
Repenning, A., "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite Rules," Proceeding of Visual Languages, Darmstadt, Germany, 1995, pp. 226-233.

Bending the Rules:
Steps Toward Semantically Enriched Graphical Rewrite Rules

Alexander Repenning

Department of Computer Science
Center for LifeLong Learning and Design

University of Colorado, Boulder CO 80309-0430
Phone: (303) 492-1349, Email: ralex@cs.colorado.edu

http://www.cs.colorado.edu/~ralex/

Abstract dimensional situations containing objects (Figure 1).
Situations can be interpreted with respect to objects
contained and spatial relationships holding between these
objects. The differences between situations imply one or
more actions capable of transforming one situation into
another. Figure 1 depicts a rewrite rule containing cars,
traffic lights, and roads. One possible interpretation for the
action implied is that the car moved.

Graphical rewrite rules, as a form of end-user
programming, suffer from their implicit underlying model.
Interpretation of rewrite rules limited to syntactic properties
makes it laborious for end users to define non-trivial
behavior. Semantically enriched graphical rewrite rules
have increased expressiveness, resulting in a significantly
reduced number of rewrite rules. This reduction is essential
in order to keep rewrite rule-based programming
approaches feasible for end-user programming. The
extension of the rewrite rule model with semantics not only
benefits the definition of behavior but additionally it
supports the entire visual programming process.
Specifically the benefits include support for defining object
look, laying out scenes consisting of dependent objects,
defining behavior with a reduced number of rewrite rules,
and reusing existing behaviors via rewrite rule analogies.
These benefits are described in the context of the
Agentsheets programming substrate.

Figure 1. Rewrite Rule = <Situation1, Situation2> ⇒ Action(s)

The implicit nature of graphical rewrite rules, due to the
lack of sufficient interpretational clues, makes it hard for
end users to assess their general applicability. Would the
rule shown also work for other cars, other roads? To what
other related situations would the rule apply? Is the car in
situation 1 the same car as in situation 2? Unless rewrite
rules serve as literal substitutions of one situation with
another it is important for the end user to understand how
rules are interpreted in order to allow for generalization of
objects and spatial relationships between objects.

1. Introduction: The Economy of Semantics

The visual character of graphical rewrite rules combined
with the increased ability of computers to represent pictures
and to support the manipulation of pictures makes them an
appealing choice as an end-user programming mechanism
[8]. Graphical rewrite rules can be used in application
domains including simulations and animations. In order to
be an effective end user programming approach,
environments based on rewrite rules must be expressive [3].
That is, they should allow the definition and reuse of non-
trivial behavior typical for an anticipated set of problems
with reasonable programming effort. Furthermore,
programming environments that allow end users to create
their own objects should also support the definition of
object look and provide mechanisms to link look with
behavior.

Kirsch [5],who devised an early version of rewrite rules,
recognized the problems due to the implicit nature of
rewrite rules and commented on their scalability to more
complex problems: “It is not clear, however, how to extend
the implicit underlying model used here to other pictorial
sources of greater interest and importance.” Indeed, this
problem largely remains with today’s graphical rewrite
rule- based programming environments limiting their
usefulness.

More realistically depicted objects in rewrite rules lead to
higher interpretational expectations of humans with respect
to what the meaning of individual objects is and in what

Graphical rewrite rules declaratively describe spatial
transformations with a sequence of two or more

226

Repenning, A., "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite Rules," Proceeding of Visual Languages, Darmstadt, Germany, 1995, pp. 226-233.

kinds of spatial relationships objects are involved in.
Simple objects are not suggestive for complex
interpretations. Kirsch used abstract character symbols such
as V, H, and L in his rules. In BitPict [4], objects are simple
black or white pixels. However, in rewrite rules featured in
ChemTrains [2], Vampire [7], Agentsheets [10], and
KidSim [15] objects can be much more complex and
realistic looking. The rule depicted in Figure 1 is likely to
be interpreted as a situation in which a car on a road is
facing a traffic light. In situation 2 the car seems to have
moved forward. We begin to realize the tension between
the interpretation of the situations by the machine and the
human. The understanding of the machine is extremely
limited and purely syntactical. The machine has no way to
identify the objects in the situations as cars, roads, and
traffic lights. Because of this lack of semantic information,
the notion of the car facing the traffic light cannot be
internalized by a machine because it does not understand
the notion of the car being a moving thing with a direction.
Without this sense of direction the concept of moving
forward is understood in a restrained Euclidean sense as
moving to the right. With this interpretation of the above
rule the car would not know how to follow a vertically
oriented road.

The following sections illustrate how connectivity, as a
form of semantic information, supports the drawing and
programming process. Then the implications of using
connectivity with respect to 1) - 4) are discussed in the
context of the Agentsheets environment. Finally, some
alternative solution approaches are contrasted with
semantically enriched rewrite rules and some shortcomings
of semantic rewrite rules are outlined.

2. Connectivity Supports Drawing and
Programming

The notion of flow is one possible type of semantic
information that can be used to extend the implicit model of
graphical rewrite rules. An immense range of problems can
be represented as flow. The use of flow as semantics is
discussed in the context of the Agentsheets [12]
programming substrate. Agentsheets is used to create
domain-oriented visual programming and simulation
environments.

Despite their former introduction to the Agentsheets
environment in 1991, rewrite rules, because of the
shortcomings discussed in the previous section, did not play
an important role. Visual programming languages such as
the Voice Dialog Design Environment created for US
WEST [11] were created in Agentsheets’ textual
programming language called AgenTalk.

The key is to provide mechanisms to users that allow them
to add semantics to objects in order to overcome the
implicit nature of rewrite rules. In this paper we claim that
economical representations of semantics can be added to a
system by end users in ways that lead to a variety of
benefits for the definition of behavior as well as the look of
objects. Specifically, adding semantics to rewrite rule
environments simplifies:

An analysis of more than 40 applications implemented in
Agentsheets revealed the use of Agentsheets as tools to
create spatio-temporal metaphors including flow. Flow,
with more than 50% of all Agentsheets applications using
it, in one form or another, is the predominant metaphor
used. Abstractly, flow in Agentsheets can be perceived as:

1) Defining Object Look. Quite often there is a strong
link between the look and the behavior of objects. For
limited domains tools can be built that help to generate
the look of objects based on their semantics.

Flow = propagation of agents through a discrete space
constrained by conductors

For instance, Figure 2 shows an agentsheet containing

agents representing a pump, , which creates water
agents who are constrained with respect to where they can

go by pipes, , serving as conductors.

2) Laying Out Dependent Objects. Object
semantics that have consequences for how groups of
related objects are created can be used to automatically
lay out objects. This saves time and increases
consistency.

3) Defining Object Behavior. Semantics can be used
by graphical rewrite environments to interpret rules in
more general ways. Expressiveness increases because
large number of syntactical rewrite rules can be
replaced with a significantly smaller number of
semantically enriched rewrite rules.

4) Reusing Behavior. Semantic information capturing
behavioral relationships between objects can be reused
via analogies and mapped onto a different set of
objects.

Figure 2. A flow system

227

Repenning, A., "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite Rules," Proceeding of Visual Languages, Darmstadt, Germany, 1995, pp. 226-233.

Other kinds of conductors are: wires, , rivers, ,

roads, , railway tracks, , and conveyor belts .
Agents propagated can represent entities such as electrons,

water, cars, , and trains, .

The following subsections describe how flow can be
represented and the benefits that result from doing so in the
context of a scenario creating a simple cars-and-roads
world.

2.1. Defining Object Look: Icon
Bending

One way to represent flow semantics is by augmenting
objects with connectivity [9]. Connectivity of an object
specifies how it connects its four neighbors. That is,
whether the objects send output or receive input from
neighbors.

Figure 4. Road segment transformed in gallery

2.2. Laying Out Dependent Objects:
Automatic Layout

The next step is to lay out dependent objects into a
consistent scene. In order to draw a traffic situation road
segments could be selected in the gallery (Figure 4) and put
into an Agentsheets worksheet one by one. This approach is
tedious because it requires users to select the right kind of
segment to fit each specific situation.

The scenario starts by drawing a single horizontal road

segment, . The Agentsheets connectivity editor (Figure
3) is invoked to augment the road segment with arrows
representing input and output connectivity.

Connectivity is used as input to the automatic layout
mechanisms. Instead of selecting the specific road segment
in the gallery, a user selects only the most general depiction

(our original road) and draws with the draw tool, , into the
worksheet. According to their connectivity conductors will
be matched up with surrounding conductors.

Figure 3. Road connecting neighbors left and right

The road segment is defined to connect things on the left of
the segment with things on the right of the segment and
vice versa. Arrows pointing towards the road indicate
inputs, arrows pointing away from the road indicate
outputs.

Figure 5. A new road segment gets added

A new road segment is about to be dropped in Figure 5
(left). To drop the road segment will not only drop the
correct segment at the location of the draw tool but will
also update all four potential neighbors because they may
need to be changed in order to reflect the change. In Figure
5 (right) the road segment above the tool position has
changed to a curved segment. The automatic layout
mechanism1 makes it possible to efficiently draw complex
scenes.

The Agentsheets gallery (Figure 4) is a repository of agent
depictions. Applying a flow-specific icon transformation
script to the road segment will create an entire family of
road segment variations by transforming their look as well
as their connectivity pattern (details of these
transformations can be found in [9]). The links between
road segments indicate family relationship and
transformation.

Another important benefit resulting from automatic layout
is consistency resulting in the simplification of rewrite
rules. The creation of a situations in which input and output
are not matched up (e.g., Figure 6) is avoided.

These syntactic and semantic icon transformations are
versatile in that they can be applied to a wide variety of
objects representing conductors of any kind. The amount of
time saved to draw individual objects is substantial. Hours
of painstaking icon drawing can be reduced to seconds.

1This automatic layout mechanism can be perceived as a
special case of a rewrite rule.

228

Repenning, A., "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite Rules," Proceeding of Visual Languages, Darmstadt, Germany, 1995, pp. 226-233.

Figure 6. Road input/outputs are not matched up

As we shall see in the next section, automatic layout helps
to prevent combinatorial explosion in rewrite rules because
rewrite rules can rely on consistent layouts. Figure 8. Agentsheets rewrite rule editor

Rules are attached to objects. Initially both sides of the rule
describe the situation the object is in at the moment of
editing. The right-hand side is edited to describe the future
situation. The car could simply be moved one position to
the right to represent the desired behavior. However, this
literal rule would only apply in this very specific situation
and would not be of a very general nature.

2.3. Defining Object Behavior:
Semantically Enriched Rewrite Rules

Connectivity is one form of semantic enrichment of
graphical rewrite rules that help to avoid combinatorial
explosion. Using connectivity, new objects that get
introduced after rewrite rules have been defined can be
interpreted by the Agentsheets rewrite rule interpreter.

The general behavior of following can be expressed as the
relationship between a car and two road segments.2.3.1. Avoiding the Combinatorial

Explosion
A car placed on a road segment X can move to a road
segment Y if (i) X and Y are adjacent and (ii) one output
of X lines up with an input of Y. (ii) implies (i)

How can rewrite rules be used to make a car follow roads?
First a car gets introduced into the gallery (Figure 4) and
then it is dropped into a worksheet (Figure 7):

Even this simple scenario, in which we do not deal with
additional conditions such as the presence of traffic lights
the literalness of conventional syntactic rewrite rules results
in combinatorial explosion. There are 4096 possible
situations in which cars could be in the context of 2
adjacent road segments. In this orthogonal world cars have
4 directions and adjacency is possible in 4 directions. If we
think of road segments as objects connecting up to 4
neighbors we get 16 different looking segments. Finally we
end up with 4 x 4 x 16 x 16= 4096 combinations resulting
from the 4 car directions, 4 adjacency directions, 16
variations of road segments the car is on, and 16 variations
of road segments the car moves to.

This is a very pessimistic way to determine the number of
rules used to define the follow behavior. The number can
be significantly reduced because no rules need to be
defined for situations in which the car is not supposed to
move, and for situations that are unlikely for the car to get
into. Also the complete set of road segments includes 4
different dead ends (1 input and output), and 1 dead spot (0
inputs/outputs), which can be ignored for many flow-
related applications. By slightly changing the problem, the
number of rules required can be reduced further but still an
end user is left with the need to define seemingly redundant
rules that could have been derived by the system.

Figure 7. Car in road system

Double clicking the car brings up the Agentsheets rewrite
rule editor (Figure 8).

In Agentsheets the necessary context can be further reduced
to a single road segment because of the automatic layout
procedure. This procedure prevents the misalignment of
adjacent conductors. Rewrite rules can safely assume that a

229

Repenning, A., "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite Rules," Proceeding of Visual Languages, Darmstadt, Germany, 1995, pp. 226-233.

car cannot end up in a situation such as the one shown in
Figure 9.

Faced with a situation that does not literally match with any
defined rewrite rule the rule interpretation mechanism
needs to shift from the syntactic literal interpretation to a
semantic flow-oriented interpretation that considers
connectivity and depiction family membership:

Literal Interpretation Flow-oriented Interpretation
(road = conductor, car = agent)

Figure 9. Automatic layout procedure eliminates this kind of

situation if exactly this car is on exactly
this road then it moves to the
right

if some car is on some road
then it moves toward an
output of the road

Therefore, rewrite rules do not require a second road
segment. The rewrite rule shown in Figure 10 makes the car
move to the right onto another valid road segment. The road segment under the car is tested for family

membership. Is the found in the scene related to the

 found in the rule? Since this is the case and also since
the car found in the scene and the car defined in the rule are
from the same depiction family the car can move towards
an output. A curve has two outputs. A minimal rotation
heuristic is used to select the more plausible option.
Turning back would be a 180-degree rotation. Moving
down is only a 90 degree rotation. Moving down is chosen.
In essence, one could say that the exhibited behavior is the
result of bending the rule defined by the end user.

 Connectivities

 Depiction Families

 Semantics

 Syntax

 Rewrite Rule

 Scene

The car gets aligned with the road. The car is annotated
with direction. Cars facing in 4 directions have been created
with a transformation script. This sense of direction is given
to the car to make it look “right” when moving in different
directions. In the scenario the car also gets rotated 90
degrees when moved down.

If there are multiple minimal rotation options one is
selected at random. For instance, when a car heading east

ends up on a road segment it will turn with a 50-50
chance north or south.

2.3.2 New Behavior From Old Rules

The road segments previously defined in the gallery (Figure
4) represent only 11 out of 16 possible conductors.
Depending on the kind of flow is represented, it can make
sense to define some of the remaining conductors. In our
scenario the end user wishes to introduce dead end roads to
have an explicit representation of the end of the road and to
make cars turn around.

Figure 10. Interpretation based on syntax and semantics

A new depiction representing a dead end is added to the
road segment family in the gallery. It is edited to have the
appearance of a dead end road (Figure 11).

The combination of the rewrite rule and semantic
information specified by the user is sufficient to describe
all valid moves from one road piece to another. If
possible, the rule interpreter literally interprets rewrite
rules. The literal interpretation of the follow rule (Figure
10) allows the car to move on the straight horizontal road
all the way up to the curve.

230

Repenning, A., "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite Rules," Proceeding of Visual Languages, Darmstadt, Germany, 1995, pp. 226-233.

end it will turn around and move back to where it came
from.

2.4. Reusing Behavior: Rewrite Rule
Analogies

Semantic information such as connectivity can be
employed in a mechanism for reuse by analogy, where it
acts to support a pupstitution [1, 6] process. If rules have
been created to define how cars move on roads, then it
should be possible to use an analogy to create a
corresponding set of rewrite rules to define how trains
move on tracks. This process is illustrated below.

Figure 11. Dead end

The user defines the dead end to have only one input and
output on the left (Figure 12).

First, trains and train tracks are added to the Agentsheets
gallery. The track is then transformed via the same
syntactic and semantic transformation script that was
originally applied to the road. Again, the train is given a
direction and all four rotations are generated (Figure 15).Figure 12. Dead end connectivity

In the gallery a transformation script is used to create the
remaining 3 dead ends by rotating their look and
connectivities (Figure 13).

Figure 13. Transformed dead end depiction family

These additional definitions of semantics are immediately
usable by the automatic layout mechanism. For instance,
deleting the road segment under the eraser, , in Figure
14 (left) leads to the new situation in Figure 14 (right).

Figure 15. Isomorphic depiction families

At this point one could create the behavior for the train
from scratch. Or, one could argue that a train basically
follows a track like a car follows a road. A rewrite rule
analogy is used to express this relationship (Figure 16).
Since, at this point in the scenario only a single rule has
been defined for the car, programming from scratch would
be quite feasible or even preferable. However, in the more
general case where there is a larger number of more
complex rules, an approach based on analogy becomes
advantageous.

Figure 16. Analogy Editor

Figure 14. Automatic layout with dead ends

Without having to edit any rewrite rules the new road
segments implement the desired behavior by defining the
appropriate connectivity. Whenever a car encounters a dead

231

Repenning, A., "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite Rules," Proceeding of Visual Languages, Darmstadt, Germany, 1995, pp. 226-233.

In contrast to object-oriented programming the rewrite rule
analogy could be considered a verb-oriented programming
approach. In rewrite rule analogies, the things to reuse and
refine are not single objects but behavioral relationships
between sets of objects. Here, the user specifies that a
train’s movement is constrained by a track in the same way
that a car's movement is constrained by a road. Through the
use of iconic pop-up dialogs, the user establishes this
analogous mapping.

The following subsections discuss very briefly other
approaches to overcome the problem of combinatorial
explosion without the addition of semantic information.

3.1. Topological Rule Interpretation

Topological rule interpretation is more resilient with
respect to spatial transformations. In contrast to Euclidean
representations, properties captured in topological
representations, such as containment and connectivity,
remain unchanged when scenes are changed via operations
including rotation or reflection. In a graphical rewrite rule
system based on topological spatial relations such as
ChemTrains [2], the solution of a simplified version of the
problem becomes trivial. A loop of road segment gets
defined to be the places that can contain cars. These places
are linked with arrows to represent connected road
segments (Figure 18). Finally, a car gets defined and
dropped into one of the road places and programmed via a
single rewrite rule (Figure 19) specifying that a car simply
moves from one place to another by following a link.

The result of the analogy is an instantiated set of graphical
rewrite rules in which the cars and roads have been
substituted with trains and tracks. The analogy would be
inflexible and of very limited usefulness if the system

understood only the literal mapping between , and .
The semantics provided by connectivity help to overcome
this type of literalism as well. Connectivity is used by the
system to establish the mapping between any two
cars/trains and roads/tracks. The system now infers that

 are like . Consequently, the new rewrite rules
specifying how trains move through curved tracks are
inferred by the analogous rules that tell the system how a
car follows curved roads.

Figure 18. Topological road representation

Figure 19. Topological rewrite ruleFigure 17. Trains follow tracks like cars follow roads

The simplicity of the solution, however, may come at the
price of abstraction. In contrast to Euclidean interpretation
of rewrite rules, topological interpretation affords greater
representational flexibility. Road segments can be put
anywhere in scenes, and relationships between them can be
expressed by simply connecting any pair of road segments.
Unlike connectivity in Agentsheets, connectivity in
ChemTrains becomes an explicit part of scenes and rewrite
rules. On the one hand, putting this kind of information into
scenes is ideal for explicit spatial notations such as graphs
in which arrows are expected to be seen by users. In
applications such as the car and road application, on the
other hand, explicit spatial notations may lead to unwanted
abstraction of the scene through the need to represent
Euclidean relationships such as left and right with
topological primitives such as connectivity.

3. Discussion

The semantically enriched rewrite rule framework
presented is not the solution of all the problems arising
from the use of rewrite rules. The metaphor of flow and its
representation through connectivity is just one form of
semantics to extend the implicit model of graphical rewrite
rules. The general applicability of semantics to rewrite rules
or other end-user programming approaches is not only
limited by technical feasibility but also by people’s mind
sets. Flow, for instance, can be applied to an extremely
wide range of applications. A simple pacman game can be

implemented using flow. Pacmen , and monsters, ,
are the flow agents moving through a maze consisting of

hallway segments, , serving as conductors. Once the
mapping between a problem like the pacman game and the
flow metaphor is established, the solution becomes trivial.
However, to recognize this mapping can be problematic.

3.2. Rotation and Symmetry

Siromoney et al.[13] extended Kirsch’s rewrite rule model
with reflection and rotation. Furnas included these

232

Repenning, A., "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite Rules," Proceeding of Visual Languages, Darmstadt, Germany, 1995, pp. 226-233.

transformations as attributes to rewrite rules in his BitPict
[4] system. The application of these transformation to entire
situations consisting of complex objects is less obvious. If
the situations to be transformed consist of orientation free
objects, such as pixels, then the transformation of
individual objects is irrelevant. However, if objects have
their own discernible orientation, then scene transformation
needs to operate at the level of scenes and objects.
Unfortunately, it is not always desirable to transform all or
any objects if a scene gets transformed. Transformation
mechanisms will probably need user input to make these
kind of decisions. Nonetheless, rotation and reflection are
powerful approaches to reduce the number of rewrite rules
required and should be used when semantic approaches are
not applicable.

5. Acknowledgments

The research was supported by NSF (No. RED 925-3425 &
Supplement), ARPA (No. CDA-940860), and Apple
Computer Inc. Corrina Perone implemented the rewrite rule
analogies, Carol Marra helped to build the Agentsheets
rewrite rules. Many thanks for suggestions and discussions
to Jim Ambach, Brigham Bell, Roland Hübscher, Clayton
Lewis, Corrina Perrone, David Smith, Markus Stolze, and
Tamara Sumner.

6. Bibliography

1. Anderson, J. R. and R. Thompson, “Use of Analogy
in a Production System Architecture,” Paper
presented at the Illinois Workshop on Similarity and
Analogy, Champaign-Urbana, 1986.

3.3. Sparse Scenes

A different approach to avoid combinatorial explosion is by
making the construction space more sparse. Smith [14]
proposes an elegant simplification of the car-on-road
problem. The number of rewrite rules can be dramatically
reduced by disallowing adjacency of complex road
segments. Complex road segments are all non-straight road
segments. If there always is a straight segment between any
two complex segments, then the number of rules drops to
48. Every rewrite rule defines the movement of a car from a
straight piece via a complex segment to another straight
segment. A consequence of this approach is that cars
dropped onto a complex segment would not know what to
do because there are no corresponding rewrite rules. To
guarantee sparse layouts a modified version of the
automatic layout mechanism discussed may be of help.

2. Bell, B. and C. Lewis, “ChemTrains: A Language for
Creating Behaving Pictures,” 1993 IEEE Workshop
on Visual Languages, Bergen, Norway, 1993, pp.
188-195.

3. Bell, B., J. Rieman and C. Lewis, “Usability Testing
of a Graphical Programming System: Things We
Missed in a Programming Walkthrough,” CHI’91,
New Orleans, LA, 1991, pp. 7-12.

4. Furnas, G. W., “New Graphical Reasoning Models
for Understanding Graphical Interfaces,” Proceedings
CHI’91, New Orleans, LA, 1991, pp. 71-78.

5. Kirsch, R., A., “Computer Interpretation of English
and Text and Picture Patterns,” IEEE Transactions on
Electronic Computers, Vol. 13, pp. 363-376, 1964.4. Conclusion

Steps toward a semantically enriched model of graphical
rewrite rules have been presented. The process of acquiring
semantic information from end users to describe object
characteristics needs to be understood from an economical
perspective. End users are most likely to provide this kind
of additional information when they perceive clear benefits.
In the case of Agentsheets, these benefits include support
for defining object look, laying out scenes consisting of
mutually dependent objects, defining non-trivial behavior
with a significantly reduced number of rewrite rules, and
reusing existing behaviors via analogies.

6. Lewis, C., “Some Learnability Results for Analogical
Generalization,” Technical Report, CU-CS-384-88,
University of Colorado, Computer Science
Department, 1988.

7. McIntyre, D. W. and E. P. Glinert, “Visual Tools for
Generating Iconic Programming Environments,”
Proceedings of the 1992 IEEE Workshop on Visual
Languages, Seattle, 1992, pp. 162-168.

8. Nardi, B., A Small Matter of Programming, MIT
Press, Cambridge, MA, 1993.

Connectivity is an extension of the Euclidean rule
interpretation model, that is common to most grid-based
rewrite environments, with topological interpretation. The
ability to control connectivity allows users to get the best of
both worlds.

9. Repenning, A., “Bending Icons: Syntactic and
Semantic Transformation of Icons,” Proceedings of
the 1994 IEEE Symposium on Visual Languages, St.
Louis, MO, 1994, pp. 296-303.

10. Repenning, A., “Designing Domain-Oriented Visual
End User Programming Environments,” Journal of

233

Repenning, A., "Bending the Rules: Steps toward Semantically enriched Graphical Rewrite Rules," Proceeding of Visual Languages, Darmstadt, Germany, 1995, pp. 226-233.

Interactive Learning Environments, Special Issue on
End-User Environments, Vol. 4, pp. 45-74 1994.

11. Repenning, A. and T. Sumner, “Using Agentsheets to
Create a Voice Dialog Design Environment,”
Proceedings of the 1992 ACM/SIGAPP Symposium
on Applied Computing, Kansas City, MO, 1992, pp.
1199-1207.

12. Repenning, A. and T. Sumner, “Agentsheets: A
Medium for Creating Domain-Oriented Visual
Languages,” Computer, Vol. 28, pp. 17-25, 1995.

13. Siromoney, G., R. Siromoney and K. Krithivasan,
“Picture Languages with Array Rewriting Rules,”
Information and Control, pp. 447-470, 1973.

14. Smith, D. C., Cars ‘n Roads in KidSim, personal
communication, 1995

15. Smith, D. C., A. Cypher and J. Spohrer, “KidSim:
Programming Agents Without a Programming
Language,” Communications of the ACM, Vol. 37,
pp. 54-68, 1994.

234

