
LEGOsheets:
A Rule-Based Programming, Simulation and Manipulation

Environment for the LEGO Programmable Brick

Jim Gindling, Andri Ioannidou, Jennifer Loh, Olav Lokkebo, Alexander Repenning

Department of Computer Science
Center for LifeLong Learning and Design

University of Colorado, Boulder CO 80309-0430
(303) 492-1349, ralex@cs.colorado.edu

Fax: (303) 492-2844
http://www.cs.colorado.edu/~ralex/public_html/Home.html

Abstract
LEGOsheets was created. LEGOsheets is an educational
environment implemented in Agentsheets, a grid-based
tool for creating visual programming languages [5].
Programming can serve as a vehicle to create learning
opportunities in the constructionist sense [3].

The LEGO1 Programmable Brick gives children the
ability to create physical artifacts, such as vehicles and
robots, and program them with interesting behaviors.
However, programming is difficult to learn, even for
adults. Children often lose interest in further exploration
of programming through adult learning mechanisms.
Environments that support a gradual transition from
manual control of the physical artifact to complete
programming substantially simplify the process of
programming. The combination of LEGOsheets and the
Programmable Brick is an educational environment that
provides a gentle, enticing introduction to programming
and the design of mechanical artifacts. This paper
introduces LEGOsheets, a rule-based programming
environment that allows children to simulate and
manipulate the LEGO Programmable Brick.

Making use of a grid-based spatial construction
paradigm [4], LEGOsheets is a combined visual
programming, manipulation, and simulation environment.
It provides a gentle and enticing introduction to
programming and the design of mechanical artifacts.
LEGOsheets is intended to be used by children ages 8 and
up. Initially, children use LEGOsheets simply as a direct
manipulation [6] mechanism to control physical artifacts
equipped with electrical sensors and effectors. During
this stage, LEGOsheets can be perceived as a fancy
remote control. Later, children use a rule-based approach
[2] to program the behavior of individual effectors, such
as motors and lights, while still manually controlling
others. In the final stage, all the effectors are
programmed. The program gets downloaded into the
Programmable Brick, the link between the programming
environment and the Brick gets severed, and the artifact,
controlled by the Brick, is let loose. We believe this
gradual transition from manual control to complete
programming serves as an ideal method for children to
learn how to program. This paper first introduces the
LEGO Programmable Brick, then gives a brief description
of a LEGO vehicle built and programmed using
LEGOsheets, and finally walks through a scenario with
children using LEGOsheets.

1. Introduction

The LEGO Programmable Brick, presently being
developed at the MIT Media Lab, is a small but complete
computer, that can be used in conjunction with sensors
and effectors to program the behavior of mechanical
artifacts. However, it is difficult to program and debug
using traditional programming environments, such as the
current programming interface. To address this problem,

1 LEGO is a registered trademark of the LEGO Corporation.

2. LEGO Programmable Brick 3. Building the LEGOpet

The LEGO Programmable Brick is a small computer
with sensor ports and effector ports (Figure 1). It is
currently being developed at the MIT Media Lab and is
not yet commercially available. To program the Brick,
the MIT Media Lab created a system called Brick Logo
(Figure 2).

In this section, we provide a scenario to show how
LEGOsheets is used to program the Brick. The scenario
is based on our experiences during user testing.
Throughout the design and development of LEGOsheets
we have met on a biweekly basis with five middle school
students, grades 6 through 8. During the first stages of
user testing the children explored existing software such
as LEGO Dacta3 and Brick Logo. The feedback that they
gave us during this stage made them part of our
collaborative design process, which resulted in the
prototypes we developed.

Figure 1: The LEGO Programmable Brick.

Through the sensor ports, the Brick can receive
signals from a variety of sensors, such as touch sensors,
reflectance sensors, and angle sensors. Through the
effector ports, it can control motors, beepers, and lights.
The Programmable Brick also has a few built-in sensors
and effectors, including an infrared sensor and a beeper.

Figure 2: The Brick Logo Environment for Programming the

Brick.

Our experience when programming the Brick with
the existing environment, Brick Logo (Figure 2) during
user testing, indicated the need to facilitate a more gradual
transition from manual control to programmed control.
The scenario in section 3.2 illustrates this gradual
transition.

Over the years LEGO has presented a variety of
construction kits that can be grouped into three
generations. The first generation construction kits (the
traditional LEGO bricks) allowed children to build static
objects such as buildings. The second generation (the
Technic2 bricks) enabled children to build more
sophisticated artifacts using motors and pneumatic
devices. With the introduction of the Programmable
Brick, we enter the third generation, which allows
children to build behaving machines [7]. The size of the
Brick allows it to be incorporated in LEGO constructions
and therefore create a wide variety of interesting machines
and creatures. One can build data acquisition devices
such as a weather station or a device that can be placed by
a door to count how many people enter a room.
Furthermore, one can build a vehicle, or LEGO creature,
that explores its environment by programming it to find
the place with the most light or the highest temperature. Figure 3: The LEGOpet.

2 Technic is a registered trademark of the LEGO Corporation. 3LEGO Dacta is a registered trademark of the LEGO Corporation.

Figure 4: The Gallery, Simulation Environment, and Rule Editor of LEGOsheets.

The LEGOpet (Figure 3) is one of the LEGO
creatures the authors created and programmed using
LEGOsheets. We created the LEGOpet by building a
vehicle with a touch sensor, two reflectance sensors, and
two motors, and then assigning behavior to it. We
programmed the LEGOpet in such a way that it “likes”
dark objects and runs toward them, but is “afraid” of
light-colored objects and backs up whenever it approaches
one. The idea of vehicles exhibiting behavior and feelings
is explored in Braitenberg's Vehicles: Experiments in
Synthetic Psychology [1].

3.1. LEGOsheets Components

When the user launches LEGOsheets, the gallery and
simulation environment appear on the screen (Figure 4).
The gallery contains icons representing sensors and
effectors that can be connected to the Brick, as well as
other components that can be used for programming. The
simulation environment contains the virtual Brick, a
realistic representation of the physical Brick able to
completely simulate the Brick. Users can attach
components of their choice from the gallery to the virtual
Brick in the simulation environment and start playing with

LEGOsheets. In Figure 4, a touch sensor is connected to
Sensor Port B and two reflectance sensors are connected
to Sensor Ports A and C, and two motors are connected to
Effector Ports A and D.

the simulation environment (Figure 6). As the motors are
inserted they make a snapping sound in the same manner
LEGOs do when they are put together. Throughout user
testing, we have learned that children appreciate colorful
icons and sounds that imitate the world around them.
Thus, we believe the use of color, animation, and sound to
be important forms of feedback to the user.

In order to assign behavior to the different
components, users define rules. The rules in LEGOsheets
are attached to each individual effector, and consist of
three major components: an initial value, zero or more
conditional actions, and a default action. The initial
value is optional and contains the value assigned to the
effector at the beginning of program execution. The
conditional actions are if-then constructs. If the condition
holds, the value of the expression specified in the “then”
part gets assigned to the effector. Only one of the
conditional actions is executed each time the rule is
checked. If none of the conditions holds, the value
specified in the default action is used.

3.2. Scenario

The following is a scenario based on our experiences
during user testing, in which two children, Christine and
Jim, build the LEGOpet. Christine is older. She has used
LEGOsheets a few times before and is relatively familiar
with the system.

Figure 6: Simulation Environment with 2 Motors Attached to

the Virtual Brick.

The children start out with a vehicle that has two
motors, each used to drive one wheel. It also has two
reflectance light sensors, which test the reflectance of
objects, and a touch sensor, which can detect when the
vehicle is in contact with another object.

3.2.1. Direct Manipulation of the Physical
Artifact

The LEGOsheets environment allows programming
of the virtual Brick without the physical Brick.
Furthermore, it allows the user to directly manipulate the
physical Brick through the virtual Brick. Virtual sensors
can be simulated by the user or receive real values from
the physical Brick connected via a cable to the virtual
Brick. The same holds true for effectors.

Figure 7: Virtual Motor Before Being Wired to Physical

Motor.

After playing around with the values of the virtual
motors in the simulation environment, the children want
to see the real motors spin. Christine checks to make sure
the Brick is connected via the serial port to the computer.
They click on the part of the virtual motor that looks like a
lighting bolt (Figure 7). The lightning bolt makes an
electrifying sound and changes color (Figure 8). Once
again, the change of color and the sound produced as an

Figure 5: The Initial Simulation Environment.

When Christine and Jim start LEGOsheets, the
simulation environment contains only the virtual Brick
(Figure 5). The first thing they do is add two motors to

indication of wiring the motor proved to be useful
feedback on the change of state of the environment. At this point Christine suggests they write a program.

She explains to Jim that motors have rules attached, and
writing programs requires editing these rules. She
continues by stating that to edit the rule for a specific
motor, he must first double-click on the motor so its rule
editor will open. Jim double clicks on one of the motors,
and its associated rule editor opens (Figure 10).

Figure 8: Virtual Motor After Being Wired to Physical Motor.

Then Jim wires the other virtual motor to its
corresponding physical motor. Virtual sensors and
effectors can be wired. For sensors, this means that they
get their value from the corresponding sensor on the
physical Brick. Effectors update their corresponding
physical effector. Now that Jim has wired the virtual
motors to the physical motors, he clicks on the increase-
value arrow for one of the virtual motors (Figure 9). The
corresponding physical motor turns on at a very slow
speed. He notices the value displayed on the virtual
motor is now 1. He clicks the increase-value arrow for
the same motor until the value displayed is 5, and notices
that the physical motor increases speed each time he
clicks. He then clicks the decrease-value arrow for the
virtual motor until the value displayed is -2. He notices
that when the value is 0, the motor stops, and when it is
negative, the motor reverses direction.

Figure 10: Default Rule Editor for a Motor.

Christine informs Jim that this rule currently specifies
that the motor is always at speed 0, which Jim knows will
result in the motor being turned off. Realizing that this is
not interesting behavior, Jim changes the 0 to a 5. He
then clicks the OK button, and the rule editor closes. He
opens the rule editor for the other motor and does the
same. Then Christine starts the execution of the rules by
selecting the Run Rules menu item. Once the vehicle,
which faces the wall, runs into it, Jim picks it up and turns
it around. Christine, however, suggests that they stop the
rules and reverse the motors manually, so that the vehicle
will back up from the wall.

After a while, Jim decides that he wants to play with
the sensors. To the simulation environment (Figure 11) he
adds two reflectance sensors, which correspond to the
physical sensors attached to the Brick.

Figure 9: Virtual Motor After Increase-Value Arrow is Clicked.

As the children change the motor values, the vehicle
moves around on the table and hits a book that lies in its
path. They try to make the vehicle climb over the book
and discover that when the motors are set at speed 5, the
vehicle is able to slowly climb the book. Christine then
increases the angle of the book and, after experimenting
with different values, they find it now requires the motors
to be at speed 7 to climb the book.

While directly manipulating the physical Brick,
children can experiment with effector values and use the
knowledge they acquire later, when specifying rules.

3.2.2. Combining Direct Manipulation and
Programming

At any time, individual effectors can be switched
between user-controlled and programmed mode. This
supports the gradual programming of behavior.

Figure 11: Simulation Environment with 2 Motors and 2

Reflectance Sensors Attached to the Virtual Brick.

Jim notices the values displayed on the virtual
sensors are 0. Because the reflectance sensors also have
lightning bolts, he wires the virtual sensors to the physical
sensors by clicking on the lightning bolt of each. Now the
values displayed on the virtual sensors are around 200, but
change between about 198 and 202 frequently. Jim puts a
piece of white paper in front of one of the physical
sensors, and the value of the corresponding virtual sensor
changes to about 190. He removes the piece of paper and
the value jumps up to around 200 again. He repeatedly
places the paper in front of the sensor and removes it, and
watches the value change. This reminds Christine of the

plot mode and she applies the “hand” tool , from the
toolbar on the left of the simulation environment, to
change the value representation of the reflectance sensor
(Figure 12).

3.2.3. Programming an Autonomous
Creature.

Once the virtual Brick is completely programmed, the
program can be downloaded into the physical Brick.
Then the Brick can be disconnected from the computer
and the creature can be let loose.

The children remember from their previous
experiments that the normal value of the reflectance
sensors seems to be about 200, and ranges from about 190
to 210. Keeping in mind that the value range for motors
is between -8 and 8, where negative numbers specify
reverse, Christine suggests that they take the sensor value
and subtract from it to map it into the range of motor
values.

They open the rule editor for one of the motors and
delete the value that is already there. Christine clicks on
the left virtual sensor in the simulation environment, and
they notice the name of the sensor, Reflect2, is
automatically pasted into the rule. LEGOsheets uses the
spreadsheet metaphor for building formulas in the rule
editor fields by clicking on different cells in the
simulation environment.Figure 12: Virtual Reflectance Sensor Before Being Changed

to Plot Mode.

The plot mode in LEGOsheets is an alternative way
to represent the value of cells. Whereas in the numerical
mode the value of the cell is displayed as a number, in the
plot mode the value of the cell is displayed as a graph
plotted over time.

Figure 14: Rule Editor with Reflectance Sensor Value Used.

By subtracting different numbers from the value of
the reflectance sensors in the rule and then running it
while having the sensors wired, the children decide that
the value 200 will work. They edit the rule for Motor0 as
shown in Figure 14, and in a similar fashion, the rule for
Motor1 except that the other reflectance sensor, Reflect2,
is used. Once the rules are complete, they download the
program to the Brick. Christine disconnects the Brick
from the computer, puts the vehicle on the floor, and
presses the start button.

Figure 13: Virtual Reflectance Sensor in Plot Mode.

Jim takes the paper and watches how the line changes
shape as he moves the paper in front of the sensor and
away again at different speeds (Figure 13). He plays with
this for a while, and then puts his notebook, which is
black, in front of the physical sensor. He notices the line
is now higher than he has ever seen it before. He puts his
notebook in front of the other reflectance sensor, and
notices that its value jumps up to about 210. He removes
the notebook, and the value returns to around 200 again.

At first, the vehicle does not move much, it just rocks
back and forth a little. Jim remarks that it cannot make up
its mind what it wants to do. Christine puts the white
piece of paper in front of the vehicle, and it backs up a
little. She moves the paper closer to the vehicle, and it
backs up faster. She removes the paper from in front of
the vehicle, and again it does not move much. Then she
puts a black notebook in front of the vehicle, and it darts

Jim tells Christine that he wants to use the sensor
values in a program, but is not sure how. Christine comes
up with an idea: she wants to create a vehicle that roams
around the room, away from the computer, and changes
speed depending on the light conditions.

toward the notebook. She quickly removes the notebook,
and it stays still again. Jim grabs the white paper, puts it
in front of the vehicle, and watches the vehicle back up.
The children take turns placing the paper and notebook, as
well as other objects, in front of the vehicle, watching
what it does. Jim remarks that the vehicle likes dark
objects and dislikes light-colored objects. Since their
vehicle seems to behave like a living creature, they decide
to call it their LEGOpet.

They repeat the same steps for the rule of the other
motor, and then download the new program to the Brick
so they can try it out. As they expected, the LEGOpet
acts exactly as it did before, unless it runs into an object.
When it does run into an object, it reverses for a split
second, and then runs into the object again. The
LEGOpet is never able to avoid the object again without
assistance from the children. After watching this happen
a few times, Christine decides the problem is that both
motors are reversing at the same speed; therefore, the
LEGOpet is not turning and cannot avoid the object. She
tells Jim that they need to modify the program so it will
turn when it backs up. She suggests using a value of -3
for one of the motors, and keeping the other motor at -8.

While exploring the behavior of the LEGOpet (Figure
15), Jim and Christine notice that when it runs into
something black, it gets stuck because it continues trying
to go forward. Since the LEGOpet has a touch sensor,
they decide to modify the program so the LEGOpet will
not get stuck.

Figure 16: Rule Editor with Touch Sensor Used in

Conditional Action.

Once Jim makes the suggested modifications and
downloads the new program to the Brick, they start the
LEGOpet again. This time when it runs into an object, it
turns when it backs up, as they programmed it to.
Sometimes it takes a few times of running into the object
and reversing, but eventually it works itself clear of the
object and continues on in a new direction.

Figure 15: Jim Playing with the LEGOpet.

After connecting the Brick to the computer again, the
children open the rule editor for Motor0 and add a
conditional action to the rule by clicking on the button
labeled Add Conditional Action. They want to program
the motor to go backwards at speed 8 when it hits
something. Since they know the touch sensor returns 1
when it is pressed and 0 otherwise, they write the rule
shown in Figure 16.

4. Discussion

Through user testing, we have observed children
having fun playing with motors using only the direct
manipulation of the brick from LEGOsheets. Also, the
ability to change the representation of the cell value from
a number to a graph proved interesting to use in exploring
sensor values, especially for the reflectance sensor. We
believe the excitement the children experience while
playing with LEGOsheets and the Brick in this manner
creates an incentive that makes the step into programming
easier.

In the rule, the three sections after the word If specify
the condition. The condition will be true when the touch
sensor is pressed. The section after the word Then
specifies the action to take if the condition is true, which
in this case is to reverse the motor at speed 8. The section
after the word Default is the default action, which will
only execute if the condition above does not hold.
Therefore, as long as the touch sensor is not pressed, the
LEGOpet will act exactly as it did before. However,
when the LEGOpet runs into an object, which will cause
the touch sensor to become pressed, the motor will reverse
at a speed of 8.

The gradual introduction to the rule structure
illustrated in the scenario shows that once children begin
to program, they can reap the benefits of more powerful
capabilities as they learn more about the rule structure. In
the rule structure of LEGOsheets, interesting behavior can
be achieved just by specifying Default actions; and if

more complicated behavior is desired, the user can make
use of any number of Conditional actions.

Resnick, Fred Martin, and numerous other MIT Media
Lab members for the LEGO Programmable Brick and
their great support. Scott Dixon, a teacher at the
Centennial Middle School in Boulder, made all the user
testing with his wonderful students possible. The people
at the Center for LifeLong Learning and Design, provided
essential insights and suggestions.

An important aspect that we discovered during user
testing is that children appreciate a lively application with
colorful icons and audio feedback. Appropriate audio
feedback serves two purposes. Users can receive
confirmation that what they expected really happened or
warnings that they just did something they were not
supposed to.

References

1. Braitenberg, V., Vehicles: Experiments in Synthetic
Psychology, MIT Press, Cambridge, MA, 1987.The rule-based approach in LEGOsheets maps nicely

onto programming artifacts with parallel behavior.
However, it falls short in cases where the sequencing and
timing of events is important. Brick Logo, with its
sequential model, is better suited to handle sequences. A
simple traffic light with a timed sequence shifting from
red to green to yellow and back, can be written in a few
lines of code that are straightforward. However,
implementing the traffic light in LEGOsheets is more
difficult, and not so intuitive.

2. Hayes-Roth, F., "Rule-Based Systems,"
Communications of the ACM, Vol. 28, pp. 921-932,
1985.

3. Papert, S., The Children's Machine, Basic Books,
New York, 1993.

4. Repenning, A., and W. Citrin, "Agentsheets:
Applying Grid-Based Spatial Reasoning to Human-
Computer Interaction," 1993 IEEE Workshop on
Visual Languages, Bergen, Norway, 1993, pp. 77-
82.

5. Conclusion

The gradual transition from manual control to
programmed control provided by LEGOsheets makes
learning to program the LEGO Programmable Brick an
enjoyable experience. It is important to make learning to
program fun, especially for children. LEGOsheets
achieves this by continuing to reward the children with
increasingly powerful abilities while requiring only small
increases in the skill needed.

5. Repenning, A., and T. Sumner, "Agentsheets: A
Medium for Creating Domain-Oriented Visual
Languages," Computer, Vol. 28, pp. 17-25, 1995.

6. Shneiderman, B., "Direct Manipulation: A Step
Beyond Programming Languages," in Human-
Computer Interaction: A Multidisciplinary
Approach, R. M. Baecker and W. A. S. Buxton,
Eds., Morgan Kaufmann Publishers, Inc., 95 First
Street, Los Altos, CA 94022, 1989, pp. 461-467.

Acknowledgments

The research was supported by the National Science
Foundation under grant No. RED 925-3425, supplement
to RED 925-3425, the Advanced Research Projects
Agency under Cooperative Agreement No. CDA-940860,
and Apple Computer, Inc. Special thanks go to Mitchel

7. Resnick, Mitchel, “Behavior Construction Kits,”
Communications of the ACM, Vol.37, No.7, pp. 65-
71, July 1994.

