-users. However, once we started using the
AgentSheets tool in traditional educational settings, we
quickly realized that the end-user programming
process in educational settings needs to be scaffolded
with new instructional approaches in order to work. In
the Trails project (http://www.trails-project.org), a
consortium involving multiple universities, we started
to develop game design curriculum for undergraduates.
After teaching game courses and workshops in the
USA, Europe and Japan for a number of years we were
able to create perhaps the world’s shortest game design
and development workshop called “Trails mini”. In
this kind of workshop we can teach kids – and adults –
how to make a video game in about three hours.

2. AgentCubes

Our new goal was to make a new kind of game and
simulation authoring tool that would be as simple to
use as AgentSheets, but would also allow the creation
of sophisticated 3D applications. AgentCubes inherits
much from its parent AgentSheets [5, 10, 11, 18, 19].
A cube is a four-dimensional structure consisting of a
three-dimensional <row, column, layer> indexed
matrix containing stacks of agents. Cubes can be
recursive. Because cubes are agents themselves a stack
of agents may contain nested cubes.

Figure 1: An AgentCubes Soccer Game

Agents have shapes that can be simple textured tiles,
spheres, boxes, inflatable icons [20] or imported 3D
models. Additionally, agents have built-in properties
controlling their color, transparency, orientation, and
size.
 A world contains at least one cube. The world in
Figure 1 shows a soccer simulation based on a single
layer cube representing a soccer field. A pen and eraser

based tool interface allows users to quickly create large
and complex arrangement of agents in a world.
Agents are programmed in VisualAgenTalk II. An
extended VisualAgentTalk I [9-11] set of actions and
conditions is used to create IF/THEN rules. Actions
include basic movement, rotation control, message
sending, color and transparency control, sound output,
speech synthesis, spreadsheet-like formula evaluation,
3D surface plotting, and chat interface control.
Conditions include scene parsing, timers, probability,
keyboard/gamepad input, and web page screen
scraping.
 To enable procedural abstraction, rules can be
grouped into methods that are named by the user.
Methods are invoked in the behavior through message
actions, or, indirectly through triggers invoked by
events such as mouse clicks.

3. Incremental 3D

Based on their daily exposure to information
technology including game consoles, children today
have higher expectations in terms of media. They
expect rich media including MP3 sounds, movies, 3D
models and more. This poses an interesting design
challenge. To some degree, these new media can be
added to authoring tools incrementally. Over time
AgentSheets got extended with advanced media
features including spatial sound, speech synthesis,
speech recognition, Macromedia Flash output,
QuickTime movie play and 3D visualizations. But
even with these extensions, we recognized the need to
raise the ceiling of end-user development [21, 22] for a
new level of game design and computational science
applications that could only be addressed with a new
conceptual framework enabling what we call
Incremental 3D. This conceptual shift hinges on the
transition from end-user programming to end-user
development. That is, we no longer limit the scope of
authoring to programming but, instead, include all
aspects of development necessary to create 3D
applications.
 AgentCubes is an Incremental 3D end-user
development tool to create 2D/3D games and
simulations. The fundamental idea of Incremental 3D
is that a user should be able to suspend important
design decisions to the point in time of the design and
development process when the decision really needs to
be made. For instance, many game and simulation
applications can start as simple 2D applications that
may or may not be turned into 3D applications.
Initially, the user should not have to worry about the
precise look, size, orientation and locations of objects
in 3D space or how objects need to be animated when
they move. For instance, by utilizing grids, we

transition from the need to deal with Euclidian
information (e.g., move my object 1.5 meters to the
right), to topological information, (e.g., move my
object right to the next space).
 In the context of Incremental 3D, we intentionally use
the term end-user development and not end-user
programming to indicate the inclusion of non-
programming related design activities. For instance, we
believe that it is crucial to include incremental
mechanisms to rapidly sketch 3D models that may start
out as simple 2D sketches. Similar to fat pen
approaches used in architectural drawing design,
Incremental 3D includes a set of “rough and ready”
tools enabling the designer to explore design variations
with great speed and low commitment [23].
 As a design process, Incremental 3D can address the
low threshold, high ceiling [13] challenge. Many
games and simulations can initially be conceptualized
as applications that may have 3D manifestations, but at
a logical level are essentially just 2D systems. If spatial
relationships between objects are simplified through a
strong spatial organization scheme such as a grid, then
programming can be further simplified. From our
AgentSheets experience we know that the grid
significantly contributes towards lowering the
programming threshold because it makes spatial
relationships much more transparent.
 Through the Incremental 3D design process, users
move along well-defined stepping-stones from 2D to
3D applications. This process is raising the ceiling and
keeping the threshold low by employing tools
described in the next sections.

3.1 Incremental Animation

Animations in games and simulations serve multiple
roles. The most trivial role animation can play is to
make applications look nicer. However, much more
important is the role of animation to communicate
complex relationships between objects. We have
devised a novel animation approach that can be
employed incrementally.
Facilitating the perception of causality through
animation. With his work on the perception of
causality, Michotte [24] showed that humans perceive
causality between objects depending on the exact
timing of movement. At the time, his experiments were
based on an elaborate mechanical apparatus allowing
him to manipulate the animation of two seemingly
interacting objects. His experiments showed that even
small timing variations in the neighborhood of 100
milliseconds would have people come up with
completely different explanations of the causal
connection between objects. He reasoned that the
causality inferred was directly perceived without the

involvement of higher order cognitive processes. In our
daily experience, perception of causality is grounded in
a world containing objects adhering to physical
processes. In the world of computers, this means that
animation plays a much more important role that to
make, say, games look nicer. It is a crucial spatio-
temporal information channel that allows us to
perceive and consequently to understand the world that
is being simulated more effectively.
 It is not hard to argue that animations play an
important role in the simulation of physical systems. A
simulation of a bouncing rubber ball would not be
much of a simulation without actually showing a
rubber ball exhibiting the physically grounded
behavior. However, Michotte’s work can be applied to
non-physical systems as well. As Michotte points out,
humans will not only perceive causality in the physical
sense, but will even attribute motivational and
emotional aspects to interacting objects. This kind of
interpretation including descriptions such as launching,
chasing, and following can also be used in non-
physical contexts such as social science simulations.
 To be able to achieve the desired effect in the
Michottian sense, AgentCubes includes a number of
mechanisms to enable and control animations. Users
can adjust the time, the trajectory and acceleration of
an animation. Using a simple slider, users can adjust
the animation time anywhere between 0 (no animation)
and a few seconds. We have been surprised how
differently we perceive some of our classic simulations
– AgentCubes is capable of importing AgentSheets
projects – when animation is enabled. Especially
simulations featuring large quantities of agents can
sometimes be perceived qualitatively differently.
Separation of Logic and Animation. An important
aspect of Incremental 3D is that the logic part of end-
user programming and the animation part are kept
separate. The logic part describes what the agent will
do. For instance, in a Space Invaders game, the cursor
controlled defender agent will move one grid space to
the right. The user will simply use the Move <right>
action to achieve this (Figure 2, left).

Figure 2: Separate logic from animation. Left: move right

action; Right: disclosed version showing additional parameters
relevant to animation.

Later in the development process, the user may want to
add animation information. The user may want to use
an accelerated animation in which the agent
continuously accelerates and at the mid point starts to

decelerate until it comes to a complete stop. The time
is takes to run this animation can either be controlled
by the end-user via a slider or through a computed or
fixed value (Figure 2, right).
Scene awareness. Animations quickly become
complex for a user to operate if animations have no
physical awareness of a scene. The move action hides
an enormous amount of complexity because it includes
automatic physical interpretations of a world. In 2D
environments such as AgentSheets and KidSim, a
move will simply remove an agent from one location
in the grid and move it to a new location. It should not
be any harder for a user to do this in 3D, but the system
will have to fill in some blanks with respect to how a
move should be interpreted in a three dimensional
space. Consistent with the notion of stacks, an agent
moving from one stack to another will automatically
move on top of the new stack. The animation trajectory
consisting of automatically generated x, y, z animation
components will be computed to minimize the chance
of object intersections. If an agent moves out of a stack
but was not on top of the stack, then the stack will be
compacted again. Consistent with gravity, all the
agents above the agent moving out will drop down. Of
course, some applications may not be consistent with
stacks and gravity. In this case the user can use layers
instead of stacks.
 Without physical interpretation assisted by the
notions of grids and stacks, a move would become
tedious. For instance, in Alice [25] users would have to
first write some kind of grid manager with gravity to
spatially parse a scene. This would be used to either
create a move based on three parallel x, y, z moves or
to use the move_to method to move the object on top
of the stack to be moved to.
Parallel Time-Jump. AgentCubes uses the novel
Parallel Time-Jump animation approach to allow any
number of agents to animate in parallel. Animating
large number of agents is a hard problem. Imagine
even a simple simulation in which agents are moving
around randomly. Agents moving to the same stack in
the same layer will have to pile up. This would not be a
problem if animation could be handled sequentially.
The first agent moves to the stack and then the second
agent moves on top of that agent in the same stack.
This will work nicely with a small number of agents,
but the total time it takes to transition an agent world
from one step to the next will be the product of the
animation time and the number of agents. In some of
our science applications, e.g., eColi bacterial in
Microgravity [17] we had 10000 agents. Animating
only 1000 agents with 0.3 seconds per animation
would total in a seemingly never-ending 5-minute
animation. In such a case, animation would take too
long time to execute, unless done in parallel.

 But if animations need to be done in parallel, how can
we know where the agents are moving? We can only
make this decision once all the agents got dispatched
and have been moved to their final destinations.
Otherwise, individual agents cannot start their
animation trajectory because they do not know where
they will end up. This appears to be a contradiction.
The Parallel Time-Jump avoids this contradiction by
moving forward and backward in time. Conceptually
speaking, the Parallel Time-Jump will first dispatch,
move and rotate all agents without animation. Then it
leaps back in time and generates all the transitional
animations from were the agents currently are to where
they will be. This way, the 1000 agents will only take
0.3 seconds to be animated.
 From the viewpoint of the user, the Parallel Time-
Jump is completely transparent. The time-jumps are all
done without updating the screen. Users will not have
to worry about what currently is in the scene and what
will be in the scene. They can simply run or step the
simulation. The animation will appear to the user as if
all the agents already know where they need to move.
An example may help to illustrate this point. Say there
are two crates and one wall agents (Figure 3a). Both
crate agents want to move on top of the wall agent.
Agents are dispatched in random order. Figure 3b
shows the animation resulting when the right crate
agent gets dispatched first. Animations are intrinsically
hard to capture in paper media. The motion blur
provides a very limited sense of the complex trajectory
of the two crates. Note, for instance, that the left crate
is significantly overshooting vertically to avoid
“unnatural” intersection with the right crate as they
both move towards their destination in parallel.
 The essence of Parallel Time-Jump is that users can
effectively employ the animation of a large number of
objects without the need to track object locations and
without the overhead of sequential animation. This is
important in all kinds of 3D applications.

Figure 3: (a) two crate agents (left, right) both want to move on
top of brick agent. (b) Right crate gets dispatched first but both

crates know where they need to move to. Both crates move in
parallel to their respective destinations. The animation makes

the left crate overshoot vertically to avoid intersection.

3.2 Incremental 3D Model Development

A big question is where do 3D models come from?
From our experience with AgentSheets, we know that
allowing user to create their own 2D agent depictions
in many cases serves an important role. The icons
created may not be professional, but they are an
important part of communicating personal ideas.
Creating a good-looking 2D icon is by no means
trivial, but creating a 3D model is quite often a
daunting process. Sophisticated 3D modeling tools
such as Maya have extremely steep learning curves.
This is not compatible with the notion fat pen design
approaches [9] or Incremental 3D. The following steps
help users to develop 3D models incrementally.
Tiles. The first step towards a 3D application may be to
create a project or import an existing 2D project. Icons
are represented as textured flat tiles (Figure 4).

Figure 4: The 2D Sokoban game imported into AgentCubes.

The tile-based 3D world is not completely flat. Each
tile has a minimal height. Stacks of agents are still
interpreted vertically. When importing existing
AgentSheets games, we sometimes found problems
that were not visible in AgentSheets. For instance, in a
game such as Space Invaders it would be simple to
forget to write rules about deleting dropped bombs that
missed their targets. This could result in thousands of
agent piling up in a worksheet. Over time, this kind of
agent “leak” could use up all the memory. Without a
3D interpretation there will be no visible clue if there is
one or thousands of agents piled on top of each other.
Agent leaks became immediately apparent when
opening up worlds in 3D because they visibly render as
tall stacks of agents.
Basic 3D Shapes. To give a world a real 3D look and
feel, the user maps agents to shapes with real 3D
extend. For instance, in Sokoban the shape
representing a crate will be turned into a 3D box by
changing its shape type from tile to box. The original
crate icon will be used as a texture (Figure 6).
High Resolution Texture 3D Shapes. Most hand
drawn 2D images are low resolution, e.g., 32 x 32
pixel, icons. Especially when zoomed in close, this
kind of texture will look too grainy. The user can now

provide higher resolution image textures. Instead of a
32 x 32 x 8 bit color pixel icon the user may want to
use a 1024 x 1024 x 32 bit color texture including a 8
bit alpha channel. With this, our shapes begin to look
considerably more sophisticated.
Inflatable Icons. Inflatable Icons2, is a new technique
that interactively extrudes 2D pixel-based images into
polygon-based 3D models, adding a third dimension to
a two dimensional image. The general idea is that
through the use of a diffusion-based inflation process
and with minimal input from users suitable 2D icon
artwork can serve as input for an interactive 2D to 3D
transformation process [22]. The user can control
inflation pressure, symmetry, and can add noise.

Figure 5: Inflatable Icons turn simple 2D images into 3D models

with thousands of polygons.

Inflatable Icons are not meant to replace dedicated
tools for creating 3D models, but they do allow
creating multi thousand-polygon 3D objects in just
seconds or minutes.
Imported 3D models. A user can simply import 3D
model files produced by third-party modeling tools or
found in 3D model clipart collections.

Figure 6: The 3D version of Sokoban turned bricks and crates

into boxes and the lobster into an inflated icon.

2 Patent pending

3.3 Incremental 3D Behavior Development

Programming behaviors in a 3D environment can be a
daunting task especially for end-users. More involved
than 2D, the 3D environment can present additional
challenges to end-user programmers. 3D authoring
tools should provide scaffolding of the behavior
development process to make the transition from 2D to
3D more gradual. The following features help users to
program 3D behaviors incrementally.
Flat Tiles have 3D behaviors. A 2D project based on
flat tiles already includes 3D behavior. A number of
agents with flat tile shapes piling up will result in a
stack that the user can visibly discern as a 3D stack. At
this level, the user does not have to provide any 3D
programming. A 2D project may have been created
from scratch or by importing an existing 2D project
from AgentSheets. Creating a 2D world is much less
challenging than starting directly in 3D.
3D Shapes have 3D behaviors. Once the user replaced
flat tiles with 3D shapes (basic 3D shapes, Inflatable
Icons, or imported 3D models) the world will exhibit
more pronounced 3D behavior. At this stage, most of
the imported objects require their behaviors not to be
changed at all. We find, however, that many users do
feel compelled, perhaps because of the increase in
visual realism, to add and tweak animations.
Layer-Based Behavior. More sophisticated 3D
applications tend to use layers to include behaviors that
could not be captured with stacks. Say we wanted to
create a 3D version of the game Cubes3. Instead of just
using the concept of two-dimensional neighborhood
one could easily generalize the game and include the
third dimension. Stacks would not be very useful for
this application. It should be possible for a cube agent
to float in free space without gravity pulling it down.
Layers allow this. In the 3D Cube game if the user
clicks a cube agent, it will check all its neighbors in
three dimensions. This requires minimal additional
programming. For instance, when a cube is checking
for red neighbors, it also needs to look across layers for
agents of the same color, in addition to checking left,
right, up and down in the same layer.

3 In the Cubes game (http://www.sporecubes.com/), the
player clicks groups of two or more of the same-color cubes
to make them explode. Any cubes above the gap created will
then fall down. If any gaps are created between columns, the
cubes to the right of the gap will slide over to the left. The
goal is to clear all cubes.

Figure 7: Extending the 2D game of Cubes to a 3D game only

requires minor additions to the 2D behavior to account for layer
information.

Conclusion

Incremental 3D is a powerful end-user development
process to scaffold the design and implementation of
3D simulations and games. End-users start with 2D
applications and gradually add 3D animations, models
and behaviors. As a gradual process supported by well-
defined stepping-stones, Incremental 3D raises the
ceiling of end-user development. When combined with
a low-threshold end-user programming authoring
system such as AgentSheets, Incremental 3D results in
low-threshold, high-ceiling end-user development
system. Our incarnation of such as system is called
AgentCubes, a system that allows end-users with no
programming background to quickly create
sophisticated 3D games and simulations.

Acknowledgements

This material is based in part upon work supported by the
National Science Foundation under Grant Numbers No.
0205625 and DMI-0349663. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References

1. diSessa A: Changing Minds: Computers, Learning,
and Literacy. Cambridge, MA: The MIT Press,
2000.

2. Schneider K, Repenning A: Deceived by Ease of
Use: Using Paradigmatic Applications to Build
Visual Design. Proceedings of the 1995 Symposium
on Designing Interactive Systems, Ann Arbor, MI,
1995.

3. Glinert EP: Out of flatland: Towards 3-d visual
programming. IEEE 2nd Fall Joint Computer
Conference, 1987.

4. Gage A, Murphy RR: Principles and Experiences in
Using LEGOs to Teach Behavioral Robotics. 33rd
ASEE/IEEE Frontiers in Education Conference,
Boulder, CO, November 5-8, 2003, 2003.

5. Repenning A: Agentsheets: A Tool for Building
Domain-Oriented Dynamic, Visual Environments
[Department of Computer Science]. University of
Colorado at Boulder; 1993.

6. Smith DC, Cypher A, Spohrer J: KidSim:
Programming Agents Without a Programming
Language. Communications of the ACM 1994;
37(7): 54-68.

7. Repenning A: Bending the Rules: Steps toward
Semantically Enriched Graphical Rewrite Rules.
Proceedings of Visual Languages, Darmstadt,
Germany, 1995.

8. Gindling J, Ioannidou A, Loh J, Lokkebo O,
Repenning A: LEGOsheets: A Rule-Based
Programming, Simulation and Manipulation
Environment for the LEGO Programmable Brick.
Proceeding of Visual Languages, Darmstadt,
Germany, 1995.

9. Repenning A, Ambach J: Tactile Programming: A
Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing.
Proceedings of the 1996 IEEE Symposium of Visual
Languages, Boulder, CO, 1996.

10. Repenning A, Ioannidou A: Behavior Processors:
Layers between End-Users and Java Virtual
Machines. Proceedings of the 1997 IEEE
Symposium of Visual Languages, Capri, Italy, 1997.

11. Repenning A, Ambach J: Visual AgenTalk:
Anatomy of a Low Threshold, High Ceiling End
User Programming Environment. submitted to
Proceedings of UIST, 1996.

12. Papert S: The Children's Machine. New York:
Basic Books, 1993.

13. Papert S: Mindstorms: Children, Computers and
Powerful Ideas. New York: Basic Books, 1980.

14. Repenning A, Ambach J: The Agentsheets
Behavior Exchange: Supporting Social Behavior
Processing. CHI 97, Conference on Human Factors
in Computing Systems, Extended Abstracts,
Atlanta, Georgia, 1997.

15. Repenning A, Ioannidou A, Rausch M, Phillips J:
Using Agents as a Currency of Exchange between
End-Users. Proceedings of the WebNET 98 World
Conference of the WW, Internet, and Intranet,
Orlando, FL, 1998.

16. Ioannidou A, Rader C, Repenning A, Lewis C,
Cherry G: Making Constructionism Work in the
Classroom. International Journal of Computers for
Mathematical Learning 2003; 8: 63-108.

17. Klaus DM: Microgravity and its Implication for
Fermentation Technology. Trends in Biotechnology
1998; 16(9): 369-373.

18. Repenning A, Ioannidou A: Agent-Based End-User
Development. Communications of the ACM 2004;
47(9): 43-46.

19. Ioannidou A, Repenning A: End-User
Programmable Simulations. Dr. Dobb's 1999(302
August): 40-48.

20. Repenning A: Inflatable Icons: Diffusion-based
Interactive Extrusion of 2D Images into 3D Models.
The Journal of Graphical Tools 2005; 10(1): 1-15.

21. Klann M: D1.1 Roadmap: End-User Development:
Empowering people to flexibly employ advanced
information and communication technology. EUD-
Net: End-User Development Network of
Excellence, 2003; 17.

22. Paternò F: D1.2 Research Agenda: End-User
Development: Empowering people to flexibly
employ advanced information and communication
technology. EUD-Net: End-User Development
Network of Excellence, 2003; 17.

23. Gross MD: The Fat Pencil, the Cocktail Napkin,
and the Slide Library. Proceedings of Association
for Computer Aided Design in Architecture
(ACADIA '94) National Conference, St Louis,
1994.

24. Michotte A: The perception of causality. Andover,
MA: Methuen, 1962.

25. Cooper S, Dann W, Pausch R: Teaching Objects-
first In Introductory Computer Science.
Proceedings of the 34th SIGCSE Technical
Symposium on Computer science education, Reno,
Nevada, 2003.

