Behavior Processors: Layers between End-Users and Java
Virtual Machines
Alexander Repenning and Andri loannidou

Department of Computer Science
Center for LifeLong Learning and Design
University of Colorado, Boulder CO 80309-0430
(303) 492-1349, {ralex, andri}@cs.colorado.edu
Fax: (303) 492-2844
http://lwww.cs.colorado.edu/~ralex/

Abstract

Visua programming approaches are limited in their usefulness if they do not include a profile of
their users that defines exactly who is attempting to solve what kind of problems using which
tools and why. Without such a definition, visual programming approaches can end up as
solutionsin search of problems. Reconceptualizing — programming environments as layered
behavior processorsin the context of creating SimCity ™-like interactive simulations — makes
end-user programming more feasible. The layered approach serves the programming needs for a
range of users, including casual computer end-users and professional programmers. The
extension of the Agentsheets system with the Ristretto™ agent to Java bytecode compiler is
used to illustrate how a behavior processor enables end-users to create their own Java applets
that can be embedded into web pages.

Copyright 1997 IEEE. Published in the Proceedings of VL'97,
September 23-26, 1997 in Capri, Italy. Personal use of this
material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this
work in other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions / IEEE Service Center /
445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331,
USA. Telephone: + Intl. 908-562-3966.

Behavior Processors: Layers between End-Users and Java
Virtual Machines
Alexander Repenning and Andri loannidou

Department of Computer Science
Center for LifeLong Learning and Design
University of Colorado, Boulder CO 80309-0430
(303) 492-1349, {ralex, andri} @cs.colorado.edu

Fax: (303) 492-2844
http://www.cs.colorado.edu/~ralex/

Abstract

Visual programming approaches are limited in their
usefulnessif they do not include a profile of their users that
defines exactly who is attempting to solve what kind of
problems using which tools and why. Without such a
definition, visual programming approaches can end up as
solutions in search of problems. Reconceptualizing —
programming environments as layered behavior processors
in the context of creating SimCity™-like interactive
simulations — makes end-user programming more feasible.
The layered approach serves the programming needs for a
range of users, including casua computer end-users and
professional programmers. The extension of the
Agentsheets system with the Ristretto™ agent to Java
bytecode compiler is used to illustrate how a behavior
processor enables end-users to create their own Java applets
that can be embedded into web pages.

Who is the programmer?

With the next millennium in sight, the visual languages
community is starting to take inventory of its successes and
failures in order to develop new directions in which
research can explore new ideas to increase the effectiveness
of visual programming approaches. Severa classification
schemes [10, 18] have been proposed to structure a
complex space populated with a variety of programming
approaches. A nice and increasing set of cognitive
dimensions [7] has not only been proposed but has also
been used to evaluate and contrast both existing and
hypothetical programming systems.

Taxonomies and cognitive dimensions are important
instruments of analysis, but they provide little information
about the actual users of visual programming environments.
Specifically, it is important to understand the backgrounds
of users, their motivations, and their needs, and to get at
least a sense of the problems they want to solve using
visual programming environments. Visual language
"superlativism" — that is, the bias toward overly optimistic
and general assertions about the positive value of visual
programming, excellently surveyed by Blackwell [2] — is

partly due to the lack of specific statements about who is
trying to solve what problems and how, as well as the lack
of empirical studies that evaluate the performance of users
solving problems.

Knowledge of the mind sets, attitudes, and skills of end-
users empowered by visual programming is important to
understand the role of programming environments. For
instance, most VCRs can be programmed, but VCRs are
not considered programming environments, nor do most
people using VCRs think of themselves as programmers
enjoying the process of programming. For the majority of
computer end-users the very notion of programming is
daunting and, at the same time, completely secondary to the
solution of a problem, such as taping a specific TV
program. It is exactly this kind of programmer, who does
not want to program, for whom visual programming could
potentially make the biggest difference. Currently there are
90 million users of PCs — machines that are programmable
— but the question is why should they want to program and
what hope would they have to be able to program? Many
people argue that programming a VCR is aready so
difficult that programming a much more complex device,
such as a computer, would be an even more intricate
process for that they see little hope of achieving. The
following discussion refers to these kind of "forced"
programmers, but by no means implies that visua
programming should completely focus on them. In the past,
some visua programming environments such as LabView
[8] and Prograph [6] have successfully supported skilled
programmers.

As a programmable machine, the computer holds enormous
potential as the ultimate flexible medium — a kind of
computational clay — for people to express themselves or
to communicate information to other people in new ways.
The idea of using or even creating a computer as a
simulation or game environment is appealing to many
people [21], but, unfortunately, the current programming
approaches — visual or not — place the ability create these
things out of reach for the majority of people.

We believe that in order to make the computer a more
malleable medium in the next millennium it is necessary to
get amuch better sense of exactly who these people that we
are trying to empower with visual (or other kinds of)
programming really are. We may have to reconceptualize
the very process of programming and its role in society.
While cognitive dimensions and programming approach
taxonomies are necessary instruments, we may have to
increasingly draw from other fields of study such as
anthropology, ethnography, and sociology.

This paper can be little more than a small step toward this
kind of goal. However, by drawing from experiences with a
diverse group of users ranging from middle-school children
creating educational simulations of the world (in which
they live) to environmental design professionals simulating
issues of sustainability in city planning, we hope to start a
process of reconceptualization. Specificaly, this paper
outlines the notion of bricolage as a way to think about
programmers and programming, and uses the Agentsheets
system [15-17] to illustrate how bricolage can be supported
with a so-called behavior processor.

Bricolage

The understanding of the intricate relationships among
people, tools, and problems should not be limited to
cognitive and technical issues, but should include what
Papert calls intellectual style [12]. Papert and Turkle use
the term "bricolage" to describe intellectual style in an
educational context in which children program in Logo.
The term bricolage was originally introduced by the French
anthropologist Claude Lévi-Strauss to describe the process
of theoretical tinkering by which individuals and cultures
use objects around them to assimilate ideas. Papert defines
bricolage as an organizational style that can be described as
negotiational rather than planned in advance. Bricoleurs are
"tinkers using what they got, improvise, and make do."

Bricolage, the process of gradually using components and
building them up to larger and larger structures, is often
found in environments such as spreadsheets. From a
software engineering point of view, large spreadsheets
maybe be declared to be hopeless disasters because they
have organically grown bottom-up into increasingly
complex webs of formulas to a point where the creator is
the only person able to maintain them. While this approach
does lead to a number of problems [22], it generally gets
the job done for millions of spreadsheet users.

The point here is not to judge bricolage as good or bad with
respect to programming style, but to acknowledge that most
people for whom programming is only a means to an end
(e.g., the VCR or spreadsheet programmer), will resort to
some kind of bricolage. This may be due to the lack of
formal software engineering training but can also smply be
the result of having other, more important things to do.

These users are not likely to employ elaborate analytical
top-down planning processes to create working programs.
These circumstances leave user manuals unread, resulting
in"let's see what happensif | press this button" approaches.
For typical Agentsheets users, the same situation holds true.
That is, their main interest is to get a simulation running
and not to write an elegantly generalizable program. Could
this be a taste of what is to come for the next generation of
end-user programmers? Turkle maintains that in the 1990s,
as computing shifts away from a culture of calculation,
bricolage has been given more room to flourish [21]. The
emerging question is how a programming environment can
accommodate bricolage.

A first step toward creating a bricolage environment is to
reconceptualize programming as a more domain-oriented
process [5] that is more closely related to the actual
problems to be solved. It is crucial to rethink the process of
problem solving in this specific context and not just to find
a subsgtitute for the stigmatized programming word. In the
context of creating simulations, we propose the term
behavior processing, referring to the process of creating
and using behavior units called agents. Analogous to a
word processor, a behavior processor aids users in their
process of dealing with behaviors. Word processors define
a number of operations on words such as typing, spell
checking, formatting, rearranging, and copying. Similarly,
behavior processors define operations on behaviors as the
basic units. Such operations include, but are not limited to,
defining, modifying, merging, and exchanging behaviors.
At the moment, these operations elevate behavior
processing only dlightly over traditional programming.
From today's perspective WYSIWYG word processors
seem to be obvious, but it took many years to develop the
concept of aword processor.

Behavior Processors

The role of a behavior processor is to support bricoleursin
creating, modifying, combining, and sharing behaviors. The
Agentsheets system [15-17] is a behavior processor
supporting a wide range of users to create SImCity ™-like
interactive simulations. These simulations can be compiled
down into Java applets that can be embedded directly into
web pages. An agentsheet is an agent-based spreadsheet
typically containing a large number of agents interacting
with each other in ways similar to the interactions between
cells in a spreadsheet. Each agent consists of behavior and
look. Figure 1 below shows an Agentsheets application
called "Der Packmann," which features a number of agent
types, such as pacmans, monsters, pills, and walls.

Figure 1: Agentsheet containing pacmans, monsters, pills, and

wall agents
To illustrate the operation of a behavior processor, we use
an analogy to word processors. Both word processors and
behavior processors bridge a wide gap between human
cognition and technology. The word processor supports the
high-level (typically WYSIWYG) direct manipulation of
words in order to create a document. The word processor
can render an electronic version of a document into a more
tangible form using a document description language such
as Postscript. A Postscript file can be sent to a printer
containing a Postscript interpreter which renders the
description language into printed pieces of paper.
Anaogously, the behavior processor supports the direct
manipulation of behaviors in order to create an interactive
simulation or a game. The simulation, such as the pacman
application of Figure 1, can be run in Agentsheets directly;
that is, a user can plan the Pacman game or the behavior
processor can render it into an applet consisting of Java
byte codes. The applet, in turn, can be run on any
hardware/software platform featuring a Java virtua
machine [9]. In this sense it can be claimed that Java plays
arole to networking very similar to the role Postscript plays
to printing.

Interactive
Simulation

v :

Word Processor |Behavior Processor

v v

Java Byte Codes
1

Postscript Interpreter Java Virtual
Machine

Document

Figure 2. Layers of word processor and behavior processor

In order to be effective for a wide range of applications, a
behavior processor must be:

e usable: alowing the bricoleur to solve simple problems
in asimple way. For instance, to do frequent operations,
such as moving an agent, the behavior processor must
offer a recognizable solution. The behavior processor

should not require the bricoleur to assemble
fundamental operations first from lower-level
operations.

e expressive: with some additional effort it should still be
possible to solve nontrivial and difficult-to-predict
problems.

These two characteristics represent a trade-off [15].
Programming approaches such as C++ are highly
expressive, but ae geared toward professional
programmers. End-user programming approaches such as
graphical rewrite rules [14, 20] are highly usable but are
very limited in their ability to deal with more complex
applications.

Instead of striving for asingle point — the Holy Grail — in
the usahility versus expressiveness space, the position taken
here is that behavior processors need to be structured as
layers providing end-users some choices in the usability
VErsus expressiveness space.

A high

Graphical Rewrite Rules
Tactile Programming
Spreadsheet Formulas

Tzability

Commands

Type Interactors

low high >

Expressiveness

Figure 3. Four points in the Usability/Expressiveness space

VCRs are examples of programmable devices providing
different usability versus expressiveness levels. Most
modern VCRs include some kind of fold-down panel
proving users access to a more complex set of operations.
With the panel closed, the Start, Stop, Forward, and
Rewind buttons are dominant in the user's view of the
VCR. Once the panel is folded down, additional, more
complex choices are provided, often including functionality
to set the time or to record programs.

The following sections illustrate the four layers of the
Agentsheets behavior processor representing four points in
the usability/expressiveness space (Figure 3).

Layer 1: Visual AgenTalk and Visual AgenTalk Formulas

The highest level layer closest to the direct needs of the
bricoleur. Activities on this layer would be equivalent to
editing text in aword processor or defining simple formulas
in a spreadsheet. The role of the behavior processor is to
elevate the program representation from a textual or visual
representation to the status of a user interface. In other
words, in its elevated form, the program is the user
interface. This kind of interface in support of an
exploratory style of programming/behavior processing is
necessary for bricolage.

To be best suited for bricolage, a behavior processor has to
allow users to "play" with the language and, explore its
functionality. Agentsheets includes a tactile programming
language [15] called Visual AgenTalk, which provides
language objects called commands packaged up with user
interfaces. We think of tactile programming as a direct
continuation of our work on graphical rewrite rules in
Agentsheets [13] and of our collaboration with Apple
Computer on KidSim/Cocoa[19].

Tactility is used here not in the sense of complex force
feedback devices that are hooked up to computers, but
much more in the sense used by Papert to explain the
closeness of bricoleur programmers to their computational
objects [12]. One departure from Papert's framework is that
the notion of computational objects in Visual AgenTak is
not limited to the objects that are programmed, such as the
Logo turtle, but aso applies to the programming
components themselves, which are elevated to the level of
highly manipulatable objects.

Conditions: EO0=— Actions:

Rewrite-Agent

[.
—
L

Sound Tevel m

Foami

http:/ fwwow s coloradoedu

i

Power User.. E |—

Figure 4. Command palettes: conditions (left), actions (right)

e ——
Power User..

1 &

Tactile programming is more than "drag and drop" because
the operations it enables are not used just as construction
mechanisms (e.g., move, copy, delete language pieces) but
also as a means of direct exploration. At any point in time
users can explore the functionality of any command by
simply dragging and dropping them onto any agent in their
simulation. A simple case of exploration is, for instance,

dragging the move command from the action

command palette (Figure 4, right) onto a monster agent,
which will make the monster move to the right.

Condition commands, when dragged and dropped onto
agents, will reveal whether the condition holds for the agent
testing the condition in its current context. If the Next-To
condition (in Figure 4) is dragged onto the red monster in
Figure 1, visual and acoustic feedback will immediately
indicate that this condition would not hold.

Permanent behavior can be created when these commands
— and not just playing with the conditions and actions —
are combined into rules that can be tested using the same
mechanism of exploration. One of the many pacman rules
defines that if the cursor-up key is pressed the Pacman
changes its direction to be facing up. Dragging and
dropping the rule onto a pac man will test the entire rule.
Step-by-step with visual feedback, all the conditions are
checked (there is only one in this example rule). If, for
instance, the cursor-up key on the keyboard is not pressed,
acoustic feedback is provided and the condition that fails
blinks to indicate the problem. Repeating the test while
holding down the key will successfully match the condition
and, as consequence, execute al the actions — in this case,
changing the direction attribute and the depiction of the
agent.

Figure 5. Rule: if cursor-up key is pressed, set new direction to
up and change depiction to pacman facing up

The ability to test asingle rule out of a possibly large set of
rules is important for the bricoleur. Without this ability
rule-based systems become difficult to debug and can
quickly reach a critical mass of complexity that is not due
to the rule-matching mechanism of the system but due to
the cognitive complexity posed by the number of rules.
Even if a user with a problem suspects a certain rule to be
faulty, it can become extremely tedious to test that rule
without such a mechanism. The user may be forced to set
up complex situations or temporarily disable or even delete
rules preceding the rule in question.

Bricolage is a form of guided exploration at different
levels. At the level of commands, guidance arises from the
quick feedback provided by the drag-and-drop testing. Very
quickly, bricoleurs can determine, without having to first
write a complete program, the applicability of specific
conditions and actions to their problems. The same
principle of guided exploration holds true for command
parameters. For instance, the SEE condition (Figure 6) tests
for the presence of an agent with a certain depiction in a
specific direction. Direction as well as depiction are

parameters to the command that are set by the user via
direct manipulation. This is important because, as pointed
out by Nardi [11],the way parameters are specified can
affect the extent to which the programmer must learn a
syntax.

Figure 6. "See" command (left), manipulating direction
parameter (middle), manipulating depiction parameter (right)
The integration of parameters that are directly
manipulatable, such as the 2D pop-up diaogs for direction
and depiction, elevate the program onto the level of a user
interface combining ideas of form-based interfaces [1] with

end-user programming.

Command parameters do not necessarily have to be
constrained the way the direction and depiction 2D pop-ups
work. The parameter used in the key condition is
defined by clicking at it and then pressing some key on the
keyboard. Even more flexible are Visual AgenTak
Formula parameters which can be defined like spreadsheet
formulas. For instance, in a digita filter Agentsheets
application, formulas are employed to process rea-time
signals.

- P— —

Figure 7. Two plotter agents. The left one outputs a square
signal. The right one filters it.

For example, the agent to the right in Figure 7 accesses the
signal to its left and filters it with a simple formula. The
output value of this low-pass filter is defined as the
weighted sum of the value to the left and its old value
(Figure 8).

A F walue[left] + 009 % value

Figure 8. Attribute value is defined as formula with spatial
reference to value attribute of agent to the left

Layer 2: Making Commands

Agentsheets provides a default set of commands
(conditions, actions, triggers) that are expressive enough to
allow the creation of fairly complex simulations, such as a

Sim-City™ simulation. Even so, that set of commands is
limited. As users get more experienced with the system,
they tend to want to create more complex behaviors that
would either be impossible with the existing set of
commands or would require a round-about way, usually
involving a large number of rules. In most cases, the
introduction of anew command would simplify this process
significantly.

The use of these custom commands is similar to the
function of control panels found on some VCRs. When
folded down these panels provide access to a number of
additional, typically much smaller and more exotic buttons
controlling less frequently used operations such as setting
the time or programming a recording. Only a subset of
users either requires these operations or may actually be
interested in using them but is not willing to invest time
into learning how to use them. The same holds true for
command design. The ability to design commands resultsin
increased expressiveness at the cost of usability.

In simple cases, bricoleurs can define their own language
extensions by aggregating a number of rulesinto anew rule
group and giving it aname. This named rule group can then
be invoked with a special action such as "jiggle" in Figure
9. More complex cases require completely new commands.

Behavior: Geistl ————=m15

T —— A
[New Ru]e] [New Methnd] [F'u:uwer U59r..] - . E @

Figure 9. A rule group named "jiggle" when called makes a
monster randomly go left or right

In one of our Agentsheets test sites, the Centennial Middle
School in Boulder, Colorado, a group of sixth- to eighth-
grade students was working on a simulation of the Pearl
Street Mall, one of the popular areas in Boulder. The
students decided to build their game in the form of a

scavenger hunt, in which a user-controlled tourist X waks
around the mall and encounters interesting characters, such
as jugglers b d , bikers, 5;?1 people who follow him

around, even pick-pockets f " . The tourist's mission is to
gather a number of items, that can be bought from a variety
of stores located on the mall, given ainitial budget. It was

soon clear that the existing set of commands would not
suffice for this game. There was a need for trade
commands, such as ways for shops to set up and display
their inventories and, naturally, means for the tourist to buy
different things from shops. Therefore, we created a set of
new commands (Figure 10), and gave them to the students
to use.

=W Pearl-Street-Com SEE]
|

t budget fto

i
I

Show dnventor

i

Figure 10: New commands created for the Pearl Street Project

Y et more complex cases require access to the lower levels
of the behavior processor, in some cases reaching as deep
as creating commands to access low-level operating system
functions. These extensions, however, cannot typically be
implemented by the bricoleur. An example of such a
command is the WWW Read command which allows
agents to read and parse web pages in rea time. The
command shown in Figure 11 searches a web page for the
expression "Wind Speed:" and parses the following word as
a number into an agent attribute called "speed." This kind
of functionality allows agents to reach out from simulations
to real-world signals via the internet. The web page referred
toin Figure 11 is updated every 5 minutes.

http f Swewew atd ucar edufegi-bin Sflabwx

Figure 11. Command allowing agent to read web pages in real
time and extract numerical value

A command designer needs to specify the command
parameters and the function (in Lisp) that will be called
when the command is executed. The specification of the
parameter types is sufficient to generate the user interface
for the command. That is, designers need not worry about
how to lay out the parameters interactors nor do they have
to provide code for making parameters editable. The
WWW-FIND make calls additional functions to implement
TCP/IP protocols, parsing, and matching:

(defcommand WWW-FIND ((String string-type) "URL:" (URL url-type))
:type condition-command
:macro " (find-web-page-string-in-page ,URL ,String))

Commands of this complexity need to be created by
experts. However, through the open architecture of

Agentsheets, users can freely exchange such custom
commands via the web or email.[16] .Commands fulfill a
role comparable to macros in spreadsheets or VBXSs,
sharable components programmed in Visua Basic.
However, the biggest difference is that, in contrast to a
macro, a command not only provides raw functionality but
wraps up functionality as language accessible through a
direct manipulation user interface suitable for end-users.
Comparable trap door mechanism in systems such as
Rehearsal World [4] or ThingLab [3] also provide access
to the underlying programming language — Smalltalk in
both case — but do not include end-user interface
generators to wrap up new language pieces. LabView [8]
and Prograph [6] provide interactors for individual data
types (e.g., a push button switch for a boolean type) but do
not aid the mapping of entire type signatures.

Layer 3: Making Type Interactors

Agentsheets allows the design of custom type interactors. A
large set of built-in parameter types, such as the URL--
TYPE from the WWW read command (Figure 11), are
automatically translated by Visual AgenTalk to so-called
type interactors. These types interactors are direct
mani pulation mini-widgets used to edit values of that type.
Existing type interactors are used to define sounds, MIDI
values, keyboard key codes, numbers, depictions,
directions, etc. With the necessary skills, users can define
their own type interactors and consequently express new
commands based on these type interactors.

A number of visualization projects required the definition
of commands referring to color. An initial set of color
commands represented color parameters as editable text
fields to enter RGB values. In hindsight, and not very
surprisingly, the RBG-as-numerical-values approach was
not very well received by end-users and led to confusion. A
new color-type interactor pops up a color palette when
clicked and alows the user to sample any of the colors
contained or even to sample other colors contained
anywhere else on the screen.

I

a) o

b)

Figure 12. Clicking at Color-type interactor (a) allows
interactive color definition via a pop-up palette (b)

Designers of type interactors need to have substantia
knowledge of user interface implementation issues and
need to adhere to a type interactor protocol by providing
methods defining the size of the type interactor, click
actions, and avalue returned.

Layer 4: Ristretto " the Agent to Java Compiler

While Java enables its users to create interactive applets
and make them publicly available in their web pages, it is
gtill a programming language that requires expertise that
usualy only professional programmers possess, and it is
neither available to nor desirable for end-users. We claim
that in behavior processing, Java is at the level that
Postscript is in word processing. When users create a
document in word processing and want to print it out, they
just push a button that does exactly that. It is of little or no
interest to them that, in order to be printed, the document is
first trandated into Postscript and sent to a printer where a
Postscript interpreter creates the printed version. Just as
users of word processors do hot have to learn Postscript to
print their document, end-users in behavior processing
should not have to learn Javato create an applet out of their
simulations.

As a behavior processor, Agentsheets provides the
Ristretto™ compiler layer to allow end-users to create Java
applets out of their simulations, without having to learn
Java, or even worry about its existence. Suppose a user
created a Fish Tank simulation in Agentsheetsin which fish
swim around and sharks eat fish. In order to create the same
simulation as a Java applet for the user to include in his or
her homepage, it would probably take one or two days,
given that the user is a professional programmer. With
Ristretto, however, this process becomes a matter of
minutes for end-users as well as more sophisticated users.
Once the users are happy with their simulation, by pressing
a single button, Ristretto generates a complete Java applet
that can be embedded in web pages and then be accessed
remotely through the internet by other users. In just a few
seconds, Ristretto compiles every agent behavior directly
into Java class files consisting of Java bytecodes and
compiles agents depictions into GIF files. Trang ating agent
rules directly into Java bytecode results in very efficient
applets because the only run-time interpretation left is in
the Java virtual machine.

The applet created is ready to run on a large number of
different Java runtime support environments, including
Netscape Navigator (Figure 13), MS Explorer, JDK Applet
Runner, and MRJ Apple Applet Runner, allowing the
simulation generated to be used on a wide range of
hardware platforms.

™ Ristretto is tradmaked by Agentsheets Inc.

S[I=———"—— Netscape: Ristretto

EERIEEEEERE

Go To: |htt|:- 2 Purwewr s colorado edu /134 sy stems ARistretto AL

|'w'hat’5 MNew 7 | |'w'hat’5 Cool? | | Destinations | | Net Search | [

Gallery

‘Worksheet

Ll
L
¥
n
r

L2l

|Simulatiun Stopped

[start |

Slow 5 Fast [Stop]

Figure 13. Fish Tank applet generated with Ristretto agent-to-
Java-byte-code compiler

The Ristretto-generated applet allows its users to edit the
simulation world. Users can add and remove agents (in the
fish tank: water, ground, rocks, small fish, waves, caves,
sharks, and weeds), can start and stop the simulation, and
can change the speed at which the simulation is running.
Furthermore, the Ristretto-generated applet can be
controlled through JavaScript or interact with other applets
through interapplet Java functions.

Elevating the process of programming a Java applet to
behavior processing, as described above, presents end-users
with previously unavailable opportunities to harness the
power provided by the Java language, such as the cross-
platform capability and the creation of applets that can run
on web pages, without ever having to learn how to program
in Java

Conclusions

The claim put forward in this paper is that for visual
programming — or any kind of programming, for that

matter, — to be effective, it is crucial to know the context
in which the programming process is taking place. In other
words, what is the social context, — the circumstance in
which nonprofessional programmers create programs? Why
are they doing it and what kind of problems are they trying
to solve?

This paper has introduced the notion of a behavior
processor that alows end-users to create complex
interactive simulations and turn them into Java applets
without first having to become full-fledged programmers.

Acknowledgments

This work has been supported by the Advanced Research
Projects Agency in the Technical Reinvestment Program,
and the National Science Foundation under grant number
REC-9631396. Many thanks to Jm Ambach, who has
worked on the Java version of Agentsheets, and to Thilo
Hubner, author of the Agentsheets pacman game featuring
astill unbeaten level 3.

References

1. Ambler, A. L., and M. M. Burnett, "Influence of Visual
Technology on the Evolution of Language Environments,”
IEEE Computer, pp. 9-22, 1989.

2. Blackwell, A., "Metacognitive Theories of Visud
Programming: What Do We Think We Are Doing?"
Proceedings of the 1996 IEEE Symposium on Visual
Languages, Boulder, Colorado, |IEEE Computer Society,
1996, pp. 240-245.

3. Borning, A., "Defining Constraints Graphically," CHI86,
ACM, 1986, pp. 137-143.

4, Finzer, W., and L. Gould, "Programming by Rehearsal,"
Byte, Val. 9, pp. 187-210, 1984.

5. Fischer, G., "Domain-Oriented Design Environments," in
Automated Software Engineering, Ed., Kluwer Academic
Publishers, Boston, MA, 1994, pp. 177-203.

6. Golin, E. J, "Tool Review: Prograph 2.0 from TGS
Systems," Journal of Visual Languages and Computing,
pp. 189-194, 1991.

7. Green, T. R. G., "Cognitive Dimensions of Notations,"
Proceedings of the Fifth Conference of the British
Computer Society, Nottingham, Cambridge University
Press, 1989, pp. 443-460.

8. Green, T. R. G, M. Petre, and R. K. E. Belamy,
"Comprehensibility of Visual and Textual Programs: A Test
of Superlativism Aganst the ‘Match-Mismatch'
Conjecture,” Empirical Studies of Programmers. Fourth
Workshop, Norwood, NJ, Ablex Publishing, 1991, pp. 121-
146.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Lindholm, T., and F. Yé€llin, The Java™ Virtual Machine
Soecification, Addison-Wesley, Reading, MA, 1997.

Myers, B. A., "The State of the Art in Visual Programming
and Program Visualization," Tech Report, CMU-CS-88-
144, Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, 1988.

Nardi, B., A Small Matter of Programming, MIT Press,
Cambridge, MA, 1993.

Papert, S., The Children's Machine, Basic Books, New
York, 1993.

Repenning, A., "Programming Substrates to Create
Interactive Learning Environments,” Journal of Interactive
Learning Environments, Special Issue on End-User
Environments, Vol. 4, pp. 45-74, 1994.

Repenning, A., "Bending the Rules: Steps toward
Semantically Enriched Graphical Rewrite Rules™
Proceedings of Visual Languages, Darmstadt, Germany,
IEEE Computer Society, 1995, pp. 226-233.

Repenning, A., and J. Ambach, "Tactile Programming: A
Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing," Proceedings of
the 1996 |EEE Symposium of Visual Languages, Boulder,
CO, Computer Society, 1996, pp. 102-109.

Repenning, A., and J. Ambach, "The Agentsheets Behavior
Exchange: Supporting Social Behavior Processing,” CHI
97, Conference on Human Factors in Computing Systems,
Extended Abstracts, Atlanta, Georgia, ACM Press, 1997,
pp. 26-27.

Repenning, A., and T. Sumner, "Agentsheets: A Medium
for Creating Domain-Oriented Visual Languages," |IEEE
Computer, Vol. 28, pp. 17-25, 1995.

Shu, N., Visual Programming, Van Nostrand Reinhold
Company, New Y ork, 1988.

Smith, D., "Making Programming Easier for Children,”
Interactions, Vol. 11, pp. 59-67, 1996.

Smith, D. C.,, A. Cypher, and J. Spohrer, "KidSim:
Programming Agents Without a Programming Language,"”
Communications of the ACM, Vol. 37, pp. 54-68, 1994.

Turkle, S., Life on Screen, Simon & Schuster, New York,
1995.

Wilde, N., and C. Lewis, "Spreadsheet-based Interactive
Graphics: From Prototype to Tool," Proceedings CHI'90,
Seattle, WA., ACM Press, 1990, pp. 153-159.

