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Abstract
each action does, c) how conditions and actions are linked,
and d) when and how rules are evaluated and executed
(i.e., rule ordering). Program composition, the ability to
assemble the language primitives in order to achieve the
desired effects, presents even more challenges for the user.
While children and other novice users can for the most part
comprehend the if-then structure of rules, they have a
difficult time mapping their own ideas into rules [11].
Users have trouble determining what conditions and
actions to use, as well as which conditions to combine with
which actions. They also dislike writing many rules to
accomplish seemingly simple tasks, especially if the rules
are repetitive.

Designing programming languages that are accessible to
elementary school children is a complex task.
Programming languages that contain visual elements
provide a good starting point, because they are inherently
appealing to many children. As novice users, however,
children require additional support to use programming
languages effectively. In this paper we describe five
principles for designing end-user programming languages
which address some of the obstacles we have observed
when users attempt to create sophisticated programs. The
principles are based on extensions we have made to Visual
AgentTalk, the tactile programming component of the
Agentsheets system. Although our research has centered on
children, we believe that the discussion is widely
applicable to the creation of languages for novice users of
any age.

Repenning and Ambach addressed some of these issues
with their notion of tactile programming [23, 24]. Based on
our experience working with children, we have extended
their model of tactile programming to further address these
issues, and have formulated a number of guidelines for
designing end-user languages that contain a mixture of
pictures and text. We will situate the discussion of these
guidelines in the context of two specific units from a life
sciences curriculum.

Introduction

Over the past three years, we have worked with children
using visual languages to create science models as part of
the Science Theater/Teatro de Ciencias (sTc) project. For
the first two years of this project, the children worked with
KidSim/Cocoa, a pictorial language that uses programming
by demonstration to create graphical rewrite rules [4]. In
the third year, children used Visual AgentTalk (VAT), a
partly visual, partly textual interface to the Agentsheets
system [25].

Setting

We have used models created in Agentsheets/VAT as
part of a life sciences curriculum for a 4th/5th-grade class.
Students in this class range in age between 8 and 11. They
have used the software as part of regular classroom
activities rather than in a computer club context. In this
constructionist setting [20] our ultimate goal is to expand
students’ understanding of science concepts and creation of
scientific explanations. The idea of using programming as
learning vehicle is not new [6, 8, 13, 19, 26] but gets under
increasing scrutiny because of high cost/benefit ratios. It is
absolutely crucial to maintain a balance between learning
about the software and learning about the science content.
To achieve this, students progressed from exploring
science models we created, to modifying the behavior of
objects within our models, to adding new objects to an
existing model, and finally to creating a model where they
designed and coded most of the objects themselves. In this

Many children are attracted by the dynamic, visual
aspects of these computing environments. They enjoy
drawing their own representations of objects they use in
their models, and they can describe in a general way how
these objects should behave. However, they often face
major challenges when trying to translate their ideas into
workable computer programs [2]

Children have difficulty in both program comprehension
and program creation. Program comprehension, the ability
to determine the effects of a program command, requires
users to understand: a) what each condition tests, b) what
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way the children were introduced in stages to the relevant
programming constructs while at the same time
progressing in their science study.

Design Principles

We present five language design guidelines that address
the issues raised above.

A gradual introduction to programming in a specific
learning context is often called scaffolding. In earlier
educational programming languages such as Logo [3, 19]
scaffolding was an approach to structure learning activities
but was not part of the programming environment itself.
Boxer moved beyond basic Logo by providing an
integrated programming environment combining
programming language with content material [5]. Others
have scaffolded programming visually either by using
iconic languages [30] or by combining graphical rewrite
rules with flavors of programming by example [1, 10, 14,
17, 22, 27-29]. Guzdial added interactive scaffolding
machinery to programming environments  [12] to help
users to understand programming related problem solving.
The scaffolding principles presented in this paper are
concerned with language design issues combining textual
and iconic representations to increase the effectiveness of
programming for end-users who are not interested in
programming per se.

1) Syntonicity. Programmers will be more
successful if they can identify with the object
they are programming.

Papert [19] used the term syntonicity to explain why
turtle geometry is easy for children to learn. He claimed
that children could learn turtle geometry more easily
because they could physically identify with the turtle. In
contrast to anthropomorphism [15], in which computers are
identified as human-like entities, syntonicity is about
humans identifying themselves as part of a computational
world such as an object on a computer screen or the
program controlling it.

More recently, Watt [31] has expanded on the
importance of syntonicity in programming. He asserts that
people think about programs in psychological, rather than
purely computational, terms. Watt thinks of syntonicity not
only in physical terms, but also in terms of goals, wants,
and intentions. Syntonicity may be particularly important
for children, who can understand that other beings have
intentional states, but do not yet have the capacity for the
sophisticated abstract reasoning needed to think
computationally.

We will be using examples from two of the units in the
curriculum to illustrate our language design guidelines. In
the first unit, which we will refer to as the Energy Web
(Figure 1), students added their own predators to a model
of plants and animals in a food web which we created.

Visual AgenTalk's tactile programming paradigm aids
syntonicity. People can identify with VAT programs
because they can assume the role of the program executing
device through the manipulation of tactile language objects
[23]. This ability allows users to playfully explore and to
comprehend language functionality. In contrast to
languages consisting of graphical rewrite rules, the mixture
of text and icons allows the user to view the rules from the
point of view of a specific agent.

Our work with Visual AgentTalk supports the idea that
syntonicity is an important consideration for designing
languages. We found that even small, seemingly trivial
changes to language primitives can result in considerable
improvement of program comprehension. For example,
early in the language design process, we noticed that
children had a difficult time understanding conditions in
which the actor was not stated explicitly. An example of
this idea is the original "see" condition (Figure 2), which
checks to see if there is an agent with a given appearance
in a specified direction. We changed this condition to "I-
see" because children had an easier time understanding the
condition when it better supported taking on the
perspective of the agent doing the seeing.

Figure 1. A FoodWeb Simulation world containing animal
agents programmed by elementary school children.

In the second unit, which we will call Fly Catcher
(Figure 10), students programmed their own carnivorous
plants. We provided a model fly, and their task was to
design a model plant that would be capable of “catching”
the fly.
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a)

b)

Figure 2: Syntonicity helps users to identify with program.
a) Original language condition to detect other agents, b)

syntonic variant of condition. Figure 5: The pronoun "it" can link conditions and actions.

2) Phrase Structure. A mixed textual and iconic
representation, if structured as phrase, can
significantly increase readability of programs
over purely iconic representations.

While syntonicity helps users to identify with the objects
being programmed, complete phrases enable users to more
easily state their intentions. Users find it easier to
understand and create rules that are written as complete,
grammatical sentences. Sometimes just changing the order
of the parameters and adding extra text to the command
format can make a big difference in comprehension. The
See condition mentioned above (Figure 5) provides an
example. Notice that, in addition to adding the actor (I), the
order of the parameters is changed and two words are
added. The condition as it now reads matches more closely
how we speak. Thus, “See right (a bird)” becomes “I see (a
bird) to my right.”

Figure 3: "me" also adds to syntonicity in Erase command

The erase command (Figure 3) is another feature that we
changed in order to support physical syntonicity. The
original erase command required the programmer to
choose a direction from a pop-up menu of arrows which
denote positions in the grid relative to the agent enacting
the command. The command to erase oneself looked like
"erase ." where” .” meant "the agent in my square", i.e., the
agent enacting the command. Children found this notation
confusing, so we changed the command to be more
explicitly self-referential by replacing the “.” icon with a
"me" icon. The combination of adding the actor “I”, and making

conditions self-referential using “me”, resulted in the
unnatural condition “I See me (depiction)” for checking
one’s own appearance. Since this command was confusing
to the children, we created a separate command for
checking one’s own appearance, called “I look like”
(Figure 6)

We also found that representations which allow children
to identify with the internal state of an agent make program
comprehension and composition easier. For example, in
the energy web simulation, children needed a condition to
determine whether an animal was hungry. In the original
language design (Figure 4), this would be accomplished by
testing that the value of a Boolean variable is equal to 1.
This syntax did not support thinking of hunger as an
internal state. In order to make this condition more
comprehensible to children, we created two conditions to
deal with Boolean or state variables. The new conditions -
"I am hungry" and "I am not hungry" are a more natural
way to express hunger as an internal state of the agent.

Figure 6: Conditions that match how users talk are easier to
understand.

Users were also confused by actions in which the object
was implied rather than stated explicitly. For example,
figure 5 shows a rule that erases an object to an agent’s
right. The object of the action (i.e., the agent being erased)
is a bird. The user must mentally connect the object “seen”
by the condition with the object being erased, a connection
which many users find difficult to make. This issue can be
resolved by using the pronoun “it” to connect the condition
and action of a rule. The rule can then be stated more
naturally as “If I see a bird to my right then erase it.” This
format also eliminates one common novice programming
error - neglecting to make the position arrows match. For
example, students might mistakenly enter a rule that said

Figure 4: Syntonicity includes goals, wants and intentions
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“If I see a bird to my right then erase (the agent) to my
left.”

through a large number of rules and to mentally connect
those rules which represent a single concept.

Designing a language at the level of phrases, rather than
just individual commands, moves the designer closer to the
realm of the end user.

Sets can also help address some issues regarding rule
order and random behavior. In the example above, if the
eat rule were written as a series of separate rules, the
predator would prefer to eat some foods over others,
depending on the order in which the rules were written.
Expressing eating behavior as a set provides a simple way
to express equal preference for the possible types of food
because one element from the set is randomly chosen to
eat.

3) Sets. Allowing users to operate on sets of
agents can simplify problem solutions and
reduce rule explosion.

Pane [18] has found that children very rarely describe a
solution that uses loops when asked to devise solutions to a
problem,. Instead, children seem more comfortable
expressing their ideas as operations on sets of objects. We
have found that sets can be very useful in helping users
create more powerful programs.

Sets of directions are a natural way to express random
movement. For example, the third rule displayed in Figure
7 allows the user to “Move randomly on” a set of agents
(in this case, ground), in any of a set of directions. For this
particular example, it makes most sense to move in any of
the eight possible directions (the default). In some cases,
the user might select a subset of the eight directions. For
example, the fly in the Fly Catcher program has both a
right-facing and left-facing appearance. Figure 8 shows
two rules that specify how the fly should move, based on
its appearance.

Figure 8: Sets of directions allow for flexible, random
movement.

The corresponding solution in Cocoa or Agentsheets
graphical rewrite rules would have required a much larger
number of rules and despite the similarity of the rules each
of these rules would have required a complete
programming by demonstration cycle.

4) Domain Orientation. Language pieces tailored
to the modeling domain help users to bridge
the problem-solution gap by hinting at
solutions.

Figure 7: A student uses sets to select prey for her mountain
lion.

Children, as well as most adults, have little patience for
creating simulations in which it takes many similar rules to
accomplish what is to them conceptually one task. For
example, in the Energy Web, students created predators
that could potentially eat many different types of food.
Without sets, users would have to specify each type of
food in a separate rule; however, using sets of depictions
(agent appearances), students could easily specify the
eating behavior in a single rule. In addition to eating
several different types of foods, animals also look or
“hunt” for different types of foods (see Figure 7). Again,
without sets, each type of food would require a separate
rule. Creating a potentially large number of rules which are
all conceptually related is a tedious task. Program
readability is also reduced, because of the need to scroll

Fischer [7, 9] has argued that domain orientation is
beneficial for end users because it reduces the conceptual
distance between the problem-domain semantics and the
software artifact. A program stated in the language of the
problem domain will generally be more understandable to
users because it matches the way they naturally talk about
the domain. Programming language scaffolding that is
domain-oriented [25] can decrease the amount of time
required for users to create a program and also potentially
increase the complexity of what the users are able to create.
We have employed domain-orientation in three areas
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within the VAT environment: commands, variables, and
templates.

value that was increased by eating and decreased by other
activities, such as moving (see Figure 11) Animals would
die if they were “out of” energy (i.e., energy <= 0).

4.1 Domain-Oriented Commands

In addition to numeric variables, some simulations may
rely on Boolean or state variables. In the Fly Catcher
project, students could make their plant parts be sticky or
slippery. Figure 9 shows one solution in which the plant
part is made to be both “slippery” and colored red (to
attract the fly). The plant designed by this student is shown
in figure 10.

We have reported previously that children often have
difficulty mapping the science content they wish to express
onto the operations provided by a visual language [2]. We
have been working toward reducing the distance between
the way children describe their model and the commands
available to implement the model. We hoped that reducing
this distance would help children construct models that
were more complex and more explanatory than those done
in previous years using a completely pictorial language. As
recommended by Lewis & Olson [16], we have moved
away from the traditional computer science perspective
that a handful of simple general primitives should be
combined in creative ways by the programmer to achieve a
desired effect.

Figure 9: Domain-Oriented variables are easier to use.

Instead, we have supplied commands which more
closely match the way children describe their agents’
actions. This difference can be as simple as replacing, for
example, “erase the squirrel to my right” with “eat the
squirrel to my right” and” erase me” with “die.” Although
“eat” and “die” map to the same lisp code as erase, for a
child without much programming experience, “eat” and
“die” are more obvious choices than “erase.”

We have also provided some special-purpose commands
to perform actions which are common for the specific
problem domain and which could be tedious (and not
intuitive) for users to compose using lower-level
primitives. For instance, a student may write a rule that
says “If I see (a rock) within (1-4 ) steps, then hide
underneath it”. The “hide underneath it” action moves the
agent to the grid square containing the rock (or specified
object), sets a variable in the agent which marks it as
hidden and actually places it underneath the rock (i.e.,
beneath the rock in the stack of objects on that grid
square). “Hide underneath it” matches the way the students
describe an animal’s behavior so it’s an easy choice when
they want to implement this behavior. This command also
hides the sometimes confusing process of setting a
variable.

Figure 10: Student's fly catcher model.

4.3 Domain-Oriented Templates

Two particularly difficult issues for students are
combining conditions and actions correctly and
understanding rule order. Although framing rules as
complete, grammatical sentences helps, selecting the
necessary primitives can still be a difficult and error-prone
process. In VAT, we are able to provide a “template” agent
that the students can “clone.” A template is an agent with
predefined methods that relate to the problem domain. The
methods will typically contain domain-oriented commands,
which may rely on domain-oriented variables. Unlike
commands in regular agents, however, the commands in
the templates often have information that is left blank.
When students clone a template, they create a new agent
which they customize by assigning a name, creating one or
more depictions, and entering the necessary information
into the agent’s commands.

4.2 Domain-Oriented Variables

Using variables can greatly expand what can be
accomplished in a simulation. For example, a common
requirement is that agents change over time: plants grow,
baby animals mature, etc. In our experience, children can
manipulate variables, but they have difficulty determining
when and how to use them within their own programs [21].
By providing a pull-down menu from which children can
choose domain-oriented variables, we can increase the
ability of children to understand and use variables. For
example, in the Energy Web unit, animals had an “energy”
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Templates are used in the Energy Web to allow the
students to focus on the science content of their models
(i.e., the specification of the animal, particularly what it
eats) and to ignore the extra methods which were required
for overall program operation but were not important in
terms of the science content. Figure 11 shows a prepared
Energy Web template. This template contains the same
three rules as the student’s rules in figure 7, except the
choice of animals is left blank. Additional methods (not
shown) perform tasks such as setting initial parameters,
checking energy levels and updating displays which show
how much energy an animal has remaining.

5) Selection and Polymorphism. Composition is
supported by offering users a large selection
of powerful commands and clustering them
appropriately.

We frequently rephrased a single command to apply it in
slightly different situations. For example, an action may
apply to me, to all my neighbors, to one of or any of a set
of agents. The same action may apply to an agent in my
grid-square or in a certain direction or a certain distance
away. The action may apply to the agent only if it appears
on top of the stack of agents in a grid-square or if it
appears anywhere in the stack. We could have designed
one super command with multiple options which could be
used in all of the above situations. However, we have
found that the simpler and more grammatical the phrasing
is of the command, the more readily children understand it.
Providing five or six variant versions of the same basic
command helps them better comprehend each individual
command. It also prevents them from stumbling over how
to set complicated options. Figure 12 shows a palette with
four ways to use the “tell” command.

Figure 11: Templates allow students to focus on important
science content, while avoiding problems with command

selection and rule ordering.

By placing the blank rules in a template, we eliminate
the need for the students to select the necessary conditions
and actions. We also avoid a common rule-ordering
problem. In rule-based systems like VAT, rules are tested
from the top down, and the first rule with a “true”
condition is executed. The first two rules in the template
represent “eating” and “hunting.” Since animals must eat
in order to survive, they should have a preference for
eating (i.e., the “eat” rule should be first). However,
students tend to think of the actions as a sequence.
Therefore, when working without a template, they often
place the “hunt” rule before the “eat “ rule.

Since the templates are constructed of ordinary VAT
methods with some rules preselected, students are not
constrained to just the behaviors provided by the template.
They can add and delete rules in the same manner as if
they created the agent from scratch. For example, the
student whose model is shown in figure 11 extended the
template so that her animal would “sleep” at night.

Figure 12: Polymorphic commands to tell an agent to perform
a method. The drop-down arrow indicates that the user may

choose the method from a list or type in a method name.

The creation of multiple domain-oriented commands
with different names but similar functionality, and the
creation of multiple versions of polymorphic commands
rapidly leads to impossibly large command palettes. We
have reduced the choices for students by making available
only those commands which might be useful for the
current modeling project. We have further subdivided the
available commands by grouping them in separate palettes.
Clicking on a rule background, the normal method for
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bringing up a palette, makes the simplest and most
commonly used commands appear. By clicking on the
Tools menu, students can access the more advanced and
developer command palettes. Within each palette,
commands are organized into categories separated by
headers labeled with a domain-oriented name.
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