
Visual Languages ‘94
Reprint:

Repenning, A., "Bending Icons: Syntactic and Semantic Transformation of Icons," Proceedings of the 1994 IEEE

Symposium on Visual Languages, St. Louis, MO, 1994, pp. 296-303.

Bending Icons:
Syntactic and Semantic Transformations of Icons

Alex Repenning

Department of Computer Science and Institute of Cognitive Science
Campus Box 430

University of Colorado, Boulder CO 80309
(303) 492-1349, ralex@cs.colorado.edu

Fax: (303) 492-2844

Abstract

The notion of icons in visual environments is limited by perceiving icons as tacit entities that have meaning only to human

beings and not to the machines that display them. This perception leads to visual tools that provide very little support for

the creation of related icons representing related concepts. A large number of complex icons can be generated

automatically by applying simple syntactic and semantic transformations to more fundamental icons. These transformations

can significantly reduce the laborious work of icon designers and programmers. This paper describes some of the essential

icon transformations that have emerged from the experience of 25 designers using the Agentsheets system and creating a

total of 500 icons.

Keywords

agents, incremental programming, spatial metaphor, visual programming, syntactic transformation, semantic

transformation, flow metaphor, topology, picture extrapolation

1. Introduction....... 296
2. Agentsheets: A Programming Substrate..... 296
3. Syntactic Transformations of Icons .. 299
4. Semantic Transformations of Icons...... 301
5. Conclusions ... 303

Bending Icons:
Syntactic and Semantic Transformations of Icons

Alex Repenning

Department of Computer Science and Institute of Cognitive Science
Campus Box 430

University of Colorado, Boulder CO 80309
(303) 492-1349, ralex@cs.colorado.edu

Fax: (303) 492-2844

Abstract
the majority of icon-based applications related concepts

are represented by related icons. That is, applications

typically do not consist of completely orthogonal concepts

that need to be represented with radically different icons.

Instead, groups of icons often are variations revolving

around a common theme and could, in many cases, be

created through automatic transformations of icons. These

transformations, because they are concerned with the look

of icons, are syntactic transformations.

The notion of icons in visual environments is limited by

perceiving icons as tacit entities that have meaning only to

human beings and not to the machines that display them.

This perception leads to visual tools that provide very little

support for the creation of related icons representing

related concepts. A large number of complex icons can be

generated automatically by applying simple syntactic and

semantic transformations to more fundamental icons.

These transformations can significantly reduce the

laborious work of icon designers and programmers. This

paper describes some of the essential icon transformations

that have emerged from the experience of 25 designers

using the Agentsheets system and creating a total of 500

icons.

Syntactic transformations of icons can imply semantic

transformations. Icons that are related with respect to how

they look are typically also related with respect to what

they mean. Generally speaking, the semantics of icons

cannot be determined by analyzing them on a pixel level.

This would require complex interpretation abilities that

parallel the visual recognition skills of human beings [1].

A more practical approach allows icon designers to

annotate icons with semantic information. Syntactic

transformations of icons, then, can also transform the

semantics captured in icon annotations. To that end, a

transformation of the look of an icon, for example by

rotating the icon, determines how the rotated icon behaves.

1. Introduction

Designing icons is laborious work and should be

automated wherever possible. The lack of automatic icon

creation tools is rooted in the perception that icons are

tacit entities that have meaning only to human beings and

not to the machines that display them. In this model it is

typically the role of visual designers to render abstract

concepts defined by application designers to concrete

icons that visually represent these concepts. To automate

icon creation would mean to build mechanisms that take

over the intricate role of visual designers. However, the

design of good icons efficiently communicating concepts

is demanding and has often been underestimated by

application designers [7]. Consequently, the feasibility of

approaches to automatically render abstract concepts to

concrete visual representations is problematic.

This paper describes the experience of 25 users of a

programming substrate, called Agentsheets, creating 40

applications with more than 500 icons during the past four

years. This paper briefly introduces Agentsheets, and

describes syntactic and semantic icon transformations

2. Agentsheets: A Programming Substrate

This section provides only a brief summary of the

Agentsheets system in order to give the reader an intuition

about the design process of icon-based applications using

Agentsheets or related systems. For a more detailed

discussion of Agentsheets and applications created with
The problem of automatic icon creation can be reduced to

the problem of icon transformation after realizing that in

0-8186-6660-9/94 $04.00 © 1994 IEEE
296

Agentsheets the reader is referred to other papers

describing the design of a visual programming language

for voice dialog design at US WEST [14], illustrating the

use of new interaction styles for visual problem solving

[15], analyzing trade-offs in grid-based systems [13], and

providing an elaborate philosophical argument for the use

of agents in visual programming [12].

Agentsheets is a programming substrate for building

dynamic, visual environments. In the past four years,

Agentsheets has been used to create domain-oriented [3]

visual programming languages in domains such as art,

artificial life, distributed artificial intelligence, education,

environmental design, and simulation.

Figure 1. Channels Application

Modeling flow with adjacent agents in a grid can have

advantages over visual representations based only on

topological considerations [2]. The discretizing effect of

grids can turn secondary notation [9] (the use of white

space, adjacency, and clustering) found in many

diagrammatic representations into tangible information.

Pipe systems represented with the Channels application,

for instance, do not merely represent a topology of

connected points. Instead, they allow the derivation of

information based on Euclidean characteristics such as

distance. In the case of the pipe system, pipes model non-

ideal conductors of fluids. Water, while moving through

pipes, is evaporating. Simply drawing the pipe system

based on pipe segments will implicitly derive the water

loss, due to evaporation, between any two points in the

system.

Visual environments created using Agentsheets consist of

a large number of autonomous, communicating agents [8]

organized in a grid (see Figure 3: (7)), called the

agentsheet. Agentsheets is an object-oriented spreadsheet

extension similar to the system described by Piersol [10].

An agentsheet cell can contain any number of stacked-up

agents. Users interact with agents through direct

manipulation. Agents can be animated, move among cells,

play sounds, and use speech synthesis.

Metaphors of Flow

Many Agentsheets applications revolve around the

metaphor of flow [6]. Flow is an important concept in

many different visual programming approaches such as

Prograph [5], HI-Visual [16], and Khoros [11].

To create the set of required icons representing

components such as pipes or roads connecting neighboring

cells is laborious. In Figure 2 the icon in cell 5,

representing a railway track, implies a connection between

cells 4 and 6. In order to express all possible connectivity

patterns between adjacent neighbors (cells 2, 4, 6, and 8),

not including cul-de-sacs, eleven different icons need to be

designed: , , , , , , , ,

, .

Agentsheets adapts a different model of flow that treats

flow as the propagation of agents through a discrete space.

This space is often constrained by conductors, such as

pipes, wires, rivers, and railway tracks that are represented

by agents. For instance, in the Channels application agents

are used to model pipes conducting water (Figure 1). The

flowing agents can represent either fluids or discrete

entities. Discrete entities such as cars, have to make

explicit decisions when faced with the topology of a fork.

A car can go only one way or the other. Fluids, on the

other hand can be distributed.

1 2 3

4 5 6

7 8 9

Figure 2. An Agentsheet Cell and its Neighbors

Designers need tools to efficiently create sets of related

icons and they need to have means to attach semantics to

icons in order to simplify the task of creating icon-based

systems.

297

(1) Gallery

(4) Class Browser

(5) AgenTalk Editor

Designer

(3) Gallery

(6) Depiction Editor

(2) Worksheet

(7) Agentsheet

End User

Look Behavior

(8) Tool Store

Figure 3 : The Structure of an Agentsheet

Agentsheets provides user interfaces for end users and designers of visual programming languages. End users compose programs by

selecting components in the gallery (1) and putting them into a worksheet (2). Designers perceive worksheets (2) as agentsheets (7), i.e.,

agents organized in a grid. They create networks of related depictions in the expanded gallery (3), design icons with the depiction editor

(6), define behavior with the AgenTalk editor (5) by reusing existing agent classes found in the class browser (4), and create or subscribe

to tools in the tool store (8), allowing end users to interact with agents. Worksheets, galleries, depiction editors, class browsers, and tool

stores are all agentsheets.

298

3. Syntactic Transformations of Icons In addition to simple icon transformations, such as rotation

and flipping, new transformations can be defined that are

relevant to the metaphor of flow. One important

transformation is the bending of icons. Bending the base

icon1 of Figure 4 yields the icon in Figure 5:

This section illustrates the automatic generation of icon

sets through syntactic transformations. Similar to some of

the morphological transformations described by Fujii [4],

syntactic transformations in Agentsheets are concerned

with visual features of icons. The transformations

described in this paper reflect the metaphor of flow.

The principles of syntactic icon transformations are

illustrated in the context of the CityTraffic application

created for urban planners to analyze traffic patterns.

CityTraffic makes use of the flow metaphor: road

segments and railway tracks are flow conductors. Cars and

trains are discrete entities of flow. Again, in the

CityTraffic application Euclidean characteristics are

relevant. It is not sufficient to know that two places in a

city are connected. What also matters is the likelihood of

collision, the time it takes to move from one point to

another, and the interaction between cars, trains, and

traffic signals.

Figure 5. Curve

The color of each destination icon pixel at a location <x,

y> is defined by looking up the color of the source icon

pixel of the at location <x’, y’>:

x' = N ⋅
sin−1 x

r






π
2

y' = r

where N is the size of the icon and radius r is determined
by r = x 2 + y 2

The gallery (Figure 3: (1), (3)) is used by a designer to

create a network of related road icons. First, the designer

creates a base icon (Figure 4) representing a straight street

segment using the depiction editor (Figure 3: (6)). This

icon will be the basis for syntactical transformations that

yield variations of the street icon representing different

connectivity patterns of roads.

More complex icon transformations require picture

extrapolation. That is, in the process of the transformation

some source icon pixels need to be copied to multiple

locations in the destination icon. The selection of

appropriate source pixels often requires heuristics. Many

transformations require the segmentation of icons into four

areas (Figure 6):

1
2

3

4

Figure 6. Icon Segmentation

For example forking, crossing, and sharp bending (Figures

7-9) are transformations based on rotating, flipping and

reassembling these four segments.

Figure 4. Base Icon Representing Street

The transformations have emerged from analyzing related

icons in earlier applications created with Agentsheets.

Designers often created sets of related icons by

painstakingly drawing each icon from scratch because the

kind of transformations they required were not supported

in traditional icon editors. Building some of the observed

manual transformations by icon designers into the

Agentsheets substrate has literally reduced the time it

takes to create icon families from hours to minutes. This is

especially true for complex color icons.

1Base icons can be arbitrary; for instance bending icon

 will create icon .

299

• Forking:

Figure 7. T Segment

• Crossing :

Figure 10. Gallery Containing Base Icons

The designer selects the track icon and applies a

transformation script to create all icons required to

represent connectivity among the four adjacent neighbors

of the icon. The script creates the icons and generates

names for the icons (Figure 11).

Figure 8. Intersection

• Sharp Bending:

Figure 9. Corner

Instead of applying transformations to icons individually,

designers can run transformation scripts to create

frequently used networks of related icons. In a typical

scenario a designer would start by creating a set of base

icons. In the gallery shown in Figure 10 the base icons for

a traffic simulation have been drawn.

Figure 11. Transformed Tracks

Automatic transformations not only save time, they also

encourage designers to experiment with different looks of

icons while maintaining the consistency between related

icons. Without automatic transformations the need to

change a base icon would force designers to manually

touch up all related icons.

After transforming all base icons, the gallery can be used

to draw a complete scene (Figure 12).

300

Figure 12. CityTraffic Simulation for Urban Planners

4. Semantic Transformations of Icons The diode icon, , implies connecting the left with the

right cell but not the other way around. The arrows to the

left and to the right of the diode icon have been specified

by the designer. They are the semantic augmentation of

the icon.

In addition to transforming syntactic aspects of icons,

transformations can be applied to the semantics of icons.

Icons are augmented with their connectivity pattern. That

is, designers specify which neighbors are connected by the

icon. For instance, a diode is a semiconductor that lets

current flow through it in only one direction. Designers

specify the connectivity of icons with the connectivity

editor in Agentsheets (Figure 13) by clicking at

neighboring cells. Each neighboring cell can either be an

input (arrow, , pointing in the direction of the icon), an

output (arrow pointing away from depiction), a combined

input/output, or neither.

Applying icon transformations will not only change the

look of the icons but also their semantic augmentation. In

the simple case of rotating the diode icon by 180 degrees

the resulting connectivity pattern is as shown in Figure 14.

Figure 14. Connectivity of a Diode Rotated 180 Degrees

The same mechanism works for more complex

transformations. A straight piece of a two-way street

(Figure 15) has the semantics of a conductor from left to

right and from right to left.
Figure 13. Connectivity of a Diode

301

TASKS (Car) :
CASE my-icon

 : {car is moving east}
 CASE ON-TOP-OF

 : go (straight);

 : go (right);Figure 15. Semantics of Street

 : go (left);Applying bending, forking and crossing transformations to

this icon also transforms its semantics (Figure 16). : go (left) OR go (right);

 : go (left) OR go (straight);

 : go (right) OR go (straight);

 : go (left) OR go (right) OR go (straight);

 : {car is moving north}
 CASE ON-TOP-OF

Figure 16. Street After Bending, Forking, and Crossing ...

 : {car is moving west}
The ability to transform the syntax and the semantics of

icons with the same type of operations narrows the gap

between the icon image and the icon meaning [7]. If a base

icon has been successfully defined, that is, the icon’s

intent is recognizable by users, then transformations are

likely to produce recognizable icons as well. The novelty

of this approach is that syntactic operations on the pixel

level of icons, such as bending icons, drives the meaning

of the icons.

 CASE ON-TOP-OF
 ...

 : {car is moving south}
 CASE ON-TOP-OF
 ...

Figure 17. Code For Car Moving On Road

In the above program the mapping between the look and

meaning of icons is hard coded. The direction of the car

and the connectivity of the street segments are implicit in

the code. By making use of the connectivity semantics

associated with cars and streets the code can be reduced

to:

The ability to augment icons with semantic information

and to transform that semantic information reduces the

complexity of programming. If semantics are not

explicitly built in to icons they would need to be provided,

implicitly, in the program defining the behavior of

components. Without this information a designer

specifying the interactions of cars with streets in the

CityTraffic application would have to write tedious

fragments of code to express that cars should follow roads.

TASKS (Car) :

go (choose-one (directions-to-go (heading (my-icon),

 exits (ON-TOP-OF)))

Possible directions for the car are determined based on

where the car was heading and where the car could go .

The car selects randomly one of the possible directions

and moves.

For each direction the car is heading the car has to

distinguish between a large number of street icons it could

be on top of in order to make the decision of either going

straight, or making a left turn or a right turn (Figure 17). The point here is not to write an optimal program for city

traffic simulation. Instead, it is important to note that quite

often related icons are used to represent related concepts.

The syntactic as well as the semantic aspects of these

relationships can be captured in icon-based systems. This

leads to a new perception of icons no longer reducing

icons to tacit entities that have only meaning to human

beings.

302

5. Conclusions 6. Lakeoff, G. and M. Johnson, Metaphors We Live By,
The University of Chicago Press, Chicago and
London, 1980.While describing syntactic and semantic transformations,

such as bending icons, this paper would like also to “bend”

people’s perceptions regarding icons. Icons are not just

visual representations of abstract concepts. Instead, icons

can have intrinsic semantics and syntax that can be

transformed. Tools can help designers of icon-based

systems to create related icons representing related

concepts through automatic icon transformation. Syntactic

transformation of icons, on one hand, can significantly

simplify the laborious task of drawing icons. Semantic

transformations of icons, on the other hand, can facilitate

the task of programming by attaching semantics to icons

instead of embedding semantics implicitly in programs

dealing with icons.

7. Levialdi, S., P. Mussio, M. Protti and L. Tosoni,
“Reflections on Icons,” 1993 IEEE Symposium on
Visual Languages, Bergen, Norway, 1993, pp. 249-
253.

8. Minsky, M., The Society of Minds, Simon &
Schuster, Inc., New York, 1985.

9. Petre, M. and T. R. G. Green, “Learning to Read
Graphics: Some Evidence that Seeing an Information
Display is an Acquired Skill,” Journal of Visual
Languages and Computing, pp. 55-70, 1993.

10. Piersol, K. W., “Object Oriented Spreadsheets: The
Analytic Spreadsheet Package,” OOPSLA ‘86, 1986,
pp. 385-390.

Acknowledgments 11. Rasure, J. R. and C. Williams S., “An Integrated
Data Flow Visual Language and Software
Development Environment,” Journal of Visual
Languages and Computing, pp. 217-246, 1991.

Many thanks to the numerous users of Agentsheets who

have created wonderful applications. I also thank the HCC

group at the University of Colorado, and Clayton Lewis,

who contributed to the conceptual framework and the

systems discussed in this paper. Roland Hübscher has

provided crucial insights to the bending problem. This

research was supported by the National Science

Foundation under grant No. RED-9253425, Apple

Computer Inc., and US West Advanced Technologies.

12. Repenning, A., “Agentsheets: A Tool for Building
Domain-Oriented Dynamic, Visual Environments,”
University of Colorado at Boulder, Ph.D.
dissertation, Dept. of Computer Science, 171 Pages,
1993.

13. Repenning, A. and W. Citrin, “Agentsheets:
Applying Grid-Based Spatial Reasoning to Human-
Computer Interaction,” 1993 IEEE Workshop on
Visual Languages, Bergen, Norway, 1993, pp. 77-
82.

References

1. Arnheim, R., Visual Thinking, University of
California Press, Berkeley, 1969.

14. Repenning, A. and T. Sumner, “Using Agentsheets
to Create a Voice Dialog Design Environment,”
Proceedings of the 1992 ACM/SIGAPP Symposium
on Applied Computing, Kansas City, 1992, pp. 1199-
1207.

2. Citrin, W. V., “Requirements for Graphical Front
Ends for Visual Languages,” Proceedings IEEE
1993 Workshop on Visual Languages, Bergen,
Norway, 1993, pp. 142-149.

3. Fischer, G. and A. C. Lemke, “Construction Kits and
Design Environments: Steps Toward Human
Problem-Domain Communication,” HCI, Vol. 3, pp.
179-222, 1988.

15. Repenning, A. and T. Sumner, “Programming as
Problem Solving: A Participatory Theater
Approach,” To Appear in: Workshop on Advanced
Visual Interfaces ‘94, Bari, Italy, 1994.

4. Fujii, H. and R. R. Korfhage, “Features and a Model
for Icon Morphological Transformation,”
Proceedings 1991 IEEE Workshop on Visual
Languages, Kobe, Japan, 1991, pp. 240-245.

16. Yoshimoto, I., N. Monden, M. Hirakawa, M. Tanaka
and T. Ichikawa, “Interactive Iconic Programming
Facility in HI-VISUAL,” IEEE Computer Society,
Workshop on Visual Languages, Dallas, 1986, pp.
34-41.

5. Golin, E. J., “Tool Review: Prograph 2.0 from TGS
Systems,” Journal of Visual Languages and
Computing, pp. 189-194, 1991.

303

