
 Graphical Rewrite Rule Analogies: Avoiding the Inherit or
Copy & Paste Reuse Dilemma

Corrina Perrone and Alexander Repenning

Center of LifeLong Learning & Design
Campus Box 430

University of Colorado, Boulder CO 80309
(303) 492-1349, {ralex, corrina}@cs.colorado.edu

Fax: (303) 492-2844

ABSTRACT Therefore, the inclusion of mechanisms to aid
the end-user in the location and modification of
code that performs a function similar to the one
desired greatly improves the usability of domain
applications.

Reuse mechanisms, such as inheritance in an
object-oriented programming approach, are
useful to professional programmers but fail to
support the occasional programming needs of the
end-user. Consequently, a surprisingly high
percentage of end-users resort to "copy and
paste" approaches for reuse instead of making
appropriate use of object-oriented techniques.
Visual Analogies are a reuse mechanism for end-
users who otherwise would have resorted to
"copy and paste." This paper illustrates how
visual analogies avoid some of the problems
intrinsic to object-oriented programming by
eliminating the pitfall of overgeneralization and
the need to create non-concrete programming
abstractions.

By allowing incremental development, object-
oriented languages attempt to provide reuse
mechanisms such as inheritance. End-users tend
to be better at thinking concretely than abstractly
[17], and for this reason, inheritance works for
professional programmers trained in abstraction
processes, but fails to work for end-users.

Ideally in an object oriented system, the user
locates a promising class in the object class
hierarchy and refines it by adding or extending
methods to provide the new desired behavior.
Few situations approach this ideal, however, and
the result is that the user is faced with altering the
object hierarchy. It is here that the process breaks
down in the face of an inheritance structure
defined by someone else. Some behavior of the
original objects is desirable, other behavior might
be merely superfluous, and still other behavior
might be undesirable.

THE REUSE DILEMMA: INHERIT OR COPY & PASTE?

From an end-user perspective, software reuse
takes several forms. Historically, the behavior of
most application programs could not be changed
or augmented without substantial reprogramming
[7]. As techniques emerge to support end-user
programming and end-user modifiability, it
becomes clear that end-users have little interest in
programming computers unless it will help them
to build tools that enhance their domain
productivity [17].

Several reactions to this phenomenon have
emerged. By the object oriented programming
community, end-users are often dismissed or
forgotten as they grapple unsuccessfully with the
complexities of inheritance. Other applications,
such as Hypercard, avoid the situation by
resorting to inheritance-free representations. For



many end-user programmers, this is appealing,
although it is a lowest common denominator
approach. This "less is more" philosophy of
HyperCard has enabled a surprising number of
end-users to program. Reuse in HyperCard
consists of copy and paste. In this approach, the
potentially useful connection between the source
and copy is lost.

In this paper, we introduce a new reuse approach
called Graphical Rewrite Rule Analogies
(GRRAs) that are built into the Agentsheets
programming substrate [18,19, 20, 21], We
contrast Graphical Rewrite Rule Analogies with
an object-oriented approach using inheritance in
the context of a reuse scenario. Analogies are not
limited to graphical rewrite rules and have been
explored in AgentSheets most recent
programming language called Visual AgentTalk
[3]. Finally, we discuss the applicability of
GRRAs in the face of analogical brittleness and
achievable end-user modifiability.

Figure 1. CityTraffic: Trains move on Tracks

The following two sections discuss and contrast
reuse approaches in the context of the CityTraffic
application.

Using Inheritance

SIMCITY IN 10 MINUTES: A REUSE SCENARIO One easy way to get this behavior is to make Car
a type of, or sub-class of Train, and Road a sub-
class of Track, as in figure 2. While this approach
will produce the desired behavior because of
inheritance, it is ontologically unsound, and
changing the object hierarchy in this way
produces a misleading model based on weak
design justifications.

Agentsheets is a Macintosh programming
substrate for creating domain-oriented visual
environments. In the last four years, Agentsheets
has been used to create more than 40 educational
and industrial applications serving as construction
kits, simulation environments, visual
programming languages, design environments,
and games.

 

subclass-of subclass-of

We use a scenario to explain the issues arising
from reuse. In an application called CityTraffic
(Figure 1) used to model traffic patterns, an end-
user, in this case a urban planner, wishes to
incorporate cars and roads. Noticing that Trains
and Tracks are already successfully programmed,
and realizing that cars move on roads similar to
the way Train moves on Track, the user wishes to
reuse the move behavior already written for the
Train object and attach it to the Car object.

Figure 2. Acquiring Behavior by Inheritance

In order to correct this problem, it is expected
that the end-user become a bit more of a
programmer, which in itself can be an erroneous
expectation. In the class hierarchy Cars can



become siblings of Trains and Roads sibling of
Tracks by creating two abstract super classes:
Moving-Object and Movement-Guiding-Object
(Figure 3).

While this new class hierarchy may be
ontologically sound, it introduces two very
serious problems:

 • Overgeneralization. If city traffic is run
with this new representation in place, Trains
can now move on Roads and Cars will now
move on Tracks, which although
theoretically possible, should not be
allowed to happen in the urban planning
domain application. In order to get around
this real-life constraint, the behavior of
Trains and Cars would need to be
specialized again to prevent these unwanted
combinations of Moving-Objects and
Movement-Guiding-Objects.

Movement
Guiding
Object

Moving
Object

Figure 3. Creating Siblings

Program fragments guiding the behavior of the
Train moving on Tracks need to be generalized in
order to also enable Cars to move on Roads. The
Train behavior was previously expressed with
graphical rewrite rules [1,9,13,18,22] (Figure 4).

• Non-Visual Abstractions. Another problem
with this new representation is especially
apparent in the visual arena. Abstractions
are hard to represent in visual programming
approaches. Urban planners have little use
for abstract classes that have no intuitive
visualization such as Moving Object and
Movement Guiding Object. These super-
classes are unintuitive non-visual
abstractions. When another end-user wishes
to add Trucks to the model, the true object
hierarchy must be retrieved, and the end-
user must again foray into the programmer's
realm, this time understanding not only that
Truck is a Moving Object, and that its move
behavior must be specialized to preclude it
from moving on Tracks, but also that
Trucks have a visual depiction that is not
inherited.

IF THEN

Figure 4. A Graphical Rewrite Rule

To generalize these rules means to express the
rules in terms of the abstract classes. Specifically,
Trains need to be substituted with Moving-Object
and Tracks with Movement-Guiding-Object
(Figure 5):

Movement
Guiding
Object

Object
Moving

Movement
Guiding
Object Object

Moving

Using Graphical Rewrite Rule Analogies

A very different approach to solve the problem is
the use of Graphical Rewrite Rule Analogies.
What the user wishes to communicate to the
system is:

Figure 5. Abstract Rewrite Rule



Cars move on Roads

like

Trains move on Tracks

By using Graphical Rewrite Rule Analogies
within Agentsheets, the user can specify this by
way of an analogy dialog box (Figure 6). The
result is that the behavior programmed via
graphical rewrite rule for Train moves on Track
is transferred to a Car object on Road. The verb
moves is differentiated for Trains and Cars, so
that Trains do not now move on Roads nor will
Cars move on Tracks.

Figure 7. Rule created by Analogy

Gentner and others [4, 10,15,16] recognize
several critical aspects of analogies, including
clarity, richness, and systematically, where
systematically is derived from structure mapping
theory. Structure mapping theory distinguishes
between attributional similarity of objects and
relational similarity of objects. Relational
similarity allows for first-order relations, which
take objects as arguments and higher-order
relations, which take propositions as arguments.
High systematically in an analogy means that
many higher-order relations are shared between
the base and target domains.

Reuse of code in the object oriented
programming paradigm [2, 11, 23] depends on a
systematically match between the behavior of the
original code and the behavior of the target code.
The most efficient reuse of object oriented code
can occur when there is both a great deal of
structural similarity and systematically between
the base and target programming tasks. When
seeking to reuse code, an end-user seeks a good
analogy, i.e. a clear, rich and systematic mapping
between the code sought for reuse, and the
envisioned new application code. The more
analogous the base code, the fewer modifications
required for reuse, which implies a decreased
necessity for the end-user attempting to program
to understand any programming paradigm.

Figure 6. Making an Analogy

The result of the analogy is a new rewrite rule
attached to cars allowing cars to move on roads.

Graphical Rewrite Rule Analogies can be used
to increase the analogous match between the base
code and the envisioned target code. This allows
the user to reuse precisely the behavior that is



desired avoiding overgeneralization the need for
non-visual abstractions.

Figure 9. Transformed Tracks

APPLICABILITY OF GRAPHICAL REWRITE RULE
ANALOGIES

Graphical Rewrite Rule Analogies provide an
alternative programming solution which
facilitates reuse and avoids the discussed pitfalls
of an object oriented approach. Questions remain
to be answered. Lewis [12] have brought up
interesting questions about the robustness of
automatic cut and paste techniques. Simple
substitution in these cases is often over-specific
and can add annoying steps to the process for
little gain. It is no trivial matter for a computer
system to substitute correctly at all the necessary
levels required to render the resulting code useful
and usable without further editing by a human.
Lewis proposes a concept called pupstitution to
decrease the brittleness inherent in straight copy
and paste techniques. This semantic and syntactic connectivity

information about an icon can be used to support
pupstitution in analogous cut and paste. If we
apply Graphical Rewrite Rule Analogies to our
example as described in the previous section, we
achieve the desired behavior in the Car object,
however, we are not quite to the point where a
Car object (or a Train object, for that matter) can
move on all types of appropriate surfaces.
Straight Tracks and straight Roads will be
handled correctly, but at an intersection or a
curve, neither object will know how to behave
given the move rule we have defined for it. To
provide this ability, it will be necessary to define
curve and intersection Track icons, and then
specify rules of movement for Trains on each of
these types of Tracks. Transforming these rules to
Car by analogy still requires the end-user
programmer to map the appropriate type of Track
to the corresponding Road icon. By specifying
the connectivity of an icon (as in Figure 8), and
then transforming it, the move rule acquires a
useful dimension of complexity. Trains now
know how to move on all kinds of Tracks. When
an analogy to this situation is applied, the system

In the Agentsheets substrate, related concepts are
represented by related icons. From the base icons
created for the gallery, syntactic transformations
can be applied to automatically create meaningful
variations to illustrate intersections and curves, as
well as directional orientation [21]. Icons may
also be annotated with semantic information such
as connectivity (Figure 8), which gives the
machine that displays them information about
what they mean.

Figure 8. Annotating Icon with Connectivity Semantics

Transforming the annotated Track creates an
entire family of Track icons (Figure 9).



uses this semantic information and the correct
mapping between Tracks and Roads can be made
without the user's intervention.

REFERENCES

1. Bell, B., “ChemTrains: A Visual
Programming Language for Building
Simulations,” Technical Report, CU-CS-
529-91, Department of Computer Science,
University of Colorado at Boulder, Boulder,
Colorado, 1991.

2. Booch, Grady, Object Oriented Design with
Applications, Benjamin/Cummings,
Reading, MA, 1994.

3. Craig, B., "Behavior Combination Through
Analogy," Proceedings of the 1997 IEEE
International Symposium on Visual
Languages, Capri, Italy, IEEEE Computer
Society, 1997, pp. 270-273.

4. Chee, Y.S., "Applying Gentner's Theory of
Analogy to the Teaching of Computer
Programming", Int. Journal of Man
Machine Studies, Vol. 38, pp. 347 - 368,
1993.

Figure 7. Planning City Traffic

CONCLUSION

5. Clement, C.A., and Gentner, D.,
"Systematicity as a Selection Constraint in
Analogical Mapping", Cognitive Science,
Vol. 15, pp. 89-132, 1991.

It is highly desirable for end-users to modify or
enhance domain applications, and mechanisms
are needed to provide this flexibly without
forcing end-users to become programmers.
Object-oriented concepts relying on single and
multiple inheritance can be too complex for end-
users, and non-inheritance approaches too
limited. Graphical Rewrite Rule Analogies allow
reuse without the oversimplification,
overgeneralization and unnecessary abstraction
pitfalls of these other approaches.

6. Dershowitz, N., "Programming by
Analogy", in Machine Learning: An
Artificial Intelligence Approach, Volume II,
R.S. Michalski, J.G. Carbonell, T.M.
Mitchell, eds., Morgan Kaufmann
Publishers, Los Altos, CA, 1986, pp. 395
-423, ch. 15.

7. Eisenberg, M., and Fischer, G.,
"Programmable Design Environments:
Integrating End-User Programming with
Domain-Oriented Assistance," CHI '94,
ACM Press, 1994, pp. 431-437.

ACKNOWLEDGMENTS

The authors wish to acknowledge Clayton Lewis,
and the members of the Human Computer
Communication group at the University of
Colorado. The research was supported by the
National Science Foundation under grants No.
DMI-9761360, RED 925-3425, and Supplement
to RED 925-3425.

8. Fischer, G., Henninger, S., and Redmiles
D., "Cognitive Tools for Locating and
Comprehending Software Objects for
Reuse," IEEE Computer Society Press, Los
Alamitos, CA, 1991, pp. 318-328.



9. Furnas, G. W., “New Graphical Reasoning
Models for Understanding Graphical
Interfaces,” Proceedings CHI’91, New
Orleans, LA, 1991, pp. 71-78.

18. Repenning, A., “Agentsheets: A Tool for
Building Domain-Oriented Visual
Programming Environments,” Ph.D.
dissertation, Dept. of Computer Science,
University of Colorado, 1993.

10 Goldstone, R.L., Medin, D.L., and Gentner,
D., "Relational Similarity and the
Nonindependence of Features in Similarity
Judgments", Cognitive Psychology, Vol.23,
pp. 222-262, 1991.

19. Repenning, A., “Agentsheets: A Tool for
Building Domain-Oriented Visual
Programming Environments,” INTERCHI
'93, Conference on Human Factors in
Computing Systems, Amsterdam, NL, 1993,
pp. 142-143.11. Jacobsen, Ivar, et. al., Object Oriented

Software Engineering - A Use Case Driven
Approach, Addison-Wesley, 1993. 20. Repenning, A., “Designing Domain-

Oriented Visual End User Programming
Environments,” submitted to: Journal of
Interactive Learning Environments, Special
Issue on End-User Environments, , pp.
1994.

12. Lewis, C., "Some Learnability Results for
Analogical Generalization", Technical
Report CU-CS-384-88, University of
Colorado, 1988.

13. Lieberman, H., “An Example-Based
Environment for Beginning Programmers,”
in Artificial Intelligence and Education, R.
W. Lawler and M. Yazdani, Ed., Ablex
Publishing, Norwood, NJ, 1987, pp. 135-
151.

21. Repenning, A., "Bending Icons: Syntactic
and Semantic Transformation of Icons", to
appear in: Visual Languages '94.

22. Smith, D. C., A. Cypher and J. Spohrer,
“KidSim: Programming Agents Without a
Programming Language,” Communications
of the ACM, Vol. 37, pp. 54-68, 199414. Majidi, M., and Redmiles, D. "A

Knowledged-Based Interface to Promote
Software Understanding", Proceedings of
the 6th Annual Knowledge-Based Software
Engineering Conference, IEEE Computer
Society Press, Los Alamitos, CA, 1991, pp.
178 - 185.

23. Wilkie, George, Object-Oriented Software
Engineering, Addison-Wesley, 1994.

15. Medin, D.L., Goldstone, R.L., and Gentner,
D., "Respects for Similarity", Psychological
Review, Vol. 100, No. 2, pp. 254-278,
1993.

16. Medin, D.L., Goldstone, R.L., and Gentner,
D., "Similarity Involving Attributes and
Relations: Judgments of Similarity and
Difference are not Inverses", Psychological
Science, Vol. 1, No. 1, 1990.

17. Nardi, B.A., A Small Matter of
Programming: Perspectives on End-User
Computing, The M.I.T Press, Cambridge,
MA, 1993.


