
Broadening Participation through Scalable Game Design
Alexander Repenning

University of Lugano
Faculty of Informatics

Lugano, TI, 6904, Switzerland
+41 (58) 666 4304

alex.repenning@unisi.ch

Andri Ioannidou
AgentSheets Inc.

6560 Gunpark Drive
Boulder, CO, 80301, USA

+1 (303) 530-1773
andri@agentsheets.com

ABSTRACT
Game development is quickly gaining popularity in introductory
programming courses. Motivational and educational aspects of
game development are hard to balance and often sacrifice
principled educational goals. We are employing the notion of
scalable game design as an approach to broaden participation by
shifting the pedagogical focus from specific programming to more
general design comprehension. Scalable game design combines
the Flow psychological model, the FIT competency framework
and the AgentSheets rapid game prototyping environment. The
scalable aspect of our approach has allowed us to teach game
design in a broad variety of contexts with students ranging from
elementary school to CS graduate students, with projects ranging
from simple Frogger-like to sophisticated Sims-like games, and
with diverse cultures from the USA, Europe and Asia.

Categories and Subject Descriptors
K.3.2 Computer and Information Science Education

General Terms
Design, Human Factors, Languages

Keywords
Game design, rapid prototyping, flow.

1. INTRODUCTION: THE IT CRISIS
The US needs trained IT personnel to be competitive in science
and engineering. In spite of this growing need for IT people, the
enrollment in undergraduate Computer Science (CS) programs in
North America dropped an astonishing 60% between 2000 and
2004 [1]. The dismal showing of US programming teams at the
Association of Computing Machinery (ACM) International
Collegiate Programming Contest has raised concerns about the
lack of new American programming talent. CS has become highly
unpopular for reasons that include an unfounded fear of job
outsourcing. A more fundamental problem is a broken pipeline
effect in which K-12 students simply fail to get interested in CS
based on negative experiences early on. Negative exposures
typically fall into the following categories:

• No exposure: In the US there are no national IT/CS standards
and many states require no IT-related certification for K-12
teachers. The development of state-level curriculum standards
for CS in the United States is nearly nonexistent [2]. Some
schools simply do not offer any IT courses.

• Programming: The US high schools that do offer CS as an
essential discipline typically provide Advanced Placement
(AP) courses. This type of curriculum is usually focused on
programming [3], and fails to provide motivating applications.
Courses of this nature do not attract many students and are
even less successful in attracting women and minorities [4, 5].
In 2004 only 11% of the CS AP course takers were female (in
contrast to 56% for all AP courses) and only 6% were from
under-represented minorities [6].

• Multimedia: These courses are quite popular, but rarely
inspire students to pursue IT careers. Multimedia courses are
often little more than advanced PowerPoint tutorials.

Even before the recent CS enrollment drop, teacher conferences
and organizations such as ACM formed numerous task forces to
create a model K-12 CS curriculum. The success of these task
forces, as measured by the number of students participating in AP
courses, has been limited. According to the task force’s final
report [2] the 1993 ACM model curriculum [7] was not widely
implemented for a variety of reasons, including the emergence of
the World Wide Web — this emergence prematurely dated the
model curriculum materials. The Computer Science Teacher
Association (CSTA), an organization that grew out of the ACM
K-12 CS task force, recently declared K-12 CS education to be a
“crisis” [6].

Many K-12 students are interested in technology. However, in
spite of happily operating technology such as MP3 players, cell
phones, and game consoles, the same students shy away from CS
courses that take a long time to transition from basic concepts to
interesting projects. Model curricula such as the ACM 2003
curriculum [2] suggest participating students start at grade 8 and
work on CS foundations for many semesters before they can
engage in “interesting subjects like robotics, simulations, and
animation” at grade 12. The objects-first [8] introduction to
programming movement provides an early, positive example of
this pedagogical reversal. Experience with Alice [9] and
AgentSheets [10] suggest that it is possible and beneficial to
reverse the transition from fundamentals to interesting projects.
The challenge, however, is to balance motivational and
educational aspects by aligning interesting materials with
principled educational frameworks.

A further problem is students’ perception of programming itself.
In a study conducted in the US and India that explored why girls

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003...$5.00.

are substantially less likely to participate in CS activities, one
middle school girl summarized her negative position by saying “I
don’t like programming, I like creating things.” When
programming is employed for mundane tasks such as sorting
numbers, it becomes especially difficult for students to perceive
the programming process as being particularly creative.
The need for IT workers is rising [5] but not all these workers
need a full-fledged university CS degree. IT and CS have a lot in
common but are not identical [2]. The current K-12 CS models are
not working particularly well – they only attract and sustain
students who are already strongly interested in CS. We believe
that it is possible and necessary to address the pipeline problem
with computational environments and a K-12 IT curriculum that
complements existing curricula by shifting focus from
programming to design. The applied nature of IT is likely to
attract more K-12 students, especially when combined with a
popular but educational application such as game design [11]. The
ideas presented in this paper are not intended to compete with
existing curricula, but to complement them by broadening the
participation of students not attracted by current course offerings.

2. SCALABLE GAME DESIGN
The evidence that game programming motivates students is
increasing [12, 13]. Students are spending more time on
assignments and generally exhibit larger levels of energy when
working on meaningful applications. However, game
programming is no silver bullet. To introduce students to
computer science via games is no simple task especially when
trying to balance educational and motivational aspects.

Scalable Game Design utilizes the connections between a
psychological model, a skill competency framework and a
technological environment to help a diverse group of students
learn about CS through games. Figure 1 depicts a general focus on
design employed to balance skills and challenges when making
increasingly complex games and, in the process, acquiring
relevant computer science skills.

We have identified three main challenges that need to be
addressed in order to support a more principled approach to the
educational aspect of game programming: 1) understanding the
connection between motivation and learning, 2) being able to
conceptualize competencies and 3) supporting the design and
development process with technology. Our specific goal is not to
educate CS undergraduates to become the next generation of
game developers but to use games as a means to broaden
participation in CS and to advance design understanding. For us,
specific programming languages are less important than
conveying a sense of design and process. The following three
sections discuss some answers to the three fundamental challenges
of scalable game design mentioned above.

2.1 Psychological Model of Motivation: Flow
Balancing design challenges and design skills is hard. There is a
need to scaffold game design and to have a well defined space of
game projects connected by pedagogical stepping-stones. We use
the notion of Flow [14] (Figure 1) as a psychological model of
learning. The skills versus challenges space of Flow can index and
relate a number of game projects starting with a simple Frogger
game all the way up to Sims-like games. The path in the figure
denotes a scaffolded learning trajectory, which can be supported
by scalable game design. The goal is to remain in the optimal flow

zone as much as possible. This can be achieved through various
forms of scaffolding, such as explicit just-in-time instruction,
social learning support from interactions with other students, or
curricula designed in anticipation of the next challenge. Especially
from the viewpoint of broadening participation in CS, the lower
left point in the Flow space needs to be extremely conservative.
We cannot assume any background of the participants. Our
benchmark is to have 10-year-old elementary school children
without programming experience make a playable Frogger-like
game in about three hours.

Figure 1. Flow balances design challenges with skills. Design
skills map onto the three main threads of the FIT framework.

2.2 Competency Framework: FIT
Computer science and game design are not just about learning
how to code. Indeed, the common “computer science =
programming” perspective is one of the main reasons why girls
especially at the middle school level lose or never gain any
interest in computer science. As described in the introduction,
existing information technology curricula [7] work poorly in
terms of attracting and motivating students [6]. Unlike these
curricula, the Fluency with Information Technology (FIT)
framework [3] defined by National Academy of Sciences does not
focus on programming knowledge. In contrast, it stresses
conceptual and design related problem-solving knowledge. FIT
includes a variety of skills including working in teams, with non-
programming IT tools, and being able to communicate with
others. In Figure 1 we include the three essential kinds of
knowledge of the FIT framework aligned with the skills
dimension of our Flow diagram:

• Intellectual capabilities problem solving, sthe experience of
design trade-offs.

• Fundamental IT concepts: understanding of digital
representations, the use of modeling, algorithmic thinking.

• Contemporary IT skills: how to use, but also how to
effectively communicate through applications such as word
processors and spreadsheets.

A complete description of FIT is beyond the scope of this paper.
FIT provides detailed descriptions of 30 fundamental CS/IT skills
categories. Relevant for the discussion here are the three kinds of
knowledge outlined above in that they cover three levels of skills
ranging from universal principles unlikely to change over time to
highly specific skills that are relevant but perhaps only short lived.

2.3 Technological Environment: AgentSheets
In order to enable 10-year-old children to make even simple
games in just a few hours, it is essential to have the right kinds of
rapid prototyping tools. AgentSheets [10] was an early incarnation
of the now popular objects-first philosophy [8]. Built-in “rough
and ready” drawing tools are similar to fat pen approaches used in
architectural drawing design [15]. They allow students to explore
design variations with great speed and low commitment. In the
spirit of scalability, the visual programming language featured in
AgentSheets is highly accessible to students without any
programming background. It enables novices to create simple
games such as Frogger, yet it is powerful enough for experienced
programmers to create sophisticated games such as Sims-like
games and scientific simulations using AI techniques [16]. This
kind of versatility is essential for scalable design. A tool that has
either a low threshold (i.e. makes it easy for novices to get started)
or a high ceiling (i.e. makes it easy to continue and enable
working on sophisticated content with increasing expertise) but
not both will not work. Also important for high challenge / high
skill Flow is the ability of AgentSheets to turn games artifacts
consisting of rule-based behaviors and multimedia content into
Java source code and bytecode to provide learners an under the
hood look on how games can be programmed using traditional
programming languages. Other educational programming
environments could be used to substitute AgentSheets as long as
they fit the above scalability profile.

3. CONTEXTS & RESULTS
This section discusses the three scalable game design challenges
in context by presenting the settings, audience, goals, and results
of game design activities that we conducted in the USA, Europe
and Asia in the last 10 years.

3.1 Game Design University Outreach
The problem of declining numbers of CS undergraduates is an
international phenomenon. At the University of Colorado at
Boulder and the University of Lugano in Switzerland we have
conducted game design activities as outreach to attract K-12
students to undergraduate programs.

Initially the target audience was high school honors students. The
perception by the faculty was that the focus should be the high
school level, as high school student directly feed into the
undergraduate pipeline. However, there is increasing evidence
that especially minority students and girls lose interest in science
and technology-flavored courses already in middle school. In this
light it is essential to gear game design courses at earlier stages of
the education pipeline. Therefore we and gradually dropped the
requirement to include middle school students.

Outreach game design activities are highly constrained in terms of
time. In a three-hour period, students need to be able to have a
complete experience. Less than 10% of the participating high
school students had any programming experience. In terms of
Flow, essentially no design skills can be assumed and
consequently the design challenges need to be minimal.

After some basic introduction illustrating the history of games
students are led through a design process we call Gamelet Design.
Whenever possible, the students are given original game
descriptions. For instance, the Sega description of Frogger:
You are a frog. Your task is simple: hop across a busy highway, dodging
cars and trucks, until you get the to the edge of a river, where you must
keep yourself from drowning by crossing safely to your grotto at the top of
the screen by leaping across the backs of turtles and logs. But watch out
for snakes and alligators! (Sega, 1980)

Consistent with the element of analysis of the intellectual
capabilities thread of FIT, students begin to classify objects and
operations by identifying nouns and verbs of the project
description. This is an activity found in many introductory object-
oriented design courses. Additionally, students discuss behavior
of objects and explore how to deal with object interaction. For
instance, in the case of Frogger, a fundamental design question is
how to deal with the interaction between cars and frogs. In a car-
centric design, the car (autonomous agent) looks out for the frog
(user controlled agent) and crushes it when it comes too close. A
discussion will contrast this with a frog-centric solution.
Learning how to use AgentSheets is not the objective of the
activity, but the idea of modeling and creating digital
representations is part of the fundamental IT concepts of the FIT
framework. Modeling becomes more involved as students need to
think how to model the traffic. Where are the cars and trucks
coming from? Are they all placed by the user, generated
periodically or generated by some stochastic process? Finally, the
fact that frogs can jump onto logs, which in turn float on water,
introduces the notion of a stack and creates some non-trivial
algorithmic decisions on how to implement transportation.
At the end of the session most students are highly excited about
their games in spite of limited production quality. The artwork is
limited to cars, frogs and other agents that they have created in the
3-hour period as part of their game design. Most of the drawings
are crude and certainly do not rival any of the artwork found in
modern video games. However, this is completely irrelevant to
most students as the creation of their own content results in more
engagement.

The university outreach activity included surveys. Ten
Engineering School departments offered such activities. Each high
school student could participate in up to three department
activities. Even with strong competition from the Electrical
Engineering and Aerospace Engineering departments the game
design Computer Science activity was ranked first.

3.2 Object Oriented Programming
Especially in early stages of object-oriented programming
education it is essential to get a sense of what objects are and how
they relate with each other. In a university setting for CS
undergraduate students we use the first part of the course to
acquire this kind of sense through game design.

The introduction of the object-oriented programming course
employs an aggressive project-oriented game design component
based on weekly game design and implementation homework.
Each student individually produces the same set of games ranging
over a large part of the design Flow diagram from Frogger-like to
the Sims-like games. Each week the games are collected as Java
applets in a web pages open to the entire class. An open project
format allows students to get inspired by other students’
implementation. This has raised the average quality of the game

designs. The social aspect of seeing other students’ product is
essentially used as a social scaffolding mechanism.

Each week the teacher presents new interaction patterns relevant
to the games helping students to build a growing repertoire of
language-independent patterns. Patterns include ways to organize
large numbers of synchronized agents, e.g. the space ships
attacking in Space Invaders, or interaction through delegation,
e.g., for the person pushing boxes onto targets in Sokoban.
The scalability aspect of game design in this context is not limited
to an increasing complexity of the games. Consistent with the
intellectual capabilities thread of the FIT framework, students also
learn to employ visualizations for problem solving. Few students
initially like the idea of UML diagrams and conceptualize them as
a documentation approach. In the context of game design at least
some begin to appreciate the potential value of these diagrams for
thinking through complex object interactions.

Again the goal of the course is not to learn how to use a tool such
as AgentSheets but to acquire general design skills. These design
skills need to be connected back to implementation skills. In other
words the three threads of the FIT framework need to be
connected. A good way to do so is by helping students think
explicitly about these connections. AgentSheets has a rule-based
visual programming language. Students have to correlate their
rule-based programs with UML sequence diagrams. Which
object/agent is sending what kinds of messages to what kind of
other agent? When are these messages being sent? What are the
guards of the messages? As a different exercise students need to
map high level to low-level representations. As part of the
contemporary skills FIT thread, they use the tools du jour to turn
Java class files into Java sources and Java bytecode assembly
languages. They have to correlate their game creations at a
structural level with Java source and bytecode. The frog agent
turns into a frog Java class. Into what kind of Java construct do
the rules turn? Into what kind of bytecode does a case statement in
Java turn into? These connections can be quite abstract and
initially many computer science students without a solid compiler
background struggle to comprehend them. However, the reverse
engineering nature of the process aids enormously because they
are not trying to find arbitrary mappings, but they are analyzing
their own constructions. Even at the bytecode level, they begin to
recognize patterns based on identifiers they used in their game.

With an overall course satisfaction of 90%, the last incarnation of
this course was ranked second of all Spring 2007 courses (n=15),
taught in the Informatics department at the University of Lugano,
Switzerland. Student satisfaction was established by having a
curriculum that was incremental enough to keep students in the
optimal flow of learning. Expectations management also is key.
Students may want to build the next version of Halo during the
class, but curbing their expectations to realistic yet fulfilling for
the students goals is important.

3.3 Educational Game Design
This annual course at the University of Colorado generally attracts
a large group of undergraduate and graduate students from
computer science and other departments. This course starts
similarly to the introduction to object-oriented programming
course. Students quickly follow the scaffolding trajectory of the
design Flow diagram within the first few weeks of the course.
UML diagrams and reverse engineering are not used in this course
since non-CS majors take it as well. The education aspect of the

course has no apparent filtering effect as most students claim to be
interested in games but willing to tolerate the educational flavor.

The weekly game part of the course prepares students also for
their semester project. In this project, they have to build an
educational game for middle school students. This requirement is
initially met with a lot of resistance. Undergraduate as well as
graduate students are typically not used to the notion of
customers. Worse, middle school students tend to be highly vocal
and critical customers of educational games. In the first week of
the final project the university students need to be dragged into
middle schools. Most university students expect praise for their
clever games but get critique instead. An explicit part of the
course is the option and the necessary time to radically redesign or
even abandon game designs. This works well to the point where,
in contrast to the first few times of middle school fields trips, the
university students need to be dragged out of middle schools.

In terms of the FIT framework this context provides opportunities
for explaining approaches, discussing problem solving trade offs
and negotiating design decisions.

3.4 Science Discovery
Science Discovery is an experience-based educational outreach
organization of the University of Colorado at Boulder with a
mission to stimulate scientific interest, understanding, and literacy
among Colorado’s students and teachers through after school and
summer programs. A course called Video Game Creations allows
students to design and build their own video games. The course
has been offered for two years. In this time it has become one of
the most popular Science Discovery courses. During the school
year, the Video Game Creations class runs once a week for five
weeks. The approach starts similar to the shorter outreach courses
mentioned in section 3.1 above with Gamelet Design to illustrate
the entire process of creating a complete game. Having more time
to our disposal, we can start even lower in the design challenges
with building a simple example simulation; this is necessary since
these classes are targeted to middle school students and in reality
get some elementary school students as well. However, we also
have the time to go deeper in some aspects of game design and
really connect game design with computer science. For instance
we discuss OO concepts such as message passing.

Game design is important for attracting students to take IT/CS
classes when their time is being solicited by other activities. We
tried offering very similar classes under the heading of Interactive
Science Simulations, a different version of the same course but
slightly more focused on science simulations (e.g. how fires
spread) instead of building video games. The Video Game
Creation course always works much better to attract students and
also keeps them motivated throughout the duration of the class.
Motivation, however, is not the only goal for offering these
classes. Educating students about IT/CS is achieved as well. In the
FIT framework, these game design courses offer a good context
for covering a lot of ground in intellectual capabilities. While we
do not use formal design methods (e.g. UML diagrams) that
would not be appropriate for young students, we can still use OO
design methods such as the definition of objects and methods via
noun and verb identification of game descriptions to scaffold the
process of creating games.

The results of these courses as expressed in standard evaluation
surveys administered by Science Discovery are very encouraging.
Students overwhelmingly report that they are “ecstatic” or

“happy” for taking the class. Students and their parents report that
they are learning a lot about creating video games and abstract
thinking. The biggest complaint is that the course does not last
long enough. Most students want to have follow-up courses on
“advanced topics” in game design. We have not yet offered such a
class through Science Discovery, but it would make sense to do so
to continue in the Flow trajectory with more complex games.

3.5 Computer Club
Computer clubs at various middle schools are highly informal CS
learning contexts. Students typically do not have to enroll. They
come and go. Computer clubs manage to attract large crowds of
students. In this often noisy and seemingly chaotic kind of
environment, students’ skills are all over the place in terms of the
design Flow. The nature of skills is typically at the FIT
contemporary IT level. That is, they know how to use all kinds of
applications including sophisticated ones such as Photoshop.
However, intellectual capabilities and fundamental IT concepts
are often lacking.

Computer clubs can be ideal social learning ecologies. Initially,
we sent graduate students to help kids and teachers in a computer
club to design games using some of the techniques described
above. After a short while we realized that our help was no longer
necessary. Social scaffolding takes place by having children with
more advanced skills helping others. “How did you do that?” is a
question we often heard as a starting point of design reuse.
When students drift out of the Flow zone (design challenges =
design skills) into early anxiety (design challenges > design
skills), they are highly receptive to just-in-time learning even if
the topic is complex and traditionally considered over their head
from an academic point of view. Case in point: a student working
on a maze game with zombies tracking robots needed to improve
the currently randomly moving robots with “better AI”. We
explained the collaborative diffusion [16] approach employing 3D
visualization built-in to AgentSheets. Needless to say, diffusion
equations are not part of the middle school math curriculum.
When we returned the following week we found not only that
student, but an entire group of students working on games using
diffusion. It was truly amazing to see students allegedly not
interested in math explaining to each other how to make even
more sophisticated games by tweaking diffusion coefficients.

4. CONCLUSIONS
The psychological models of Flow, the competency framework
called FIT and the technological environment of AgentSheets
have been combined into the notion of Scalable Design in the
context of video games. By providing a low-threshold/high-
ceiling framework and supporting skills beyond programming,
ranging from theoretical design skills to concrete development
skills, we can broaden computer science participation.

5. ACKNOWLEDGMENTS
We would like to thank University of Colorado’s Science
Discovery and Centennial Middle School for their continued
support for our research. This material is based in part upon work
supported by the National Science Foundation under Grant
Numbers No. 0205625 and DMI-0712571. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

6. REFERENCES
[1] Microsoft, "More than Fun and Games" Available at

http://www.microsoft.com/presspass/features/2005/sep05/09-
12CSGames.mspx.

[2] ACM K-12 Task Force Curriculum Committee. "A Model
Curriculum for K–12 Computer Science," Association for
Computing Machinery, Computer Science Teachers
Association, New York, NY. October, 2003.

[3] Committee on Information Technology Literacy, National
Research Council, Being Fluent with Information
Technology. Washington, D.C.: National Academy Press,
1999.

[4] National Science Foundation, "Women, Minorities, and
Persons with Disabilities in Science and Engineering,"
Arlington, VA NSF 04-317. May 2004.

[5] AAUW Educational Foundation Commission on
Technology, Gender, and Teacher Education, "TECH-
SAVVY: Educating Girls in the New Computer Age". April
2000.

[6] Computer Science Teachers Association, "Achieving
Change: The CSTA Strategic Plan,"
(http://csta.acm.org/About/sub/StrategicPlanWebNew.pdf)
2005.

[7] Corporate Pre-College Task Force Committee of the
Educucational Board of the ACM, "ACM model high school
computer science curriculum," Communications of the
ACM, vol. 36, pp. 87-90, 1993.

[8] D. J. Barnes and M. Kölling, Objects First with Java: A
Practical Introduction using BlueJ, Third ed: Pearson
Education / Prentice Hall, 2006.

[9] M. Conway, S. Audia, T. Burnette, et al., "Alice: Lessons
Learned from Building a 3D System For Novices," presented
at CHI 2000, The Hague, Netherlands, 2000.

[10] A. Repenning and A. Ioannidou, "Agent-Based End-User
Development," Communications of the ACM, vol. 47, pp.
43-46, 2004.

[11] Y. Kafai, "Playing and making games for learning:
Instructionist and constructionist perspectives for game
studies.," Games and Culture, vol. 1, pp. 36-40, 2006.

[12] J. D. Bayliss and S. Strout, "Games as a “Flavor” of CS1,"
presented at SIGCSE'06, Houston, Texas, USA, 2006.

[13] I. Parberry, M. B. Kazemzadeh, and T. Roden, "The Art and
Science of Game Programming," presented at SIGCSE'06,
Houston, Texas, USA, 2006.

[14] M. Csikszentmihalyi, Flow: The Psychology of Optimal
Experience. New York: Harper Collins Publishers, 1990.

[15] M. D. Gross, "The Fat Pencil, the Cocktail Napkin, and the
Slide Library," presented at Proceedings of Association for
Computer Aided Design in Architecture (ACADIA '94)
National Conference, St Louis, 1994.

[16] A. Repenning, "Collaborative Diffusion: Programming
Antiobjects," presented at OOPSLA 2006, ACM SIGPLAN
International Conference on Object-Oriented Programming
Systems, Languages, and Applications, Portland, Oregon,
2006.

