

X-expressions in XMLisp:

S-expressions and Extensible Markup Language Unite
Alexander Repenning & Andri Ioannidou

University of Colorado, University of Lugano, AgentSheets Inc.
Boulder, Colorado, 80309-430

ralex@cs.colorado.edu, andri@agentsheets.com

Abstract

XMLisp unites S-expressions with XML into X-expressions
that unify the notions of data sharing with computation.
Using a combination of the Meta Object Protocol (MOP),
readers and printers, X-expressions uniquely integrate
XML at a language, not API level, into Lisp in a way that
could not be done with other programming languages.
Integration at a language level has significant advantages
by making XML tangible to the programmer throughout
existing Lisp development tools including editors,
debuggers, inspectors, listeners and compilers. This
integration with Lisp tools enables XML development in
the incremental development style Lisp programmers have
become accustomed to. This article describes XMLisp in
the context of the AgentCubes simulation and game-
authoring tool. AgentCubes is the 3D version of
AgentSheets system, which is the world’s most distributed
Lisp-based educational simulation and game-authoring
tool.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming.

General Terms Algorithms, Performance, Design, Human
Factors, Languages, Theory.

Keywords Object-Oriented Programming, XML, Meta
object protocol, 3D tools.

1. Introduction

The Extensible Markup Language (XML) has established
itself as a widely used representation format to share and
process information. A fundamental question is how
programming languages should integrate support for XML
to simplify the development of XML reading, processing,
and writing services. Programming languages differentiate
themselves with respect to their support for introspection,
serialization and object-orientation in order to work as agile
XML programming environments. In this article we claim
that Common Lisp has a unique set of features that allow it
to move even further along this dimension. Common Lisp
is capable to completely integrate XML at a language
instead of just an API level.

X-expressions are the unification of S-expressions [1, 2]
with XML. Conceptually speaking, X-expressions unify
notions of computation with data sharing. Because of this
type of integration, XML becomes much more tangible to
developers, enabling the incremental development style
Lisp programmers have become accustomed to. XML
expressions can be evaluated in listeners, complete or sub-
elements of XML can be evaluated in regular Lisp editors
such as EMACS, and XML can even be compiled using the
Common Lisp compiler. Existing tools, such as inspectors,
will print XML expressions and allow users to interactively
explore complex XML structures. Most CLOS objects can
be directly be serialized into XML. All this is possible
because of the combination of the Common Lisp Meta
Object Protocol (MOP) for introspection with extensions to
the print-object and macro dispatch character function for
serialization. This combination makes Common Lisp an
exceedingly effective platform to read, process and write
XML expressions.

Most existing XML libraries in Common Lisp and other
programming languages are based on either document
models or event-driven models. The widely used Document
Object Model (DOM) [3] is an approach that is platform
and language agnostic. DOM captures the structure and
content of XML files as tree structures. Various Common
Lisp implementations for DOM exist, including the Allegro
Common Lisp DOM Library [4]. Event-driven model

approaches use callbacks when parsing XML documents.
The Simple API for XML (SAX) [5] is the most commonly
used event-driven model parser for XML. Common Lisp
implementations for SAX include [6, 7]. Discussion of
document model versus event-driven model XML
processing can be found elsewhere [8-10]. However, our
more specific concern discussed in this paper is the
effective integration of a complete roundtrip of XML
processing including reading, processing and writing.
DOM-based APIs are well balanced between reading and
writing, but provide limited options with respect to
processing. Once a document tree structure is read, it can
easily be written back into a file. A big source of
conceptual as well as computational overhead is that the
node objects part of the DOM tree structure may have little
in common with the actual application objects.
Consequently developers have to write transformation code
converting application objects into DOM objects and back.
The event handling callback functions of SAX-based XML
parsers can be more directly set up to avoid the need for in-
between objects. Instead, these callbacks may create
application objects directly. The trade off, unfortunately, is
that SAX-based APIs offer little support to write back
application objects into XML. Developers may have to
manually write application object printing code or keep a
redundant DOM-like structure.

Our fundamental goal in developing XMLisp was to find
an easy to use, highly customizable approach to establish a
complete two-way mapping between application objects
and XML representations. Faced with the DOM versus
SAX tradeoff, we felt that there had to be a third option.
There is nothing wrong with these approaches and indeed
in many situations, for instance when XML representations
and application objects are fundamentally different, these
approaches may be the best ones to use. However, in cases
where there is a structural similarity between application
objects and XML representation, it should be possible to
use Common Lisp’s introspection, serialization and object-
orientation features more directly. More specifically, it
should be possible to – completely transparently – read an
XML expression, turn it into a CLOS object, process that
CLOS object and render it back to XML without needing to
keep a DOM tree in memory. We will use Scalable Vector
Graphics (SVG) as a simple example of X-expressions.
SVG [11] is an XML-based vector format that can be
rendered by many web browsers. Evaluating an XML
expression representing an SVG circle shape in XMLisp
will simply create a CLOS instance of a CIRCLE class with
its slots set to the XML attribute values. The CLOS
instance of the circle in the result of the evaluation below is
printed in its serialized form, namely its XML
representation:
? (eval <circle cx="62" cy="135" r="20"/>)
 <circle cx="62" cy="135" r="20"/>

XMLisp could also process XML-related markup
languages such as HTML. More complex examples
illustrating the two way mapping can be found throughout
the paper, but at this point it is important to note some of
the things the developer did not have to do:

• no need to explicitly invoke any XML API function

• no need to build and parse a DOM tree

• no need to setup callbacks

• no need to create custom XML print functions

• no need to interface with external resource descriptions

XMLisp is a portable implementation of X-expressions for
Common Lisp implementations requiring minimal MOP
support. It was initially created to build cross-platform 3D
authoring tools, such as AgentCubes presented in section 4.
In this context our more general requirements included the
following:

Make CLOS objects serializable as XML: Serialization is
useful for saving objects into, and restoring them back
from, files; or for sending then through network protocols
such as SOAP. This read-process-write cycle should be
possible without the need to create other intermediate
representations, such as a DOM tree node. Instead, the
overhead of XML should be so minimal that in most cases
the definition of a CLOS class alone is sufficient for
reading in, processing, and writing out XML. To the degree
that any CLOS object is serializable, it can be done into
XML expressions; and in turn, any object created from an
XML expression can be serialized out and read back in
again as an equivalent CLOS object. Thus serialization into
XML will in general be possible for a variety of individual
CLOS instances as well as for other intricately linked
networks of instances, where the slot values involved
contain only objects that are serializable by normal means
(which includes most 'vanilla' Lisp data types).

Allow cross-platform object sharing: It should be possible
to serialize platform-specific objects, e.g., a button, as a
platform-independent XML expression, <button text=”OK”
action=”exit-application”/> and to read this expression
back into a platform-specific object, i.e., a Windows button
on Windows and an Aqua button on a Mac OS X.

Lisp defined semantics: It should be possible to use Lisp to
define the computational meaning of an XML expression.
Does the expression just represent data? Is the expression
<circle r=”20”/> simply a readable serialization of a circle
instance with a slot called “r” of value 20? If so, an X-
expression representing a circle can be a constant by means
of being a self-evaluating object. Alternatively, the
meaning of an XML expression may include developer-
defined computation. For instance, reading <window
title=”Agent”/> may create an actual window with all its
additional information and computational side effects.

However, an XML expression does not have to evaluate to
itself. For instance, if the expression <add value1=”3”
value2=”4”/> represents a numerical operation it may
evaluate into a regular Lisp object such as the number 7.
Finally, the semantics of an XML expression may include
notions of transformation returning a processed version of
the original XML expression. For instance the expression
<simplify_sum>
 <add value1="x" value2="2"/>
 <subtract value1="x" value2="3"/>
</simplify_sum>

could return
<subtract value1="x" value2="1"/>

To achieve such semantic transformations in XMLisp, eval
reads the X-expression, turns it into a CLOS object, and
then applies the read-return-value method before it prints
the result. The default behavior is to return the object just
read in, but when necessary, the object is transformed
according to the needs of the application (see transformer
example in section 4.4).

Object-Oriented Customization: It should be fully possible
to benefit from object-oriented programming such as
mutimethods [12, 13] to customize reading, processing, and
writing of XML. Consider this SVG example of a group
shape containing a circle and a rectangle object:
<g id=”world”>
 <circle cx="5" cy="5" r="2"/>
 <rect x="15" y="15" width="100" height="50"/>
</g>

Because the element names are directly mapped to class
names (g, circle and rect), the developer can define
methods on these classes to customize reading, processing,
and writing. For instance using the multimethod add-
subobject ((group g) (shape shape)), the developer can
aggregate shapes into groups as arrays instead of lists.

Provide an incremental approach towards Lisp: Being
also educators we had our share of challenges to convey the
beauty and the power of Lisp to computer science students.
We have been thinking of X-expressions as stealth
approach to get students burned by Lisp exposure in the
context of some introduction to programming languages
course re-introduced to Lisp. Initially they do not know that
the X-expressions they are editing are directly evaluated in
Lisp. Editing XML-based game levels, user interfaces and
agent behaviors is considered “cool.” Once the notion of X-
expressions is revealed to the students then many are
interested to give Lisp a second chance to explore
computational extensions of their work.

This article does not focus on particular technical aspects of
XMLisp. No claim is made here that XMLisp in its current
implementation is faster or more complete than existing
XML tools for Common Lisp. What is important is that, at
a conceptual level, Common Lisp has a unique set of

features allowing it to integrate XML in a way that most
other languages could not. The following sections of this
paper describe how X-expressions work and illustrate the
requirements above in the context of the 3D authoring tool
AgentCubes [14].

2. X-expressions: Syntax and Semantics

X-expressions are the extended set of expressions that unite
S-Expressions with XML expressions. This section
provides a conceptual overview of the fundamental
mechanism of X-expressions at syntactic and semantic
levels. Please note that we will not provide a low-level
description of how XMLisp was implemented. XMLisp is
available as an open source project [15] with existing ports
to MCL, OpenMCL, Allegro Common Lisp.

2.1 Syntax

At the syntactic level, Common Lisp can be extended
through readers and printers. If the goal is to be able to read
and write XML expressions as part of Lisp, we can define
custom readers to deal with characters such “<” and “>” in
special ways. This needs to be done with some care to
avoid conflicts with the already established meaning of
these characters in regular S-expressions. XMLisp provides
the developer with controls to turn the X-expression reader
on or off in selected packages.

X-expressions are read into the current package (or a
specified package, passed as a parameter to the load-object
method), unless package prefixes are explicitly used.
Namespaces are then accessed via package prefixes.

The Lisp reader turns XML expressions into instances of
CLOS objects. It employs the MOP as source of meta-
information to de-serialize an object. When reading <circle
cx="62" cy="135" r="20"/>, the reader will look if there is
a CIRCLE class and whether it has the necessary slots that
match attribute names or subelements. It will use any
available meta-information, such as the slot type, to decode
XML strings into proper Lisp data types and values. The
object created is a proper application object with all its
user-defined accessors and methods. Therefore, the
developer can invoke regular accessor functions as X-
expressions to access slot values of these objects.
? (cx <circle cx="62" cy="135" r="20"/>)
62

The accessor returns the number object and not the string
“62” because the class definition of circle includes number
slot types. Slot types, if present, are meta information used
to automatically dispatch CODECs (coders and decoders).
XMLisp implements a large number of CODECs for basic
data types such as numbers, strings, Booleans and
composites such as lists, arrays, and hash tables.
Developers can create custom CODECs and extend
existing ones.

XML <circle cx="62" cy="135" r="20"/>

CLOS
(defclass CIRCLE (xml-serializer)
 ((cx :accessor cx :type number :documentation
"center x")
 (cy :accessor cy :type number :documentation
"center y")
 (r :accessor r :type number :documentation
"radius"))
 (:documentation "SVG circle"))

(make-instance ‘circle :x 2)

Browser

To be consistent with the read-eval-print loop (REPL) and
more generally to be able to produce XML output, CLOS
instances representing XML objects must be able to print
themselves as valid XML expressions. The circle class in
the example above is a subclass of xml-serializer, which
adds the ability for the object to print itself in XML instead
of being an unprintable CLOS object.

Extending reading and printing in Lisp is extremely
powerful. Reading XML from the listener, files, or the
network will create CLOS objects. This means developers
can, very much in the explorative spirit of general Lisp
programming, experiment with bits and pieces of XML
expressions by typing them into the listener or evaluating
X-expressions in a text editor. Extended printing means
that CLOS instances representing XML objects will
automatically show up as XML in all kinds of Lisp tools
such as inspectors, tracers, graphers and stack traces. Files
containing X-expressions can be compiled with the regular
Lisp compiler. Compiled X-expression files are no longer
sharable between platforms, but typically load significantly
faster as they avoid the parsing overhead of XML.

An additional benefit of integrating XML expressions into
Lisp through custom readers and writers is that in-lining
XML expressions into Lisp source code can be done
without experiencing significant constraints from existing
Lisp readers. Developers could not simply copy and paste
valid XML expressions into Lisp source. Instead, they
would have to edit these XML expressions to make them
compatible with the Lisp reader. For instance, if a one
would try to inline an XML expression as a string, e.g.,
(setq Link “”) then
it would be necessary to precede the double quote
characters with a backslash escape character to allow the
Lisp reader to recognize the entire “<a href=“http://
www.agentsheets.com”>” expression as a single string. A
custom reader does not inherit these constraints. It can read
arbitrary content including Unicode characters.

2.2 Semantics

At the semantic level, structure and content of XML
expressions needs to be mapped to CLOS instances. The

MOP includes powerful introspection mechanisms to
analyze the structure of CLOS objects, slot names, slot type
any many other useful pieces of meta-data that can be
employed to establish automatic mapping between CLOS
instances and XML expressions.

For XMLisp to be able to deal with XML it uses the MOP
to try to establish correspondence. When reading the
element name “circle” XMLisp looks in the current
package for a class of the same name. Then, reading the
element attributes XMLisp looks up slot definitions of the
circle class to find slots with matching names. It parses and
decodes the value representations in the circle case simply
numbers. In simple cases like this, the developers only need
to create a class definition in order to create an XML
interface.

Some XMLisp users have suggested achieving
correspondence by automatically generating the class
definition and necessary methods from the XML Document
Type Definition (DTD). Given that the number of
applications using DTDs is decreasing and even the
designer of XML has publicly admitted that DTD was a
mistake [16], we find it more suitable to use the Lisp class
definition as a kind of document type specification. One
could imagine building readers for automatically creating
CLOS class definitions from schemas similar to XML
Schema [17, 18], but XMLisp does not currently feature
this.

The correspondence for document specification in XMLisp
is based on 3 design principles:

1) Use Good Defaults: Start with assumptions as simple as
possible, such as that there should be a 1:1 correspondence
between attribute names and slot names. Only require the
definition of methods to deal with exceptions.

2) Incremental Refinement: Allow developers to refine the
correspondence incrementally by gradually providing more
meta-information. For instance, the type of a slot may be
deduced from an :initform value or provided explicitly by a
developer through a :type slot keyword. For instance, by
adding a :type boolean slot specification, XMLisp can print
slot values as “true” and “false” instead of “nil” and “t.”
Developers can introduce their own types and define
CODECs to print and read custom types accordingly.

3) Extensible Architecture: All assumptions and mappings
should be embodied as methods that can be extended and
overwritten by the developer. To avoid name conflicts and
to achieve higher flexibility it is essential that developers
can change every aspect of how XMLisp interprets and
processes XML, such as aggregating subelements in
various forms, printing, and transforming. In order to
define CLOS classes to be XML serializable, developers
mix in the xml-serializer class. To extend and overwrite the
default behavior developers have a large set of methods.

3. Related Work

The space of XML related work is vast. Numerous
implementations of document model and event-driven
model parsers and generators for all kinds of programming
languages exist. In this section we limit our discussion to
XML systems involving a combination of introspection and
serialization. Lisp-based related systems include SWCLOS
and CL-XML. Non-Lisp-based related systems include
Ruby, JAXB and Water.

SWCLOS [16] is a Common Lisp based semantic web
processor using the MOP to change the behavior of classes
through meta-classes. SWCLOS reads and parses RDF tags
even lazily creating CLOS class stubs for classes that are
later defined in the file. SWCLOS does not integrate XML
at a language level into Lisp via printers and readers,
however. In the case were there is a RDF specification
available SWCLOS and XMLisp could be effectively
combined.

CL-XML [19] includes experimental MOP-based
extensions to serializing arbitrary CLOS instances but does
not include language integration via print and read
extensions.

Ruby, with its bundled REXML library, is perhaps closest
to XMLisp in that it also integrates XML at a language
level using print/load marshalling mechanisms comparable
to Common Lisp. Similar to XMLisp, Ruby allows
developers to use interactive debuggers (corresponding to
the Lisp listener) to read and print XML expressions.
However, the Ruby load marshaling method is substantially
more restrictive. To run the specialized XML parser, Ruby
needs to first create a DOM-node like object and then run
its load method to parse a string representing an XML
expression. Consequently, Ruby does not directly create
application objects. For instance, Ruby does not read an
XML expression such as <circle r=”20”/> and directly turn
it into an instance of a circle class. Lisp, thanks to its macro
reader function, can parse the expression up to the delimiter
after the element name, i.e., “<circle “, create an instance of
the circle object and set its attribute and element values.
Ruby, in contrast, only creates a generic DOM-node object,
which the programmer would have to turn into an
application object. Ruby does include a powerful
introspection mechanism that could be employed to map
XML expressions directly to application objects instead of
to DOM nodes. However, the lack of a macro character
dispatch mechanism prevents Ruby from seamlessly
integrating XML at a language level.

JAXB [20] generates Java classes from a schema. It is
similar to XMLisp in that it creates structures that are more
compact than DOM approaches. JAXB requires external
Meta description to generate code that can de-serialize
XML files into objects. Unlike X-expressions JAXB does
not provide means to merge data sharing and computation

into a single representation. That is, Java code and XML
markup remain strictly separate in JAXB.

Water [21, 22] is a programming language with an XML-
inspired syntax used for creating web services. Water has
its conceptual roots in various dynamic programming
languages including Lisp. Similar to X-expressions Water
blurs the boundary between data sharing and computation.
XMLisp could be used to make a Water-like programming
language.

4. AgentCubes: a Game Authoring System using X-
expressions

The function and value of X-expressions are best
understood when explained in the context of the system
originally inspiring them. AgentCubes is a highly
extensible simulation and game-authoring architecture
(Figure 1) capable of addressing a large range of
application domains.

The design and implementation AgentCubes was originally
the main motivation to build XMLisp. At various levels of
the architecture we needed a versatile framework capable
of accessing and modifying extendible data and meta-data.
Specifically, we needed to represent file structures, media
meta-information, visual programming code, game engine
states, scene graphs, 3D models, and reusable patterns as
objects that could be efficiently serialized. At the same time
we wanted to employ a cross-platform and cross-language
serialization format suited for exchange with other tools.
XML seemed ideally suited for this purpose. However, our
previous experience with XML in our AgentSheets
authoring tool [23-26] in Lisp and Java indicated that a lot
of effort was required to create and maintain XML-based
representations. Existing DOM and SAX implementations
require substantial development overhead to create efficient
read, process, write round-trip interfaces between objects
and XML files. We felt that it should be possible to let the
programming language do most of the labor by eliminating
the need of using intermediate representation objects such
as DOM nodes and writing custom XML print functions.
Hence, XMLisp was developed.

Figure 1: The AgentCubes Architecture.

The AgentCubes architecture (Figure 1) uses X-expressions
at all levels:

• Media: XMLisp resource descriptions for sounds,
textures, fonts.

• Engine: XMLisp definitions of agents and 3D scenes.

• End-User Development: XMLisp representations of
simple and complex GUIs as well as the end-user visual
programming language used to define agent behaviors.

• Patterns: XMLisp definitions of transformers used to
instantiate components and behaviors from templates.

• Applications: XMLisp used for inter-application, cross-
platform communication between CL-HTTP and Flash
and for location-aware GPS and GIS based
communication in Mobility Agents.

The following sections provide examples of how X-
expressions are used at these different levels.

4.1 Media Level: accessing and describing resources

At the media level, XMLisp is used to capture resources,
including links to media such as images, sounds, cursors,
and texture files, as well as meta-information describing
these resources.

A simple example showing how XMLisp deals with object-
oriented customization is fonts. OpenGL has very limited
text support pushing most of the burden of rendering text to
the developer. A simple texture-based font can be captured
as the combination of a texture map (Figure 2) with glyph

information indicating the symbol name and boundary box
for each character.

Figure 2: Texture map of Comic Sans ASCII font

A font class captures meta-information about the font
including the name of the font. The glyphs slot is used to
store sets of glyphs.
(defclass FONT (xml-serializer)
 ((font-name :accessor font-name :initform "helvetica")
 (font-size :accessor font-size :initform 16)
 (start :accessor start :initform 32 :type integer)
 (end :accessor end :initform 127 :type integer)
 (texture :accessor texture :initform nil)
 (texture-size :accessor texture-size :type integer)
 (glyphs :accessor glyphs :type array))
 (:documentation "An antialiased font based on a font specification"))

A glyph contains a name and the coordinates of the
bounding box in the font texture map. Defining the
coordinates to be of type float ensures parsing of string
attribute values in XML into valid floats through a float
CODEC.
(defclass GLYPH (xml-serializer)
 ((name :accessor name :initform #\Space :type
character)
 (x0 :accessor x0 :type float)
 (y0 :accessor y0 :type float)
 (x1 :accessor x1 :type float)
 (y1 :accessor y1 :type float))
 (:documentation "A glyph represents a character symbol in a font"))

A complete font description then becomes a simple X-
expression, which can be saved as an XML file:

 <glyph x0="0.0" y0="0.8671875" x1="0.029296875"
y1="1.0"/>
 <glyph name="!" x0="0.041015625" y0="0.8671875"
x1="0.064453125" y1="1.0"/>
 <glyph name=""" x0="0.076171875" y0="0.8671875"
x1="0.1171875" y1="1.0"/>
 <glyph name="#" x0="0.12890625" y0="0.8671875"
x1="0.208984375" y1="1.0"/>
 <glyph name="$" x0="0.220703125" y0="0.8671875"
x1="0.287109375" y1="1.0"/>
… etc, etc, …

The automatic aggregation of glyph elements is based on
name mapping. When attempting to add a glyph
subelement to the font element, XMLisp will look for a
symbol name with the plural form of glyph (glyph ->
glyphs). Of course, this may not be what the developer had
intended. In these cases, the developer could overwrite the

add-subelement (font, glyph) multimethod to aggregate
glyphs into a different slot of font or use a completely
different aggregation scheme altogether.

4.2 Engine Level: representing agents and scenes

At the game engine level of AgentCubes, agent instances
and entire scenes containing agents need to be managed.
Agents are contained in scenes, which in turn are contained
in windows representing 3D worlds. Agents include
methods to render themselves in 3D using OpenGL
functions. Evaluating X-expressions based on agents
creates editable 3D worlds.

Figure 3: Editable 3D AgentCubes World containing three

agents (person, tile and box).

The main object contained in the world is the agent-matrix,
which is a three-dimensional cube containing stacks of
agents. In addition to the visible objects in the world,
additional scene objects such as cameras and light sources
exist in the 3D scene. Both visible and invisible objects and
world attributes are captured in the XML representation of
the world:

Running simulations and games will result in different
configurations of the world depending on the specified
behavior of the objects in the world. Moreover, through
tools available in AgentCubes, the user can add, remove,
copy, and move agents in the world. At any point in time,
the current state of the world can be printed again and
stored in an XML file.

4.3 End-User Development Level

At the end-user development level, XMLisp is used to
create user interfaces from simple to complex and capture
elements of high-level end-user programming languages
used to define agent behaviors in simulations and games.

4.3.1 Simple GUIs: Windows & Dialog Items

X-Expressions can be turned into complete graphical user
interfaces. We have wrapped dialog items, such as buttons,
menus, sliders, and pop up menus, found in OS X (MCL)
and Windows (Allegro Common Lisp), into a portable set
of GUI components. Using XMLisp methods, the platform-
specific versions of the components serialize themselves
into platform independent X-expressions. For instance,
<application-window>
 <row align="right" valign="bottom" padding="20">
 <button text="Maybe"/>
 <cancel-button/>
 <ok-button/>
 </row>
</application-window>

creates an APPLICATION-WINDOW instance which
manifest itself as window on the screen in Mac OS X
(Figure 4).

Figure 4: A simple application window generated from an X-

Expression in MCL for OS X

Defining such dialogs in XML simplifies cross-platform
compatibility for Lisp applications running on different
platforms. It is the semantics for what the application-
window element upon parsing that has the side effect of
creating the window. However, creating the GUI element
may need to be done differently on different platforms.

4.3.2 Complex GUIs: Inflatable Icons editor

A substantially more complex example of a user interface
created with X-expressions is the Inflatable Icon editor.
Inflatable Icons [27] is a new, patent-pending, technique
that interactively extrudes 2D pixel-based images into
polygon-based 3D models. Through the use of a diffusion-
based inflation process with input from users (e.g. inflation
pressure, symmetry, noise) suitable 2D artwork can serve
as input for an interactive 2D to 3D transformation process.

The user interface for manipulating the inflation parameters
(Figure 5) is generated using XMLisp. An X-expression
defines the all the editor elements (tools, sliders, 2D image

editor and inflated 3D viewer, checkboxes, buttons etc) and
their relative positioning.

Figure 5: Inflatable Icon Editor built with XMLisp GUI

For instance, the Selection Tool for selecting parts of the
2D image (shown extended in the upper left corner of
Figure 5) has choices for selecting rectangular, polygonal,
or circular areas. It is defined in XML as:
<choice-image-button tooltip="Selection Tool">
 <image-choice image="select-rect-button.png"
action="rect-tool-action"/>
 <image-choice image="select-polygon-button.png"
action="polygon-tool-action"/>
 <image-choice image="select-ellipse-button.png"
action="ellipse-tool-action"/>
</choice-image-button>

The 2D image editor and 3D inflated model viewer are
defined as XMLisp X-expressions as:
<row-of-squares>
 <2d-icon-editor name="icon-editor" img="lobster.jpg"
img-height="32" img-width="32" action="change-icon-
action"/>
 <inflated-icon-editor name="model-editor"/>
</row-of-squares>

The slider for controlling the inflation’s pressure and its
associated text is defined as an X-expression:
<row align="stretch">
 <label width="65" text="Pressure"/>
 <slider action="adjust-pressure-action"/>
 <label name="pressuretext" align="right" width="35"
text="0.0"/>
</row>

4.3.3 Visual Programming Languages and editors

As an end-user authoring tool, AgentCubes features an end-
user visual programming language called Visual AgenTalk

based on our previous work with AgentSheets [25]. The
language elements consist of conditions and actions that
can be combined into rules and in turn into methods. An
agent’s behavior consists of a collection of these methods.
Code at any level is expressed in XML. For instance, the
Next-to condition that can be used by an agent to check for
the existence of any number of the specified agents around
it is expressed as shown in Table 1.
As XMLisp reads the XML representation of the language
it uses an “expand” macro to create the corresponding Lisp
code (Table 1). Each language element produces its own
Lisp expansion. Nested elements expand recursively to
generate Lisp representations of the code that can then be
executed by the engine in AgentCubes.
Command X-expression Lisp

<next-to operator="="
number="1" shape="car2"/>

(NEXT-TO SELF
'= 1 '|car2|
0)

<move
duration="@animation">
 <direction drow="-1"/>
</move>

(MATRIX-MOVE
SELF 1 0 0
(GET-THE-
PROPERTY-
VALUE
'ANIMATION)
'ACCELERATED-
TRANSLATION-
ANIMATOR)

<rule>
 <if>
 <key label="up
arrow"/>
 <once-every
seconds="0.1"/>
 </if>
 <then>
 <move
duration="@animation">
 <direction
drow="1"/>
 </move>
 </then>
</rule>

(when (and
(KEY-WAS-
PRESSED SELF
126)
 (TIMER-DUE-P
SELF 100))
 (progn
(MATRIX-MOVE
SELF 1 0 0
 (GET-THE-
PROPERTY-
VALUE
'ANIMATION)
'ACCELERATED-
TRANSLATION-
ANIMATOR)))

Table 1: Equivalent VAT language pieces at the GUI, XML,
and Lisp levels

4.4 Pattern Level: transformers
AgentCubes features template-based programming [28]
both for creating shapes and behaviors for agents. This is
achieved through transformers that change general template
XML into concrete XML based on user-defined
parameters. For instance, a transformer template for
diffusion calculation behavior is defined as follows:
<transformer>
 <substitution>
 <replace what="$diffusion-var$" how="substitute-with-
user-value">
 <user-parameter name="Attribute to diffuse"
type="editable-text" description="Enter the name of the
attribute you wish to diffuse." default="heat"/>
 </replace>
 </substitution>
 <list>

 <method comments="diffuse the attribute
"$diffusion-var$"">
 <on selector="Diffuse"/>
 <rule>
 <if/>
 <then>
 <set attribute="$diffusion-var$" value="0.25
* ($diffusion-var$[left] + $diffusion-var$[right] +
$diffusion-var$[up] + $diffusion-var$[down])"/>
 </then>
 </rule>
 </method>
 </list>
</transformer>

The transformer represents a substitution by defining what
to replace and how. In this example, we are to replace the
diffusion variable that will be given by the user. As
XMLisp parses the transformer, the user is prompted to
enter the attribute to diffuse as shown below.

The user decides to create heat diffusion, thus the “Heat”
attribute is entered. Upon successful user input, XMLisp
calls the read-return-value multimethod specialized for the
transformer to perform the substitution and yield new XML
immediately usable in the agent’s behavior:
<method comments="diffuse the attribute
"heat"">
 <on selector="DIFFUSE"/>
 <rule>
 <if/>
 <then>
 <set attribute="Heat" value="0.25 * (heat[left] +
heat[right] + heat[up] + heat[down])"/>
 </then>
 </rule>
 </method>

This XML added to the agent’s behavior visually manifests
itself in the behavior editor as a new method shown below.

Transformers are similar to XML transformation in XSLT
and other XML transformation languages. The main
difference is that processing is integrated in the parsing and
does not need to first build a source tree from input XML
and then on the second pass process the XML like XSLT.

4.5 Application Level: cross-platform data sharing
At the application level, XMLisp is used to process
network communications between clients and servers that

are implemented in different languages and run on different
platforms. For instance applications, such as Mobility
Agents include a server running CL-HTTP interfacing with
relational databases and Flash clients running on handheld
computers.

4.5.1 Mobility Agents

Mobility Agents [29] is a location-aware technology that
leverages existing GPS infrastructure and GIS information
to compute highly personalized information and deliver it
on PDAs and cell phones. It was developed to provide
multimodal prompts on handheld devices to travelers with
cognitive disabilities helping them to recognize, for
instance, the right bus to reach a specified destination. At
the same time, it communicates the trip status and location
of the traveler in relation to known landmarks and street
addresses to a caregiver.

The Mobility Agents system employs multiple mission
status interface approaches on servers and clients, ranging
from 3D real-time visualizations (Figure 6 right) and Flash
traveler interfaces (Figure 6 left) to SMS and instant
messaging-based text interfaces (Figure 7).

Figure 6: Traveler (left) and caregiver interface detail

showing signals associated with a traveler (right). Information
includes 1) heading (direction the person is moving); 2)

network lag time graph; 3) Phone signal level; 4) battery level;
5) GPS satellites and signal strength.

Location and status information is sent from other web
servers and the Flash clients to the Lisp-based Mobility
Agent server via XML messages. Here again X-expressions
are used for cross platform (desktop computer versus PDA)
and cross language (Common Lisp versus Flash)
development. For instance, bus GPS location updates sent
by buses equipped with GPS via networks to web servers
accessible to our Mobility Agents:
<bus-gps-event latitude="40.016415S0" longitude="-
105.26298S0" timestamp="77388.0"
heading="142.1999969482422" bus-id="9063225"/>

Traveler GPS location update, including information about
the available GPS satellites picked up by the receiver:
<client-gps-event latitude="39.98525" longitude="-
105.249797" timestamp="191043.296875"

speed="9.337554931640625" heading="147.4600067138672"
altitude="1635.1">
 <satellite prn="2" snr="50"/>
 <satellite prn="7" snr="33"/>
 <satellite prn="6" snr="37"/>
 <satellite prn="5" snr="48"/>
 <satellite prn="17" snr="45"/>
 <satellite prn="24" snr="31"/>
 <satellite prn="121"/>
</client-gps-event>

Client status update, including phone signal and battery
level:
<device-status>
 <phone-signal-level val="16383"/>
 <battery-life-percent main="86" backup="100"/>
</device-status>

The above XML messages result in updating the 3D visual
interface displaying buses and travelers on a map as well as
the traveler’s specific display with the appropriate signals
as shown in Figure 6, right.

The Mobility Agents system also includes an XML-based
GIS database creation and maintenance mechanism. Using
GIS information like the sample shown below for a few
locations in Boulder, CO, mobility agents can display were
the traveler is in relation to known locations or landmarks
in a city and deliver the Context-Aware Instant Messages to
the caregivers.
<geographic-information-system name="Boulder">
 <location sub-type="Indian" type="Restaurant"
street="619 S Broadway St" name="Tandoori Grill"
longitude="-105.2483" latitude="39.9841"/>
 <location sub-type="Government" type="city offices"
street="1739 Broadway St" name="Boulder Zoning
Inspection" longitude="-105.2796" latitude="40.0161"/>
 <location sub-type="K-12" type="School" street="805
Gillaspie Dr" name="New Vista Senior High School"
longitude="-105.252" latitude="39.9826"/>
<location type="movie theater" street="2985 Pearl St."
name="Mann Crossroads 6" longitude="-105.2541"
latitude="40.0233"/>
 <location type="park" state="CO" name="Carpenter Park"
longitude="-105.25416666666666"
latitude="40.01166666666666"/>
 <location type="hospital" state="CO" name="Boulder
Medical Center" longitude="-105.28333333333333"
latitude="40.02611111111111"/>
 <location type="Street Address" state="CO" zip="80303"
house-number="3302" street="Apache Rd" name="3302 Apache
Rd" longitude="-105.24903057957447"
latitude="39.995227855172416"/>
-- etc, etc… --
</geographic-information-system>

For instance, the traveler Melanie, which is represented by
a buddy in an Instant Messaging application (Figure 7),
updates her status as she is moving through town in the bus
or on foot. The status message includes “Domino’s Pizza”,
the name of a restaurant, and “1000 Euclid Avenue”, a
street address in Boulder. This real-time information is
important to describe Melanie’s location to her caregiver.

Figure 7: A buddy list for an Instant Messaging application

(Apple iChat in OS X)

The XMLisp ability to integrate XML into Lisp in such a
seamless way made the creation of applications such as the
Mobility Agents much more viable.

Conclusions

X-expressions unify S-expressions with XML. By making
full use of Common Lisp introspection and serialization
mechanisms, XMLisp uniquely integrates XML into a
programming language. XML expressions can be evaluated
in listeners; complete XML elements or sub-elements can
be evaluated in regular Lisp editors such as EMACS; and
XML can even be compiled using the Common Lisp
compiler. Existing tools such as inspectors will print XML
expressions and allow users to interactively explore
complex XML structures. CLOS objects can be directly be
serialized into XML. All this is possible because of the
combination of the Common Lisp Meta Object Protocol for
introspection with extensions to the print-object and macro
dispatch character function for serialization. This
combination makes Common Lisp an exceedingly effective
platform to read, process and write XML expressions not
only locally within an application, but also cross multiple
platforms and via networks. This kind of integration could
not be achieved with other languages. This work is still in
an early stage but perhaps it can be perceived as small step
towards Lisp becoming “the Lisp of the Internet”.

7. Acknowledgments

This material is based in part upon work supported by the
National Science Foundation and the National Institutes of
Health under Grants Numbers 0349663 and 0205625. Any
opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation or the National Institutes of
Health.

8. References

[1] J. McCarthy, "Recursive functions of symbolic
expressions and their computation by machine, Part
I," Communications of the ACM, vol. 3, pp. 184 -
195, 1960.

[2] Wikipedia, "S-expression",
http://en.wikipedia.org/wiki/S-expression.

[3] W3C, "Document Object Model (DOM)",
http://www.w3.org/DOM/.

[4] Franz, "Document Object Model (DOM) in Allegro
Common Lisp",
http://www.franz.com/support/documentation/8.0/do
c/dom.htm.

[5] "SAX", http://www.saxproject.org/.

[6] "SSAX", http://sourceforge.net/projects/ssax,
http://ssax.sourceforge.net/.

[7] Franz, "A Sax XML Parser for Allegro Common
Lisp",
http://www.franz.com/support/documentation/8.0/do
c/sax.htm.

[8] R. Muvva, "DOM Vs SAX What is best?"
http://www.code101.com/Code101/DisplayArticle.as
px?cid=37.

[9] Wikipedia, "Simple API for XML",
http://en.wikipedia.org/wiki/Simple_API_for_XML.

[10] Wikipedia, "Document Object Model",
http://en.wikipedia.org/wiki/Document_Object_Mod
el.

[11] "Scalable Vector Graphics (SVG)",
http://www.w3.org/Graphics/SVG/.

[12] D. H. H. Ingalls, "A simple technique for handling
multiple polymorphism," presented at Conference on
Object Oriented Programming Systems Languages
and Applications, Portland, Oregon, USA, 1986.

[13] Wikipedia, "Multiple dispatch",
http://en.wikipedia.org/wiki/Multimethods.

[14] A. Repenning and A. Ioannidou, "AgentCubes:
Raising the Ceiling of End-User Development in
Education through Incremental 3D," presented at
IEEE Symposium on Visual Languages and Human-
Centric Computing, 2006, Brighton, United
Kingdom, 2006.

[15] AgentSheets Inc., "<XMLisp)",
http://www.agentsheets.com/lisp/XMLisp/.

[16] J. Gray, "A conversation with Tim Bray," ACM
Queue, vol. 3, pp. 20 - 25, 2005.

[17] A. Møller and M. I. Schwartzbach, "Schema
Languages," in An Introduction to XML and Web
Technologies: Addison-Wesley, 2006.

[18] W3C, "XML Schema",
http://www.w3.org/XML/Schema.

[19] J. Anderson, "CL-XML",
http://pws.prserv.net/James.Anderson/XML/.

[20] "JAXB", http://java.sun.com/webservices/jaxb/.

[21] M. Plusch, Water: Simplified Web Services and
XML Programming: Wiley, 2002.

[22] "Water Language", http://www.waterlanguage.org/.

[23] A. Ioannidou and A. Repenning, "End-User
Programmable Simulations," Dr. Dobb's, pp. 40-48,
1999.

[24] A. Repenning and A. Ioannidou, "Agent-Based End-
User Development," Communications of the ACM,
vol. 47, pp. 43-46, 2004.

[25] A. Repenning and J. Ambach, "Tactile
Programming: A Unified Manipulation Paradigm
Supporting Program Comprehension, Composition
and Sharing," presented at Proceedings of the 1996
IEEE Symposium of Visual Languages, Boulder,
CO, 1996.

[26] A. Repenning and A. Ioannidou, "Behavior
Processors: Layers between End-Users and Java
Virtual Machines," presented at Proceedings of the
1997 IEEE Symposium of Visual Languages, Capri,
Italy, 1997.

[27] A. Repenning, "Inflatable Icons: Diffusion-based
Interactive Extrusion of 2D Images into 3D
Models.," The Journal of Graphical Tools, vol. 10,
pp. 1-15, 2005.

[28] A. Ioannidou, "Programmorphosis: a Knowledge-
Based Approach to End-User Programming,"
presented at Interact 2003: Bringing the Bits
together, Ninth IFIP TC13 International Conference
on Human-Computer Interaction, Zürich,
Switzerland, 2003.

[29] A. Repenning and A. Ioannidou, "Mobility Agents:
Guiding and Tracking Public Transportation Users,"
presented at Proceedings of AVI 2006 Advanced
Visual Interfaces International Working Conference,
Venice, Italy, 2006.

