
Collective Programming: Making End-User 
Programming (more) Social 

Alexander Repenning1, Navid Ahmadi2, Nadia Repenning1, Andri Ioannidou1, 
David Webb3, Krista Marshall3 

1AgentSheets Inc., Boulder, Colorado, 2University of Lugano, Switzerland, 3University of 
Colorado, Boulder, Colorado 

{alexander@agentsheets.com, ahmadin@usi.ch, nadia@agentsheets.com, 
andri@agentsheets.com, dcwebb@colorado.edu, krista.marshall@colorado.edu} 

Abstract. The do-it-yourself Web 2.0 culture is quickly creating and sharing 
more end-user produced content. Gradually moving from static content, such as 
pictures and text, to interactive content, such as end-user programmed games, 
the artifacts created and shared have become significantly more sophisticated. 
The next frontier to make end-user programming more social is to move beyond 
the current create, upload, share, download, and repeat Web 2.0 models. 
Collective Programming is a framework that fuses 100% Web-native end-user 
programming tools with real-time communication mechanisms into a cloud-
based multi end-user programming environment. A prototype built, called 
CyberCollage, enables groups of students to work on game design projects 
together: they can play multi-user games, change game worlds in real-time, and 
engage in virtual pair programming. 

Keywords: collective programming, end-user pair programming, computers 
and education.  

1. Introduction 

The 21st century do-it-yourself Web 2.0 culture is quickly creating more end-user 
produced content. From sharing static content such as pictures (e.g. Flickr), 
encyclopedic articles (e.g., Wikipedia) and dynamic content such as movies (e.g. 
YouTube), end-users are gradually progressing to interactive content such as end-user 
modded [1] games (e.g. LittleBigPlanet) and end-user created programs (e.g. Yahoo 
pipes). At the same time, improved infrastructure including faster networks, 
ubiquitous internet connectivity, audio and video capabilities built into basic 
computers enables real-time communication of potentially large numbers of end-users 
to create sophisticated computational artifacts such as games and simulations. Already, 
the combination of tools such as screen sharing, chat, voice over IP, and shared white 
boards is facilitating new kinds of collaboration including training, design and 
research at great distances.  

CyberCollage is a first-of-a-kind real-time end-user development environment for 
creating interactive content. Implemented as a cloud-based Web application, 



CyberCollage enables a new form of social end-user development that we call 
Collective Programming. At the content level, CyberCollage allows end users to build 
sophisticated computation artifacts such as games and simulations using drag and 
drop visual programming approaches developed previously in AgentSheets [2], 
AgentCubes [3] and numerous other educational programming environments 
including Alice [4], Scratch [5], and Squeak Etoys [6]. An important contribution of 
CyberCollage over these previous systems is that the entire programming and runtime 
environment is 100% browser based and built with Web-native HTML 5 technologies. 
Even more important for Collective Programming, however, is the real-time 
communication framework built into CyberCollage allowing groups of end-user 
programmers to collaborate concurrently on projects shared in the cloud. Imagine, for 
instance, two end users collaborating on a Frogger-like video game (Fig. 1). They can 
simultaneously play the game, e.g., have a two-frog race, change the game world, or 
modify the game behavior.  

The real-time communication aspect of Collective Programming is essential for 
enabling a new kind of social end-user programming that we believe to be especially 
useful in educational settings. The challenge is not just to send more information 
faster, but also to maintain the perception of simultaneity among a group of 
collaborators. For instance, if Tim and Victoria are using or modifying their game 
(Fig. 1) their perception of the interaction should be as though they were sitting next 
to each other in the physical world. Significant motivational and peer learning [7] 
benefits of pair programming [8] have been documented. CyberCollage could be 
considered a virtual pair-programming environment that enables end users to program 
together remotely. 

2. CyberCollage: real-time collaborative end-user programming 

CyberCollage enables real-time collaboration through a combination of formal and 
informal communication. At the formal level, participants share a common artifact 
(game or simulation) consisting of media (images), programs (agent behaviors), and 
game/simulation worlds (worksheets) and communicate through the exchange of the 
modified pieces of the artifact. Informally, participants communicate through online 
communication mechanisms such as chat, voice or video. They also communicate 
through awareness interfaces that keep them informed about other participant actions.  

CyberCollage significantly advances the state of real-time social interfaces in ways 
that are probably best explained through a scenario. Imagine that two students, Tim 
and Victoria, are working on a joint Frogger-like game (Fig. 1). Tim wants to work on 
the frog whereas Victoria is eager to build the road and the truck. They start a new 
project and work on their respective game objects in real time. Each person has a 
focus defined by what they are working on and a peripheral vision providing social 
information about what others are doing. Even with Victoria’s focus on programming 
the truck, a presence (or awareness) interface allows her to perceive that Tim is 
drawing the Frog. This presence information may trigger the need, or opportunity, to 
engage in additional communication. They will not only be able to see how the other 



person doing, but will also be able to take control and contribute in real time. That is, 
Victoria can touch up Tim’s frog image and Tim can help Victoria program the truck. 

 
Figure 1: Collective Programming = Real-Time Communication + Rich Interactive Content 
+ Web-based End-User Programming. Tim and Victoria collectively author a Frogger game. 
Tim draws the frog, Victoria programs the truck. Through peripheral vision implemented as 

presence interface they can track what the other is doing and interact in real time. 

Technically speaking, CyberCollage is a cloud-based integrated development 
environment (IDE) with client and server side components. On the front-end, 
Javascript clients provide end users with an HTML 5-based visual programming 
environment, operating inside a Web browser. The IDE lets users create agents, draw 
depictions, program the agent behavior in a visual programming environment, and 
execute the agents in the worksheet. On the back-end, a communication component 
synchronizes multiple clients working on the same project. While users interact with 
their programming environment individually, the client sends updates to the server. 
The updates include changes in agent depictions, program updates, and the worksheet 
modifications. The server collects the updates from each client and broadcasts them to 
all other clients. Each client has a dispatching component that fetches the updates 
from the server and dispatches them to the IDE.  



3. Related Work 

Fig. 2 depicts a two dimensional space of collaboration models. Horizontally, the 
Use⇔Design continuum captures a number of points, including just using a finished 
artifact, changing it (modding), and programming one from scratch. Vertically, an 
essential distinction is made between real-time, synchronous collaboration and offline, 
asynchronous interaction.  

 
 Figure 2: Collaboration Models 

Offline collaboration models are based on the asynchronous interactions of 
participants to use, mod, or design games and simulations. A typical interaction at this 
level may start with one person making a game, uploading it to a repository and then 
having a different person play the game. This, in turn, may interest the second person 
to change the game world or even to change the game behavior. This would typically 
require downloading the game, assuming its source is available, modifying it, and 
then perhaps uploading the new version back to the repository.  

The synchronous nature of real-time collaboration is radically different from the 
asynchronous type of offline interaction. In this model people are working together on 
shared artifacts. The real-time character of this approach requires more sophisticated 
client/server architectures providing collaborators a sense of presence. Who is online? 
Who is working on what and how? If one person is changing something then this 
change needs to be broadcasted to all other users as fast as possible. The enormous 
degree of interactivity may require access control, e.g., file locking, and interaction 
protocols such as turn taking to avoid potential conflict. Artifacts are shared.  

CyberCollage is a real-time collaboration framework covering the entire Use⇔ 
Design continuum. With it end users can use games and simulations, change them, 
and program new ones collectively. CyberCollage allows, theoretically, any number 
of users to participate in all aspects of the Use⇔Design continuum. Conceptually 
speaking, CyberCollage combines and extends ideas found in frameworks such as 



Google Wave, Google Docs Drawing and Google Docs Spreadsheet. Combining the 
ideas from Google Wave and Google Docs Drawing two users could collaboratively 
build a chess game by creating all the pieces, drawing a chess board, placing the 
pieces onto the board and moving them on the board taking turns. However, the 
ability to program the game would allow them to quickly advance from the 
collaborative drawing to implementing multi-user games or simulations.  

4. Evaluation 

To evaluate CyberCollage as an environment for real-time collaborative design, 
education researchers from the University of Colorado conducted a pilot study. Three 
sessions involving middle grades students with prior experience with AgentSheets 
were organized to document student interaction and assess end-user feasibility.  

In one activity, two boys started with a highly structured, competitive programming 
activity. However, they soon expressed that they did not like to compete but 
collaborate. Their interaction organically evolved into a side-by-side game design 
session. The pair immediately began adding, drawing, and programming agents, 
creating a sophisticated two-player ‘good versus evil’ game. The students became so 
engaged in their game creation that they continued working on it after class and at 
home. Once their game was functional, the communication between the pair shifted 
from collaborative design to negotiation of agent behaviors. Communication occurred 
through verbal interaction as well as through observing agent behavior in the 
programming environment and in successive rounds of game play. For example, when 
one student observed that his partner’s agent was immune to his “laser beam”, he 
adapted his agent’s behavior to gain an advantage. Eventually, the collaborative 
design session morphed again into a competitive programming arms race in which 
two boys pitted strategic programming methods against each other and, at times, re-
negotiated the rules of the game.  

Another activity involved five students – two from Colorado and three from 
Wyoming – communicating over a Skype video connection while using CyberCollage. 
Students were encouraged to design a Frogger-like game. With five students involved, 
the group required leadership and some negotiation of roles [9]. Over a period of 90 
minutes we observed an emergent participatory structure in which students 
communicated verbally, as needed, but found ample information available on their 
collective workspace as new agents were designed, positioned, and programmed by 
group members [10]. Tasks were initially assigned by one of the girls from Wyoming, 
but over time all students provided input on additions, deletions and adaptations of the 
game objects.  

While space limitations preclude a more detailed summary of the analysis of student 
participation and collaboration, the initial pilot of CyberCollage shows promise as an 
environment for real-time design for both local and distant collaborators. Real-time, 
synchronous design and programming were accessible and engaging for middle 
grades students, demonstrating that they could collaboratively develop a working 
game in one to two hours.  



5. Acknowledgements 

This work was supported by the National Science Foundation (grant number IIP-
1014249). Opinions expressed are those of the authors and not necessarily those of 
the National Science Foundation.  

6. References 

[1] Magy Seif El-Nasr and Brian K. Smith. 2006. Learning through game modding. 
Computers in Entertainment 4(1), Article 7 (January 2006). 

[2] Repenning, A. and Ambach, J. "Tactile Programming: A Unified Manipulation 
Paradigm Supporting Program Comprehension, Composition and Sharing," in 
Proceedings of the 1996 IEEE Symposium of Visual Languages, Boulder, CO, 
1996, pp. 102-109. 

[3] Ioannidou, A., Repenning, A., and Webb, D. "AgentCubes: Incremental 3D End-
User Development," Journal of Visual Languages and Computing, Special Issue 
on Best Papers from VL/HCC2008, 20, (4) pp. 236-251, 2009. 

[4] Moskal, B., Lurie, D., and Cooper, S. "Evaluating the effectiveness of a new 
instructional approach," in Proceedings of the 35th SIGCSE Technical 
Symposium on Computer Science Education, Norfolk, VA, USA: ACM, 2004. 

 [5] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., 
Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y. 
(2009). Scratch: Programming for All. Communications of the ACM 52(11). 

[6] Squeakland, Home of Squeak Etoys: http://www.squeakland.org/ 

[7] Wills, C.E., Deremer, D., McCauley, R.A., & Null, L. (1999). Studying the use 
of peer learning in the introductory computer science curriculum. Computer 
Science Education, 9, 71–88. 

[8] Williams et al. Strengthening the case for pair programming. Software, IEEE 
(2000) vol. 17 (4) pp. 19-25. 

[9] Fuchs, L. S., Fuchs, D., Kazdan, S., Karns, K., Calhoon, M. B., Hamlett, C. L., & 
Hewlett, S. (2000) Effects of workgroup structure and size on student 
productivity during collaborative work on complex tasks. Elementary School 
Journal, 100(3), 183-212. 

[10] De Laat, M., Lally, V., Lipponen, L., & Simons, R-J. (2007). Investigating 
patterns of interaction in networked learning and computer-supported 
collaborative learning: A role for Social Network Analysis. Computer-Supported 
Collaborative Learning, 2, 87-103. 


