
Towards the Automatic Recognition of Computational Thinking for Adaptive
Visual Language Learning

Kyu Han Koh, Ashok Basawapatna, Vicki Bennett, Alexander Repenning
University of Colorado at Boulder

{Kyu.Koh, Ashok.Basawapatna, Vicki.Bennett, Alexander.Repenning}@colorado.edu

Abstract

Visual programming languages can be used to

make computer science more accessible to a broad
range of students. The evaluative focus of current
research in the area of visual languages for
educational purposes primarily aims to better
understand motivational benefits as compared to
traditional programming languages. Often these visual
languages claim to teach students computational
thinking concepts; however, although the evaluations
show that students may exhibit more enthusiasm, it is
not always clear what computational thinking concepts
students have actually learned. In this paper we
attempt to develop a visual semantic evaluation tool
for student-created games and simulations that goes
towards depicting the computational thinking concepts
implemented by the students. Through semantically
analyzing a given student’s created projects over time,
this visual evaluation tool, called the Computational
Thinking Pattern (CTP) graph, can possibly indicate
the existence of computational thinking transfer from
games to science simulations.

1. Introduction

There is growing evidence that visual programming
languages can be effective in teaching children how to
program. The ability to at least reduce syntactic
problems – for instance not being a mere semicolon
away from total programming disaster – combined
with the do-it-yourself spirit of the Web 2.0 generation
have resulted in a renaissance of visual programming.
The anticipated educational benefit of visual
programming is mostly of a motivational nature.
Visual programming [1,2], drag and drop style
programming, or more generally end-user development
[3] makes programming simpler.

The motivational level of visual programming
supported computer science learning, including game
design, can be amazingly high; but the question of

what it is that students actually learn emerges. For
instance, in the case of the AgentSheets authoring tool
[16,18], the large number of students instructed in
schools is due to the fact that the Scalable Game
Design [4] curriculum has been embedded into existing
required courses that formerly consisted of teaching
applications, such as word processing and
keyboarding. In these classes most students are now
required to participate in game design modules.
Surprisingly, even with the forced exposure, the
motivational numbers are extremely high. For instance
78% of the girls and 68% of the boys stated that they
would like to continue taking a game design course [5].
These kinds of programs exploring motivational
dimensions are well supported through funding
organizations, including the National Science
Foundation. Unfortunately, the educational dimensions
of these investigations are much weaker, making what
students actually learn about computer science through
the use of visual programming languages less clear.

Computational Thinking [6,7] has become the
buzzword in educational research. Early attempts to
define computational thinking, such as the panel on
computational thinking at the National Academies of
Sciences, [8] suggests that consensus is not yet
imminent. Many school districts with whom we are
working have given us feedback that they have heard
the term “computational thinking,” but do not
understand what it is. Even though educators may not
share a definition of “computational thinking,” their
expectations of its effects overlap. Educators would
like to walk into a game design-based class in
computer science education and ask a student, “Now
that you can make ‘Space Invaders’, can you also
program a science simulation?” This is a bold question
revealing a highly ambitious goal of transfer, including
a testable condition. If all that students learn is to use
simplified visual programming languages to make
nothing but games, without the ability to apply more
general skills to applications such as computational
simulations, then computational thinking did not occur.

Whatever computational thinking may be, to educators,
it should allow students to apply a computational skill
set to a diverse set of problems; this would be a true
test.

To assess computational thinking we need to be
able to recognize various kinds of computational
thinking skills. Many existing attempts have been
limited in nature to skill investigations mostly at the
syntactic level. Some investigations explore the
specific benefits of visual programming languages in
comparison to textual languages [9]. At the syntactic
level, these comparisons are extremely difficult
because visual and textual languages may not match up
very well. The few studies that do find comparable
languages, e.g., Logo and Scratch, [10] reveal mixed
benefits and are unable to find simple causal
connections between visual languages and learned
skills. This is not a surprise to the visual language
research community, which has extensively discussed
these kinds of challenges. Perhaps more disappointing
is the intrinsic limitation of syntax level analysis. The
discussion has been limited to form (syntax), rather
than the meaning (semantics) of a program. Largely
this is not because people are uninterested in
semantics, but because semantics are intrinsically hard
to infer from existing programs.

The field of semantics program analysis is extensive
including reverse engineering and design intent
recovery [11]. Even with a limited scope, for instance,
the ability of a compiler to detect code that could run in
parallel instead of sequential [12], semantic discovery
can be difficult. In educational settings, educators tend
to make the best from the situation by working with
rubrics that provide a checklist for required behavior of
a game. For instance, the Stanford School of Education
developed a rubric based approach to grade middle
school students building games with AgentSheets [13].
These checklists work well for teachers. Teachers run a
student’s game while checking off the behavior that the
game is supposed to exhibit. For instance, in Frogger,
the user should be able to control the position of the
frog using the cursor keys, an element of an evaluation
rubric. Unfortunately, rubric based approaches do not
work well, if at all, for open ended programming
assignments, in which students can build a nearly
unlimited range of game or simulation designs.

In this paper we describe an early version of an
automatic approach to computational thinking pattern
recognition based on a semantic analysis called
“Program Behavior Similarity (PBS)”. This approach
can, with some probability, recognize the presence of a
semantic level pattern without program execution. This
paper will introduce the notion of computational
thinking patterns, describe a way to recognize these
patterns, and show a number of examples ranging from

middle school to graduate school level games and
simulations. The aim of this paper is to develop an
early framework to recognize computational thinking
skills in a way that is application domain independent.
This idea is important for visual language learning as it
pertains to human centric computing. For example, the
ability to automatically detect computational thinking
patterns enables the adaptation of visual language
curricula to individual students. Ideally, we would
demonstrate that these kinds of patterns not only exist
for many different applications, but also, that we can
teach these patterns in a way that could detect transfer,
and consequently start to shed some light on the
question, “Now that you can program ‘Space
Invaders’, can you program a science simulation?”

2. Approaches to Semantic Program
Recognition

Visual language based authoring tools have been
created and used in a number of application domains,
specifically in game design [13], computational science
[14] and robotics [15]. The computational thinking
pattern spiral (Figure 1) [5] depicts these application
domains and the skills transfer process over time. The
Computational Thinking (CT) Spiral embodies:
• A collection of computational thinking patterns

specifying common object interaction that can be
found in a number of domains including game
design, computational science and robotics.

• A spiral pathway suggesting an iterative approach
to introduce and connect these concepts. For
instance, random movement in game design is
conceptually similar to Brownian movement in
physics.

• Ordered from simple computational thinking
patterns such as the collision of objects to highly
advanced ones such as Maslow’s hierarchy of
needs. These concepts build upon each other
within the spiral.

• Implies increased connectivity among the three
computer science areas of robotics, computational
science and game design.

Ideally, learning would begin with the simplest
concepts and progress to the more complex. The CT
Spiral exemplifies the process of how learning transfer
can be detected through the use of computational
thinking patterns as they build and combine with each
other. In our experience, over the course of the
semester in various game design classes, we have
informally noticed an increase in computational
thinking complexity and possible evidence of transfer
among students [5]. Overall, just as the spiral depiction
offers an insightful view into the computational

thinking transfer process, so does a student’s use of
increasingly complex pattern combinations.

Figure 1: Computational Thinking Pattern Spiral

exemplifies computational thinking concepts from the
simple to the complex [4]

The aim of this research is to develop an adaptive
mechanism able to support the teaching of visual
programming. The ability to recognize computational
thinking patterns is a first step towards the assessment
of computational skills in a way necessary to solve
challenges in applications such as game design,
computational science and robotics. Employing the
notion of flow [16] a human centric approach would be
able to adapt to specific needs of users by balancing
design challenges with the necessary skills. This would
allow novices to gradually pick up programming skills
starting with simple application such as basic game
designs and then, guided by the system, to move
towards more sophisticated games and computational
science simulations.

2.1. Program Behavior Similarity

As part of the Scalable Game Design project we

have collected thousands of games built by middle
school students [5]. We have also collected more
sophisticated games and science simulations from
teaching a game design course to university
undergraduates and graduates. To assess learning
among such diverse projects necessitates the need to
quantify skills beyond a collection of motivational
data. For example, being able to automatically
recognize the computational thinking skills outlined in
the CTP spiral (Figure 1), would enable students and
teachers to receive direct feedback as to a given
student’s skill level and learned concepts.

In trying to formulate an evaluative tool that would
be able to distinguish increased pattern combination
complexity within student created games, both
syntactic and semantic formats were considered.
Syntactic evaluation usually focuses on the form or
structure of computation. This type of evaluation does

not appear to be discriminating enough to show
potential increases in computational thinking skills,
which would lead to transfer. A semantic evaluative
tool that could compare simpler games and projects,
produced during the beginning of the semester, with
games and projects, created near the end of the
semester, could possibly reveal learning transfer. As
students start creating science simulations based on
natural phenomena that employ her/his knowledge,
gained from the game design curriculum, this
evaluative tool could point to the existence of transfer
within these games.

Related research, such as Lewis [10], compares two
visual language programs (Scratch and Logo) for
student game authoring. For this example, much of this
research protocol centers on motivational questions to
determine if there was any difference between each of
the two software programs. Only knowledge of
individual programming pieces, apart from the larger
context of the program, were used to compare the two
programs. Studies such as this one that evaluate on a
purely syntactic level might show knowledge of
individual concepts, but do not evaluate the student’s
ability to use that knowledge within multiple contexts.
Syntactic evaluations are not useful for detecting high-
level computational thinking knowledge or learning
transfer. A semantic evaluation tool could be very
useful for more accurately indicating the transfer of
learned knowledge in this respect.

One way to compare and profile code on more of a
semantic level, as an alternative to just counting
program primitives such as loops, is to look for higher
level patterns that could be indicative for the meaning
of a program. A similar approach called Latent
Semantic Analysis (LSA) [17] is used to find semantic
information in natural languages by comparing text.
Computer languages, including visual languages, can
be subjected to the same idea. Just like natural
languages, computer languages are based on the notion
of statements consisting of grammatical structure. On
one hand, computer languages should be simpler to
deal with as their syntactic rules tend to be less
irregular. In LSA stemming is a fundamental problem,
which is not relevant to computer language because
verb conjugations are non-existent. Functions and
primitives of computer languages are comparatively
simple. On the other hand, the approach described here
shares some of the documented shortcomings of LSA
such as the Bag-of-Words problem preventing the
recognition of semantics based on word order.

Our first attempt at a semantic type evaluation
involved using the rules within different AgentSheets
games to develop a profile of these games.
AgentSheets programs consist of user created “agents,”
which are the game characters. For example, in the

game Frogger, a user creates a different agent for the
frog, truck, street etc. Every agent in AgentSheets
consists of depictions that specify how the agent looks,
and behaviors that are rules dictating how the agent
acts in a given situation. All behaviors in AgentSheets
are implemented using “If/Then” conditional
statements [18]. AgentSheets enables the use of 16
different conditions and 23 different actions, in
combination, to create behaviors for any given agent.
In Frogger, for example, to make the frog move in four
different directions involves four “key-pressed”
conditions associated with four “move” actions, one
for each direction. Therefore, to make the frog move
up, a student would program “If the keyboard up key is
hit, then the frog moves up.” The rules to make the
frog move every direction are depicted below in Figure
2.

Figure 2: The cursor controlled move conditions and

action behaviors for the frog.

With the 23 conditions and 16 actions, it is possible
to represent each game as a vector of length 39,
wherein each element of the vector represents how
many of each individual conditions and actions are
used to implement a given game. Using these vectors,
any game created in AgentSheets can be compared to
any other game through a high dimensional cosine
calculation for similarity as depicted in Equation 1.
The cosine is zero if the unit vectors are orthogonal
and one if they are the same direction.

Equation 1: The Program Behavior Similarity (PBS) is

obtained by finding the angle in-between of two n-
dimensional vectors, u and v.

Equation 1, allows for a simple comparison of every
game based on the rules used. The high dimensional
cosine similarity comparison of games is robust to two
games having the same proportion of rules, but having
these rules in differing numbers. In such cases, a
syntactic analysis would categorize the games as
different. This makes the use of the high dimensional
cosine less of a purely syntactic evaluation and closer
to a semantic-type evaluation. Therefore, if two games
use the same exact rule set or rules in the same exact

proportion to one another, the similarity score between
the two games will be one. On the other hand, if
completely different rules are used, the similarity
between the two games will be zero.

The following is an example of two games with a
high similarity score.

Figure 3: Two similar Centipede Games with a similarity

score of 0.89

The two games in Figure 3 are implementations of
the classic arcade game Centipede. These games look
similar, and, in general, two normally programmed
Centipede games should have a very close similarity
score1. This is in-fact the case, as the two above games
have a similarity score of 0.89. The power of similarity
score analysis gives us an initial metric in order to
compare two games. However, this comparison is still
low level, and furthermore, does not give us a
meaningful explanation as to what computational
thinking patterns might be used in a given game
implementation or give insight into the existence of
transfer.

Although low-level, calculating program behavior
similarity, as shown in the previous section, is one
approach for semantic evaluation. However, the
differences between programmers’ problem solving
approaches and programming styles may result in an
inaccurate semantic analysis. For example, the two
Centipede games below (Figure 4), look similar, play
similar, but have a low similarity score of 0.43. So why
do these two similar games have such a low similarity
score? The two games have differences both in their
problem solving approaches and programming styles
(Table 1), giving an imprecise semantic game analysis.
Accidently, these two Centipede games have almost
same number of rules, but their agents’ rules are
programmed in a different manner. Both of them have
a ‘mushroom’ agent, ie: a section of the centipede,
when hit by a laser, turns into a mushroom. Centipede
A uses two rules to implement the ‘mushroom’ agent
while Centipede B uses six rules (Figure 5 and Figure
6). This differences in implementation produces a low
PBS score between the two games despite both games
having almost the same number of rules and similar
gameplay.

1 ‘Normally programmed’ refers to a minimum of
unnecessary rules.

Figure 4: Two Centipede Games with a low similarity
score of 0.43 (Centipede A: Left, Centipede B: Right)

Table 1: Structure of Centipede A and B
 Centipede

A
Centipede

B
Number of Agent Classes 8 19
Number of Depictions 13 35
Number of Methods 26 38
Number of Rules 107 129

Figure 5: Rules and Conditions of a Mushroom Agent in

Centipede A

Figure 6: Rules and Conditions of a Mushroom Agent

in Centipede B
Based on this low similarity score these games

would seem unrelated, which would be misleading.
Thus, a higher-level approach to semantic evaluation
that could detect the specific computational thinking
patterns that constitute a given game would be more
desirable. In order to fill this void, we developed the
Computational Thinking Pattern (CTP) Graph as an
attempt at a higher-level approach.

2.2. Computational Thinking Pattern Graph

The CTP graph illustrates the amounts and kinds of

computational thinking patterns implemented in a
given game. Figure 7 depicts two CTP graphs that
identify the nine most popular computational thinking
patterns providing tangible semantic game information
that cannot be found through more syntactic means.
These nine CT patterns are the result of a survey of
game collections and science simulations that have
been developed over a number of years. The CT
patterns are lined up in a clockwise direction in order
of implementation difficulty. In order to compare the
CTP graphs, the positioning of the computational
thinking patterns remain in the same order in any given
CTP graph. The internal rationale of the CTP graph is
an extension of the Program Behavior Similarity score.
The CTP graph is drawn by calculating the PBS score
between a given AgentSheets project and nine
representative canonical patterns. Each canonical
pattern form represents one computational thinking
pattern such as ‘cursor control’, ‘generation’, etc.
These canonical patterns can be found on the Scalable
Game Design Arcade (SGDA).

On the CTP graph, the score for each vector,
multiplied by 10, depicts the PBS score between a
given game and each canonical pattern (computational
thinking pattern). Also, the score for each vector
represents how much a certain computational thinking
pattern is employed in a given game. So, if a game has
features, which are not in the CTP graph structure, the
CTP graph will not analyze those features. Therefore,
the remaining computational thinking patterns would
be a smaller portion of the graph. Consequently,
undetected features will lower the PBS score of those
computational thinking patterns. As a result, the CTP
graph for that game will be smaller than a game that
employs only the computational thinking patterns
within the CTP graph structure.

Though the top and bottom images in Figure 7 look
the same size, they are scaled differently. This is due to
the fact that the greatest computational thinking pattern
value in the top image is 8 whereas the greatest
computational thinking pattern value in the bottom
image is 4. This difference in scaling is more apparent
in Figure 8 wherein the two CTP graphs are
overlapped.

When comparing these two Centipede games above,
using the CTP graph, the graph reveals more accurate
analysis (Figures 7 and 8). Though these two games
may use different implementations, they employ the
same computational thinking patterns because they are
the same game. Consequently, the CTP graph gives us
the true picture of the underlying semantic meaning of
these games.

The CTP graph can help users, such as teachers or
students, more effectively interpret and evaluate
games. Furthermore, this CTP graph is automatically
generated when a student submits her/his game to the
SGDA giving instant feedback [7]. The authors of
SGDA have used the system to collect around 2500
AgentSheets projects including arcade games such as
Frogger, Sokoban, Centipede etc. and various science
simulations from the participants of the Scalable Game
Design project [4]. Students can get instant semantic
evaluation feedback right after he/she submits his/her
project to SGDA through the CTP graph and students
have the ability to compare their games to the other
AgentSheets project on the SGDA.

Figure 7: CTP Graph of Centipede A (top) and Centipede

B (bottom)

Figure 8: CTP graphs from Centipede A and B

3. Transfer

Bransford et al [19] describe knowledge transfer as

the most common method for human beings to learn
the necessary components of life. Transfer is defined as
the ability to extend or use what has been learned in
one context into a new context or to solve a new
problem. Using this definition, all learning can be

considered a form of transfer. Knowledge transfer can
be aided by using multiple contexts (the more diverse
settings, the better) to demonstrate new concepts to
students. The new knowledge can then be retained by
the student in a more abstract form. When new types of
future situations occur, this knowledge can then be
accessed by the student. Students are not normally able
to transfer purely conceptual information to real world
situations without help. Linking any concept to a single
setting or context can also cause difficulty with
transferring knowledge to new situations. So, although
transfer is our preferred mode of learning and retaining
new information, transfer cannot be assumed in any
given context. Previous knowledge that students build
upon can also enhance or deter the effort to assimilate
new information. Consequently, the ability to detect
possible knowledge transfer could benefit researchers
in many disciplinary areas [19].

Since learning and knowledge from the field of
Computer Science in general can potentially be
integrated and used productively in many other
disciplines, promoting the transfer of computer science
knowledge into these areas could substantially enhance
learning and research within the computer science
field. Having a tool, which could detect the potential
transfer of computer science knowledge, as well as to
other disciplines, would tend to increase the breadth
and validity of computer science research, and
contribute to the growth of the field. The CTP graph
could potentially demonstrate the existence of
knowledge transfer, not just within related computer
science fields (Figure 1), but across disciplinary lines.

The CTP graph was first developed as a means to
offer feedback to students uploading their games to the
SGDA. The SGDA served as a submission format for
introductory game programming courses using
AgentSheets. During the semester, students are
exposed to simple computational thinking patterns; as
the class progresses they are introduced to more
complex and diverse computational thinking patterns.
Towards the end of the class, students are given open-
ended assignments. For these assignments students are
encouraged to build on their initial knowledge from the
class in order to create their games. For the final
project, students often choose to create simulations that
depict some natural phenomena. Semantically
analyzing a given student’s games from the beginning
of the semester as compared to their final project
(especially a science simulation), could offer an
opportunity to discover potential knowledge transfer.

For instance, a chaos theory simulation created by
one student (Figure 11) with the accompanying CTP
graph, shows how he mixed and combined
computational thinking patterns that he had learned and
used when previously programming Sokoban (Figure

9) and Sims (Figure 10). The CTP graph of his science
simulation is very similar to the combined CTP graphs
of Sokoban and Sims (Figure 12). Consequently, for
this student, the CTP graphs indicate that knowledge
transfer has occurred.

Figure 9: Screenshot and CTP Graph of Sokoban

Figure 10: Screenshot and CTP Graph of Sims

Figure 11: Screenshot and CTP Graph of Chaos

Theory Simulation

Figure 12: Comparison of CTP Graphs: depicts the

Sims-Sokoban combination

4. Discussion

For the last decade, several visual programming

languages have provided easy ways for young children
to learn programming concepts and skills. Many of
these visual languages successfully motivate students.
However, visual language research has not focused on
what kind of knowledge students have actually learned
from creating these games. The CTP graph provides an
initial way to assess specific knowledge accumulated
by students within a given class.

As we have observed, the ability to detect
computational thinking patterns is important for school
teachers and students using visual languages for
education. The CTP graph provides us with an initial
means to answer the question “Now that the student
can program Space Invaders, can the student program a
science simulation?” Furthermore, the CTP graph has
the ability to enable Human Centric Computing as
teachers can get immediate feedback on their student’s
progress.

Limitations of the CTP graph include the arbitrary
nature of the specified computational thinking patterns,
the difficulty in differentiating similar patterns, and the
number of computational thinking patterns chosen for
the CTP graph. Among the chosen computational
thinking patterns, a few, such as diffusion, are not
depicted as accurately as the others, such as hill
climbing. Although this anomaly needs to be further
investigated, it does not taint the relative accuracy of
the CTP graph, nor diminish its value for detecting the
presence of knowledge transfer in these situations.

Analyzing computational thinking patterns in
multiple combinations is a step closer to demonstrating
the depth and breadth of students’ knowledge. The
semantic nature of the CTP graph allows us to evaluate
and visualize a program’s actual underlying meaning.
A syntactic evaluation of a student’s learning only
shows the student’s knowledge in a very limited
context. Moreover, the implementation of a given
student’s previously learned computational thinking

patterns to a scientific context gives us a clearer picture
of how the student transferred new knowledge to a new
situation, demonstrating that through the CTP graph
comparison knowledge transfer exists.

4.1. Future Work

Although in most learning scenarios, knowledge

transfer is often assumed, this transfer cannot be
guaranteed to have actually taken place. The CTP
graph is a better tool for evaluating knowledge transfer
because the graph represents the CTP combinations as
an observable, and definable outcome. The ability to
detect knowledge transfer through the CTP graph, over
the duration of a semester course, is a positive first step
towards measuring transfer in other areas, and possibly
other forms of learning.

Future research will include additional validation of
computational thinking pattern recognition. The
current model has been validated manually by
comparing CTP graph output with human graders
evaluating computational thinking patterns by playing
games/simulations and looking at the source code. The
CTP graphs have performed quite well. However, at
this point we speculate that problems such as potential
false positives could be reduced by deepening the level
of analysis. Specifically, the current level of analysis
stops at individual conditions and actions. The analysis
does not drill further down into parameters to these
actions and conditions which could be used to
discriminate between similar patterns more effectively.

5. Acknowledgments

This material is based in part upon work supported

by the National Science Foundation under Grant
Numbers No. 0833612 and DMI-0712571. Any
opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

6. References

[1] T. Selker and L. Koved, “Elements of Visual Language”,
IEEE, 1988, pp. 38-44.
[2] S. Chang, R.R. Korfhage, S. Levialdi, and T. Ichikawa,
“Ten Years of Visual Languages Research”, IEEE, 1994, pp.
196-205.
[3] H. Lieberman, F. Paternò and V. Wulf (Eds), Use end-
user development book, End User Development. New York,
NY: Springer, 2006
[4] A. Repenning, D. Webb, A. Ioannidou, “Scalable Game
Design and the Development of a Checklist for Getting

Computational Thinking into Public Schools”, Proc.
SIGCSE’ 10, ACM Press, WI, USA, 2010.
 [5] A. Basawapatna, K.H. Koh A. Repenning, “Using
Scalable Game Design to Teach Computer Science From
Middle School to Graduate Schools”, ITICSE’10 Ankara,
Turkey, 2010, In Press.
[6] P.B. Henderson, T.J. Cortina, O. Hazzan, and J.M. Wing,
“Computational Thinking”, Proc. SIGCSE’07, KT, USA,
2007, pp. 195-196.
[7] J.M.Wing, “Computational Thinking and Thinking about
Computing”, Philosophical Transactions of the Royal Society
A, 366, 2008, pp. 3717-3725.
[8] National Academy of Sciences on Computational
Thinking, Report of a Workshop on The Scope and Nature of
Computational Thinking, National Academies Press, 2010
[9] Z. Les and M. Les, “Thinking, Visual Thinking, and
Shape Understanding”, Studies in Computational
Intelligence, 86, 2008, pp. 1-45.
[10] C.M. Lewis, “How Programming Environment Shapes
Perception, Learning and Goals: Logo vs. Scratch”, Proc.
SIGCSE’10, ACM Press, WI, USA, 2010.
[11] K.F. Moore and D. Grossman., “ High-Level Small-Step
Operational Semantics for Transactions”, Proc. POPL’08,
CA, USA, 2008, pp. 51-62.
[12] S.P. Reiss, “Semantics-Based Code Search”, Proc.
ICSE’09, Vancouver, Canada, 2009, pp.243-253.
[13] S. Walter, B. Barron, K. Forssell, and C. Martin,
“Continuing Motivation for Game Design”, CHI 2007, CA,
USA, 2007, pp. 2735-2740.
[14] C. Johnson, S. Parker, D. Weinstein, “Large-scale
computational science applications using the SCIrun problem
solving environment”, Proc. International Supercomputer
Conference 2000, 2000.
[15] J. Gindling, A. Ioannidou, J. Loh, O. Lokkebo, and A.
Repenning., "LEGOsheets: A Rule-Based Programming,
Simulation and Manipulation Environment for the LEGO
Programmable Brick," Proceeding of Visual Languages,
Darmstadt, Germany, IEEE Computer Society Press, 1995,
pp. 172-179.
[16] A. Repenning and A. Ioannidou, “Broadening
Participation through Scalable Game Design”, Proc. SIGCSE
2008, ACM Press, OR, USA, 2008
[17] T. K. Landauer, P. W. Foltz, & D. Laham, Introduction
to Latent Semantic Analysis. Discourse Processes, 25,
1998, 259-284.
 [18] A. Repenning and J. Ambach, "Tactile Programming: A
Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing," Proc. the 1996
IEEE Symposium of VL/HCC, CO, USA, 1996, pp. 102-109.
 [19] J.D. Bransford., A.L. Brown., & R.R. Cocking., How
People Learn: Brain, Mind, Experience, and School,
National Academy Press, Washington DC, USA, 2000.

