
Collaborative End-User Development on Handheld Devices

Navid Ahmadi
Faculty of Informatics
University of Lugano

Lugano 6904, Switzerlands
navid.ahmadi@lu.unisi.ch

Alexander Repenning
AgentSheets Inc.

6560 Gunpark Dr. Suite D
Boulder, CO 80301

alexander@agentsheets.com

Andri Ioannidou
AgentSheets Inc.

6560 Gunpark Dr. Suite
DBoulder, CO 80301

andri@agentsheets.com

Abstract

Web 2.0 has enabled end users to collaborate

through their own developed artifacts, moving on from
text (e.g., Wikipedia, Blogs) to images (e.g., Flickr)
and movies (e.g., YouTube), changing end-user’s role
from consumer to producer. But still there is no
support for collaboration through interactive end-user
developed artifacts, especially for emerging handheld
devices, which are the next collaborative platform.
Featuring fast always-on networks, Web browsers that
are as powerful as their desktop counterparts, and
innovative user interfaces, the newest generation of
handheld devices can run highly interactive content as
Web applications. We have created Ristretto Mobile, a
Web-compliant framework for running end-user
developed applications on handheld devices. The Web-
based Ristretto Mobile includes compiler and runtime
components to turn end-user applications into Web
applications that can run on compatible handheld
devices, including the Apple iPhone and Nokia N800.
Our paper reports on the technological and cognitive
challenges in creating interactive content that runs
efficiently and is user accessible on handheld devices.

1. Introduction

The end-user’s role in software production has
evolved over the years. Initially, end-users were only
using software without the ability to modify anything.
Later, end users were enabled to customize software.
More recently, during the last decade, especially with
the emergence of the Web, a medium that naturally
affords collaboration in cyberspace, end users started
evolving into authors assuming more creative roles of
generating content and sharing it with others.

Web 2.0 has brought collaboration to the next level.
New collaboration patterns illustrated in the use of
blogs, wikis, and participation in social networks, such
as Facebook allow end users to develop their own
content and contribute to the wealth of publicly

available information. However, the complexity of the
content has not gone further than text and multimedia.
A big step for increasing the complexity of artifacts
that end users collaboratively develop would be to add
interactivity to the artifacts; that is, add behavior to the
artifacts, to enable them to react to users’ actions. This
would elevate the creative process to end-user
development (EUD) [3] and afford the authoring of
more complex artifacts. We believe that interactive
applications such as games and simulations are the
next generation of content through which end users can
collaborate. These applications enable end users to
create content that is no longer passive and instead can
be seen as active participants in cyberspace, moving
from being information consumers to information
producers [2].

Figure 1. Ristretto Mobile: an iPhone running an
end-user developed game

 Handheld devices are the next collaborative

platform. Unique features of handhelds such as
portability, social interactivity, and connectivity [8]
make them an ideal platform for users to collaborate
through different content types such as text (instant
messaging, blogs, and wikis), images (photo sharing
sites such as Flickr), and movies (video sharing sites
such as YouTube). Moreover, handheld devices have

shown promise as a platform for technology-enhanced
learning in educational environments [1].

However, there is very limited end-user support for
authoring and running more complex end-user
developed applications on handhelds. This lack of
support is mainly due to specific properties of
handhelds, leading to some challenges [7]:

• User-interface constraints of handheld devices,
such as small screen size and limited input devices
and modalities;

• Hardware limitations, such as slow processors,
limited memory and storage, and restricted
operating system functionality;

• Lack of a unified programming platform due to
the diversity of hardware used to build handhelds.

We have created Ristretto Mobile, a Web-compliant
framework for executing end-user developed
applications on handheld devices. The applications are
developed using AgentSheets [5], an end-user
development environment, which enables end users to
develop their own games and simulations using a
graphical rule-based programming language.
Ristretto Mobile has a Web-based architecture, which not
only enables the seamless integration of end-user
developed applications into Web 2.0 applications, e.g.,
social networking applications, but also addresses the
lack of unified programming platform for handheld
devices. We have succeeded in running Ristretto Mobile
on iPhone, iPod Touch and Nokia N800. Figure 1
depicts an iPhone running an end-user developed game
called Sokoban using Ristretto Mobile in the iPhone’s
Safari Web browser.

Our ultimate vision is to build an infrastructure that
enables end users to collaborate through interactive
applications, such as games and simulations. In order
to reach our ultimate vision, we first need to provide
the required infrastructure for large-scale collaboration
by taking end-user development from desktops to the
Web, using Web-compliant technologies such as
JavaScript and AJAX. Ristretto Mobile is a feasibility
prototype of collaborative end-user development,
which at this point only provides the execution engine.
Later on, the authoring tools and collaboration aspects
will be added on top of the execution engine, to enable
end users to build the applications and interact with
them collaboratively.

In this paper we discuss previous work that led to
Ristretto Mobile and the design goals for Ristretto Mobile
for end-users, we present the architecture, explain the
implementation, and discuss the challenges and future
directions.

2. History
Early on in the development of AgentSheets, it

became clear that users not only wanted to make
simulations and games, but they also wanted to share
them on the Web. For the most part, users did not have
strong preferences regarding the underlying technology
for publishing their projects, as long as the game
experience on the Web matched the one using the
authoring tool.

We employed the notion of behavior processors [4]
as an analogy to word processors for a layered
architecture between high level authoring and low-
level implementation. In the case of word processors,
few people would edit Postscript files directly as a
means for creating a document. Instead, they use tools
such as LaTeX or MS Word, allowing them to operate
at a much higher level of abstraction. This also allows
them to generate different output formats such as
Postscript or Portable Document Format (PDF) without
having to change their document. In the same spirit, we
built a behavior processor called Ristretto [4] to
automatically turn AgentSheets projects into low-level
program representations.

The first version of Ristretto turned AgentSheets
projects, including agent behaviors and media
components such as images and sounds, into complete
Java applets embedded into Web pages. The Java
version of Ristretto includes a bytecode compiler that
turns agent behaviors directly into very efficient Java
class files. Other versions of Ristretto produced
different output formats such as Flash movies. We also
experimented with creating simplified Java runtime
environments that could run on handheld devices such
as HP iPAQs. However, to receive sufficient Java
support at that time, we had to use SavaJe, a Java-
based OS that had to completely replace Windows CE
on iPAQs, something that users were not willing to do.

To this day, the original version of Ristretto is the
best choice for demanding simulation and game
applications. The Ristretto-generated output runs very
efficiently on Java virtual machines because it no
longer needs to interpret behavior. Flash, initially just
an interpreted language, is gradually catching up
however.

Ristretto Mobile is a natural progression of this work.
At this stage it is a feasibility prototype exploring how
well complex game and simulation content can be
mapped onto an AJAX-based Web application
framework. Specifically, it explores how well
JavaScript is suited to implementing compile-time and
run-time tools for end users. JavaScript is not well
known for its performance. Only now, with the
relatively recent introduction of essential JavaScript

framework extensions such as the 2D Canvas, can we
hope to be able to build Ristretto Mobile efficiently.

3. Ristretto Mobile
Ristretto Mobile is the execution engine for running end-
user developed applications on handheld devices. The
architecture for Ristretto Mobile has to be flexible
enough to allow building the authoring tool and
eventually adding the collaboration aspects on top of
the execution engine. Moreover, Ristretto Mobile is
especially designed for handheld devices, which needs
specific considerations at the architectural level.

3.1. Design Goals

In developing Ristretto Mobile, we have considered
the following design goals:

• End-user developed applications as collaboration
content: our ultimate vision is to build an
infrastructure that enables end users to collaborate
through complex interactive applications.
Therefore, Ristretto Mobile has to be consistent with
the current collaboration paradigms on the Web,
and should be as integrated as possible with
Web 2.0 technologies such as JavaScript and
AJAX. To reach this goal, Ristretto Mobile has to be a
Web-based framework, allowing end-user
developed applications to run in the Web browser.

• Customization for handheld interaction: given
the interface and interaction modalities of handheld
devices, such as small screen and limited input
devices (e.g. only a touch screen with one physical
button on iPhone), implementation should be
especially customized to facilitate user interaction
with such devices.

• Customization for handheld resources: limited
hardware resources force the proposed architecture
to be implemented as a lightweight application that
requires low processing power and memory.

3.2. Architecture
To reach above goals, we conceptualized

Ristretto Mobile as a framework for generating and
running end-user developed applications in Web
browsers of handheld devices. With Web-based
execution of applications, not only do we achieve a
high degree of cross-platform execution for all the
digital devices that are capable of running a Web
browser, but we also provide the preliminary
requirements for the seamless integration of end-user
developed applications with Web 2.0-based social and
collaborative environments such as social networking
tools.

To generate and run a Web-based end-user
developed application, we need to transform the
original application, i.e. the application developed by
the end-user using AgentSheets, to its equivalent
version that is executable by technologies supported by
modern Web browsers such as JavaScript and Flash, or
the external Web-browser plugins. The latter would
require building a plugin for a specific browser that
executes the end-user developed application inside the
Web pages.

Ristretto Mobile transforms an end-user developed
application to its equivalent JavaScript program,
enabling it to run directly in all the JavaScript-enabled
Web browsers. Therefore, without the need for a
browser-specific plugin, it preserves a high degree of
browser and platform independence, and also avoids
any additional running overhead. This also keeps our
application as lightweight as possible to meet the
limited hardware resources of handheld devices, and
also eases the integration of Ristretto Mobile with other
Web 2.0 applications.

Figure 2 depicts the Ristretto Mobile architecture for
generating and running end-user applications. The
application retriever is responsible for fetching and
synchronizing the application files from the Web
server using AJAX calls, or simply reading application
files from local file system. The application
transformer is a compiler written in JavaScript that
takes application files as input and generates the
equivalent JavaScript code for running the application
in the Web browser on the fly. The runtime engine
consists of the required infrastructure including data
structures and routines necessary for providing the
runtime version of the end-user development
environment rewritten in JavaScript.

Figure 2. Ristretto Mobile execution engine
architecture

In the proposed architecture for the execution
engine, the entire application transformation process
takes place on the client side. Client-side
transformation allows us to build the authoring tool
completely on the client side on top of the execution
engine. Therefore, there would be no need to connect
to the server for transformation when the user changes
some parts of the application. If the transformation
happened on the server, each client would need to
connect to the server upon any change, Therefore,
server-side transformation could become a
performance bottleneck if the number of clients and
changes increases. Client-side transformation
distributes the transformation process load among the
clients to ensure the scalability of Ristretto Mobile.
Another advantage of the client-side transformation is
that users will be able to save the copies of end-user
developed applications on their machine and not only
execute them but also modify and rerun them, even
when they are not connected to the Internet.

3.3. Implementation

We have implemented Ristretto Mobile to run
applications developed using AgentSheets.
AgentSheets is an end-user development environment
for building interactive applications such as games and
simulations. The world in which the applications run,
called a worksheet, is essentially a grid containing
stacks of agents. Agents are depicted as 2D images.
Each agent is programmable by ends users using a
rule-based language called Visual AgenTalk [4]. Agent
behaviors contain collections of methods. Each method
contains rules, which in turn are constructed from
predefined conditions and actions.

Ristretto Mobile consists of the following
components:

Application Retriever is responsible for
downloading AgentSheets project files from the Web.
The application retriever is basically a function that
takes a URI as input and downloads the file content
using XMLHTTPRequest. The application retriever is
called by the application transformer whenever a new
file has to be read and transformed. Later on, for
adding collaboration features to the Ristretto Mobile, the
application retriever will contact the server once in a
while to receive the changes in the end-user developed
application files and pass it to the application
transformer.

Application Transformer takes an AgentSheets
end-user developed application URI from the user and
transforms the application to the equivalent JavaScript
program. First, it generates one JavaScript object per
AgentSheets agent and transforms each method in the
agent to the corresponding JavaScript method in the
related object. Each condition/action used in the rule-

based behavior translates to a call to the runtime
engine. After translating all the agents, the application
transformer reads the application’s worksheet
information, instantiates an object per each agent in the
worksheet, and puts the object in the same place in the
agent stack structure in the runtime engine.

Runtime Engine consists of all the static parts of
the framework, such as initialization for running the
application, required data structures, and a library of
conditions/actions. Initialization involves setting global
variables, creating data structures, such as a 2D matrix
of stacks where the objects will be placed,
implementing the agent super class, and methods for
drawing the agents in a canvas in the Web browser,
Runtime engine is also responsible for catching input
events, e.g., key presses and mouse clicks, and sending
them to the transformed end-user developed
application. In addition, each of the predefined
conditions/actions in AgentSheets is implemented as a
separate method, which is called by the objects
generated by the application transformer. All the static
code is produced as a single JavaScript file.

3.4. Experiments and Challenges

The Apple iPhone and the Nokia N800 are two
concrete examples of network-enabled handhelds with
full Web browser support including JavaScript, AJAX
and Canvas. The iPhone is a handheld device with
innovative features including Multi-Touch and Safari
Web browser. The iPhone has no physical buttons,
except a “home” button. Users interact with the device
via a multi-touch screen and a virtual keyboard
covering about half of the screen that pops up so that
user can tap keys. Moreover, it is only possible to use
the keyboard in the browser if there is a textbox to type
in. Therefore, there is no keyboard available while the
user deals with the Canvas. The Nokia N800 is called
an Internet tablet, running a version of Debian Linux
operating system. We ran a Mozilla based browser on
it to make sure it supports the Canvas. It has a physical
keyboard and a touch-screen. But as with the iPhone,
the keyboard does not work with the Canvas.

From the beginning, we intended to make
Ristretto Mobile run on the Apple iPhone and Nokia
N800. We used a number of interactive end-user
developed games using AgentSheets, including
Sokoban and Frogger, to test our application on these
handhelds. Development challenges arose as follows:

Interaction challenges: AgentSheets applications
mostly interact with users via the keyboard. For
instance, in most games, the user controls the main
character via the cursor keys. Due to the limited input
modalities for the mentioned handhelds, e.g., absence
of keyboard when dealing with Canvas, keys used in
an application should explicitly manifest themselves on

the screen so that the user can tap on them. This can be
easily done in the AgentSheets authoring tool by
creating button agents, which are triggered using click
events instead of key events. Later on, instead of
requiring the end-user developer to manually transform
the key interactions to click triggers, automating
keyboard simulation on the handhelds will be
considered. Thus, users will not need to adapt the
application so that the AgentSheets native applications
will be able to run on the handhelds.

Implementation challenges: Considering the low
CPU speed and limited memory of the handhelds, the
transformed version of the application has to be
lightweight. Therefore, we needed to take performance
into account early in the design phase. Reducing the
number of calls of time-consuming functions such as
random and time, and avoiding redundant data
structures are examples of design guidelines we
followed to make the implementation work efficiently.
Due to the slowness of the Canvas calls, e.g. the
DrawImage method, we designed an optimized
drawing algorithm to redraw only those parts of the
scene that have changed since the last execution cycle.

4. Future work

The current version of Ristretto Mobile only includes
the execution engine that retrieves and executes
AgentSheets applications in the Web browser. Adding
a Web-based authoring tool is the next step. The main
difference of the Web-based authoring tool from its
desktop counterpart will be the collaborative authoring
and execution of the end-user developed applications.
Though the execution engine is not directly involved in
collaborative aspects of end-user development, it is
flexible enough to build collaborative features on top
of it using AJAX calls to synchronize with the server.

We will also investigate the integration of the
collaborative Ristretto Mobile into other Web 2.0
applications, particularly social networking
applications, e.g., Facebook.

Raising the ceiling of end-user generated content
running on handhelds with 3D applications is another
direction we are exploring. Android is a software stack
for mobile devices that includes an operating system,
middleware and key applications. It supports 2D as
well as 3D graphics based on OpenGL ES 1.0.
OpenGL ES is a cross-platform API for 2D and 3D
graphics on embedded systems including consoles,
phones, appliances, and vehicles. Moreover, the need
for 3D graphics in the Web is getting increasing
attention. Standards such as X3D have been developed,
but there is no concrete support in Web browsers yet.
Many browsers now support Canvas and probably in
the near future a 3D context based on OpenGL ES API.

These emergent technologies will enable 3D end-user
development environments (e.g., AgentCubes [6]) to
run on Web browsers of handheld devices.

5. Conclusion

Handheld devices are the next collaboration
platform for end users, going beyond static content to
fully interactive applications such as games and
scientific simulations. Such end-user developed
applications need to run efficiently on handheld
devices. However, interaction and resource limitations
of handhelds require specific support for running end-
user developed applications. In this paper, we
introduced Ristretto Mobile, a Web based framework for
generating and running complex interactive end-user
developed applications on handheld devices efficiently.

6. Acknowledgements

This work is based in part upon work supported by
the National Science Foundation under Grant Number
IIP-0712571. Any opinions, findings, conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

7. References
[1] T. W. Chan, J. Roschelle, S. HSI, Kinshuk, M. Sharples,
T. Brown, C. Patton, J. Cherniavsky, R. Pea, C. Norris, E.
Soloway, N. Balacheff, M. Scardamalia, P. Dillenbourg, C.
K. Looi, M. Milrad, U. Hoppe, M. Nussbaum, R. Mizoguchi,
H. Ogata, R. McGreal, and H. v. d. Merwe, "One-to-one
Technology-Enhanced Learning: An Opportunity for Global
Research Collaboration.," Research and Practice in
Technology Enhanced Learning, vol. 1, pp. 3-29, 2006.
[2] G. Fisher, “Beyond "Couch Potatoes": From Consumers
to Designers”. In proceedings of the 3rd Asia Pacific
Computer Human Interaction Conference, pp. 2-9, 1998.
[3] H. Lieberman, F. Paterno, and Wulf V. (Eds), End-User
Development, Kluwer/Springer, 2005.
[4] A. Repenning and A. Ioannidou, “Behavior Processors:
Layers between End-Users and Java Virtual Machines”, in
proceedings of IEEE Symposium of Visual Languages, Capri,
Italy 1997, pp. 406-413.
[5] A. Repenning and A. Ioannidou, “Agent-Based End-User
Development,” Communications of the ACM, vol. 47, pp. 43-
46, 2004.
[6] A. Repenning and A. Ioannidou, “AgentCubes: Raising
the Ceiling of End-User Development in Education through
Incremental 3D.” In proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing, Brighton,
United Kingdom 2006, 27- 34.
[7] J. Roth, “Seven Challenges for Developers of Mobile
Groupware,” in Mobile Ad Hoc Collaboration Workshop
Minneapolis, 2002.
[8] E. Soloway, C. Norris, P. Blumenfeld, B. Fishman, J.
Krajcik, and R. Marx, “Handheld devices are ready at hand,”
Communications of the ACM, vol. 44, pp. 15-20, 2001.

