
Reprint

Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing, Kansas
City, March 1-3, 1992, pp. 1199-1207

Using Agentsheets to Create a Voice Dialog Design
Environment1

Alex Repenning
Tamara Sumner

Department of Computer Science and Institute of Cognitive Science
Campus Box 430

University of Colorado, Boulder CO 80309
(303) 492-1218, ralex@cs.colorado.edu, sumner@cs.colorado.edu

Fax: (303) 492-2844

Keywords:

agents, agentsheets, construction kits, design, design environments, grids, human-computer interaction, iconic programming
environments, object-oriented programming, phone-based interfaces, spatial reasoning, visual programming, voice dialog
applications.

Abstract

Agentsheets is a tool for building interactive, graphical systems. It combines the ease of use of a construction kit with the flexibility
of a visual programming environment. Agentsheets uses a grid structure to clarify spatial relationships such as adjacency, relative and
absolute position, distance, and orientation. System designers can use the Agentsheets substrate to quickly create tailored, domain-
specific graphical applications requiring simulation and spatial representations. The design and implementation of a voice dialog
design environment using the Agentsheets substrate is described. By using Agentsheets, a mixed team of professional voice dialog
designers and academic researchers were able to design and build a substantial core design environment in less than four months.

1Also University of Colorado technical report CU-CS-576-92, January 1992

Reprint

Using Agentsheets to Create a Voice Dialog Design Environment

Alex Repenning
Tamara Sumner

Department of Computer Science and Institute of Cognitive Science
Campus Box 430

University of Colorado, Boulder CO 80309
(303) 492-1218, ralex@cs.colorado.edu, sumner@cs.colorado.edu

Fax: (303) 492-2844

Abstract

Agentsheets is a tool for building interactive, graphical
systems. It combines the ease of use of a construction kit with
the flexibility of a visual programming environment.
Agentsheets uses a grid structure to clarify spatial relationships
such as adjacency, relative and absolute position, distance, and
orientation. System designers can use the Agentsheets
substrate to quickly create tailored, domain-specific graphical
applications requiring simulation and spatial representations.
The design and implementation of a voice dialog design
environment using the Agentsheets substrate is described. By
using Agentsheets, a mixed team of professional voice dialog
designers and academic researchers were able to design and build
a substantial core design environment in less than four months.

Keywords

agents, agentsheets, construction kits, design, design
environments, grids, human-computer interaction, iconic
programming environments, object-oriented programming,
phone-based interfaces, spatial reasoning, visual
programming, voice dialog applications.

Introduction

Users want to make computers do certain tasks for them.
Traditionally, we refer to this ambition and the means to attain
it as programming. Programming is difficult and many different
approaches towards making it easier have been developed.

Construction kits have been shown to be effective tools for
human-computer interaction [2]. Designers using construction
kits create systems by laying out graphical building-blocks
instead of implementing systems in a conventional
programming language. These building blocks provide
powerful abstractions but are usually domain specific and
therefore not applicable to a broad range of different
applications. In situations in which the building blocks are
inadequate, users will be forced to resort to programming at a
much lower level of abstraction.

Visual programming systems are supposed to simplify
programing by capitalizing on human spatial reasoning skills
[1, 9]. Visual programs are created by drawing building blocks
and establishing relationships among them. The low level
building blocks of general purpose visual programs are close in
their semantics to conventional programming. Often visual
programming systems can be viewed as syntactic variants of
existing conventional programming languages, e.g., boxes
representing procedures, functions, etc. The composition of
non-trivial functionality from these building blocks is beyond
the ability of a casual computer user.

Agentsheets is a tool for building interactive, graphical
applications. It combines the ease of use of a construction kit
with the flexibility of a visual programming environment.
Agentsheets supports the creation and animation of a variety of
graphical representations. A grid structure is provided which
can be used to clarify spatial relationships between objects such
as adjacency, relative and absolute position, distance, and
orientation. A comparison of Agentsheets to other systems can
be found in [7].

In a typical application of Agentsheets, a system designer will
define the look and behavior of domain-specific building
blocks. These building blocks constitute the elements of a
high-level visual programming language which can be used
readily by end users. End users arrange these building blocks in
a work area. The work area has an underlying grid structure
analogous to the rows and columns in a spreadsheet.
Relationships between building blocks can be explicitly
specified by connecting blocks with links or implicitly
specified simply by position within the grid structure. Each
building block has an associated behavioral component which
allows the block to perform an action in response to some
stimulus. At the user’s request, the behaviors of building blocks
can be executed.

Agentsheets is designed to be a high-level substrate to build on
and not an end-product. There are a large number of existing
applications from widely varying domains that have been built
using the system, including a river basin management system, a
children’s storybook tool, a front-end to a power station’s
expert system [8], and a voice dialog application design
environment [12].

This paper begins by describing the architecture of Agentsheets
and explaining how a new graphical application is created using
the system. Next, the properties of several spatially-oriented
graphic representations are given and their use in visual
programming environments is described. The remainder of the
paper demonstrates how a voice dialog design environment was
implemented using the Agentsheets substrate. The voice dialog
environment used the grid-based spatial reasoning provided by
Agentsheets to quickly create a new, easy-to-comprehend,
graphic design representation. A voice dialog design
simulation facility was implemented that combines a visual
execution trace with audio output.

Architecture of Agentsheets

Agents and Agentsheets

The basic components of Agentsheets are agents [3, 5]. An
agent is a computational unit either passively reacting to its
environment, or, more typically, actively initiating actions
based on its perception. These actions, in turn, may impact the
environment.

The Agentsheet is a grid-structured agent container. Every agent
has a graphical depiction that is visible in the Agentsheet.
Figure 1 shows an Agentsheet depicting a simple electrical
system. In this system, the look as well as the behavior of the
system components like voltage sources, switches, bulbs and
even individual wire segments are captured by agents.

Agents

Agent Structure

Depictions

Behavior
(Methods)

Sensors Effectors

State

Figure 1. The Structure of an Agentsheet

The depictions in Figure 1 show the graphical representation of
an Agentsheet as it is seen by a user. Depictions can represent
the class or the current state of an agent. For instance, the
symbol of an electrical switch denotes a switch agent.
Furthermore, different states of the switch are mapped to
different variations of depictions, e.g., an open switch versus a
closed switch.

The agents, corresponding to the cells in the depiction level,
consist of:

• Sensors. Sensors invoke methods or procedural actions
of the agent. They are triggered by the user (e.g.,
clicking at an agent) or by another agent.

• Effectors. Effectors are mechanisms to communicate
with other agents by sending messages. The messages,
in turn, activate sensors of the agents to be effected.
Additionally, effectors also provide means to modify
the agent’s depiction or to play sounds.

• Behavior: The built-in agent classes provide a default
behavior defining reactions to all sensors. In order to
refine this behavior, methods associated with sensors
can be shadowed or extended making use of the object-
oriented paradigm.

• State. The state describes the condition the agent is in.

• Depiction. The depiction defines the look or graphical
representation of the class and state of the agent.

Galleries

The gallery is where depictions or graphic images of agents are
defined and stored. Depictions are defined by using the provided
bitmap editor or by modifying and combining existing
depictions. Several features are provided to help create
depictions such as graphic rotation, inversion, and overlay.

Hyperagents

Agentsheets provides an abstraction mechanism called
hyperagents. A hyperagent is a placeholder for an entire
Agentsheet. In other words, Agentsheets can be hierarchically
nested inside of Agentsheets. The use of hierarchical
representations is crucial for large and complex applications.

Platforms

Agentsheets is built on top of an object-oriented system [11]. It
is written in Common Lisp [10] and has been implemented on
Macintosh and Sun platforms. Agentsheets, agents, and
galleries are all object classes. The system provides a rich set of
built-in classes for creating graphic representations and for
managing user interactions.

Apply ing Agent shee t s

Complex applications cannot be constructed by casual
computer users employing general purpose programming
environments. Agentsheets anticipates two types of users: a
system designer and an end user.

In a typical application scenario, a system designer uses
Agentsheets to create a high-level visual programming system.
This system is essentially a construction kit tailored to the
user’s specific domain. The system designer maps the
application domain semantics to a set of graphical building
blocks and defines the meaning of spatial relationships
between these blocks. Together, the building blocks and the
spatial relationships between blocks comprise a graphic
representation for the domain. Each building block is an agent.
A graphical depiction and a class must be defined for each type
of agent. Defining the class includes the design of a data
structure for managing the agent’s internal states and a set of
methods determining the agent’s behavior. This class
definition is implemented in Common Lisp. The behavior of an
agent does not have to be defined from scratch; it can be
constructed incrementally by refining existing agent classes.
For instance, a comprehensive selection of fundamental
sensors; i.e., user interactions such a selection, dragging and
other mouse events, is inherited when refining built-in agent
classes.

End users build programs with the resulting system by selecting
familiar objects from a gallery and placing them into a work
sheet. The layout of objects in the worksheet defines the
program’s collective meaning.

Agentsheets’ Support for Spatial Reasoning

Human problem solving often involves spatial reasoning.
Concepts and relationships of a problem domain are mapped to
a diagrammatic representation, which is then used for reasoning
and communication. These diagrammatic representations may
be sketches of things in the world, e.g., a city map, or they may
depict abstract entities, e.g., a flow chart. Some of the
characteristics of spatial reasoning that are relevant to our work
on Agentsheets include the distinction between pseudo and
strict-spatial representations, domain-oriented representations,
and the use of grids.

Pseudo versus Strict-Spatial Representat ions

Spatial information has many different properties. Part of
designing a visual representation is choosing which properties
to make use of. For instance graphical objects always have a
position and a dimension. A representation may or may not
assign meaning to these attributes. In flow charts, position and
dimension are not interpreted. Relationships are specified by
links between elements. In a blueprint, position and dimension
carry the bulk of the representation’s meaning. We call spatial

representations like flow charts, where position and dimension
are not interpreted, pseudo-spatial representations. Strict-
spatial representations, like blueprints, are those in which
position is interpreted.

• A strict-spatial representation uses the actual positions
of objects to convey meaning. For instance in Figure 2,
the representation describes an implicit “roof above
frame” relationship.

Figure 2. Strict-spatially related roof and frame of a house
• A pseudo-spatial representation does not make use of

actual positions of objects. Instead, explicit cues are
used. In Figure 3 arrows are employed as explicit cues of
the “roof above frame” relationship. That is, the
relative positions of the roof and frame are completely
irrelevant with respect to the semantics of the
representation.

above
above

Figure 3. Pseudo-spatially related roofs and frames of houses

Some of the limitations of visual programming system result
from their reliance on pseudo-spatial representations. Pseudo-
spatial representations are chosen because of their flexibility
and their general purpose nature. Strict-spatial representations
appear to be preferable to pseudo-spatial representations in
cases where the positional information of objects can be
mapped to physically natural concepts understood by users. The
components in a chip geometry design interface are related
strict-spatially, whereas the elements of a flow-chart are only
pseudo-spatially related. The relative positions of chip
components have physically grounded meaning. In other
words, the designer of a chip gets many more facts out of a chip
layout than just pure topological information.

Using a Grid to Clarify Strict-Spatial
Representat ions

Grids are well known in the area of graphic design, typography,
and architectural design. Müller-Brockman characterizes the
purpose of grids as follows [6]:

“The use of a grid system implies the will to
systematize, to clarify; the will to penetrate to the
essentials, to concentrate; the will to cultivate
objectivity instead of subjectivity;..”

Grids clarify strict-spatial representations by:

• Avoiding Brittleness. Without a grid, spatial relations
can become very brittle. That is, moving an object on
the screen one pixel may change its spatial relation to
another object from an adjacent relation to a non-
adjacent relation. While this might reflect the intention
of a user, it is more likely to lead to non-evident
problems.

• Making Spatial Relationships Obvious. The use of
grids increases the transparency of spatial
relationships considerably. The strict-spatial
relationships of objects in a grid are obvious to the
user. Thus, while grids limit the flexibility of
placement, they help clarify the relationships between
objects.

• Making It Easy To Spot Substructures. Common
substructures occur frequently in many graphical
representations. Constrained placement within the grid
eases the recognition and location of commonly
occurring substructures.

Additionally, Agentsheet grids further enhance strict-spatial
representations by:

• Providing Implicit Communication Paths.
Communication among agents is accomplished
implicitly by placing them into the grid. No explicit
communication channel between agents has to be
created by the user. In the circuit Agentsheet shown in
Figure 1, the electrical components get “wired-up”
simply by placing them into adjacent positions. The
individual agents know how to propagate information
(flow in this case), e.g., the voltage source agent will
always propagate flow to the agent immediately below
it.

Domain-Orientat ion

Application domain-oriented representations often rely on
complex spatial representations. Examples of domain-oriented
spatial representations include architectural blueprints and
kitchen floor plans. Interpretation of these diagrams requires
domain knowledge. For instance, when looking at a kitchen
floor plan, it is only knowledge about kitchens that lets the
viewer infer that nested rectangles represent top and bottom
cabinets. Construction kits embody domain-oriented spatial
metaphors by providing domain-specific building blocks and
by tailoring the spatial representation supported in the work
areas to reflect important domain distinctions. It is difficult to
extend these environments to support other domains since it is
usually not possible to redefine the spatial representation
supported in the work areas.

Examples of Spat ia l Representat ions in Visual
Programming Environments

We can characterize visual programming environments by their
degree of domain orientation and by their use of spatial
representations to represent relationships among objects:

Pinball
Construction Kit

Voice Dialog

Graph Editors

Flow Charts
BLOX Pascal

D
o
m

ai
n
-O

ri
e
n
te

d
D
e
si

g
n
 E

n
v
ir
o
n
m

e
n
t

G
e
n
e
ra

l
P
u
rp

o
se

E
n
v
ir
o
n
m

e
n
t

Pseudo-Spatial
Representation

Strict-Spatial
Representation

Agentsheets

substrate

Figure 4. Domain-Orientation vs Use of Spatial
Representations

In the lower left corner of Figure 4, we have general purpose
systems like flow-charts and graph editors. These systems make
use of pseudo-spatial representations, i.e., they ignore the
positional information of graphical objects, and they lack any
domain specific features.

BLOX Pascal is a visual programming environment based on
strict-spatial representations, with no underlying grid. The
semantics of a BLOX Pascal [4] diagram is given by the
position of the individual blocks (Figure 5). A strict-spatial
representation is used to express syntactic rules between Pascal
primitives. There is no specific domain orientation in this
visual representation of a general-purpose programming
language.

Figure 5. BLOX Pascal

The Pinball construction kit [2] is extremely domain specific
and inflexible (Figure 6). For instance it would be a non-trivial
task to use the pinball construction kit to add two numbers. The
functionality of a designed pinball system is defined by the
layout of its components, i.e., the representation is strict-
spatial, again without the support of a grid.

Figure 6. Pinball Construction Kit

Agentsheets supports strict-spatial representations as well as
pseudo-spatial representations. Furthermore, the user definable
correspondence between spatial representations and semantics
is neither tied to the level of general programming languages
nor is it limited by domain-specific issues. Agentsheets,
therefore can be viewed as a domain-tailorable spatial reasoning
substrate embracing a wide range of spatial representations. In
the second part of the paper, a voice dialog design environment
implemented using Agentsheets is described. The paper
explains why the initial implementation focusing on pseudo-
spatial representations has migrated towards a second
implementation favoring a strict-spatial representation.

The Voice Dialog Design Problem

Voice dialog applications are a relatively new design domain.
Typical applications include voice mail systems, voice
information systems, and touch-tone telephones as interfaces
to hardware. Our involvement in this field was part of a
collaborative research effort between the University of
Colorado and US West’s Advanced Technologies Division.
Designers within US West presented a compelling case as to
why the voice dialog domain would be an excellent framework
for pursuing our research. The designers were facing
challenging design problems - innovation and increasing
complexity within the voice dialog application domain was
making it harder to design and develop products within the
necessary time and cost constraints.

Understanding the Voice Dialog Appl icat ion
Domain

Historically, voice dialog applications have been small in
scale, with most applications offering only a handful of
features; e.g. providing three options to hear a selection of
recorded information. However, in the last few years, voice
dialog applications have mushroomed in size. It is not unusual
to have voice mail systems with 50 page instruction manuals,
hundreds of features, and a two year development cycle. Industry
deregulation combined with advances in hardware have triggered
a rapid spread of voice dialog technology into new application
areas that are only now being investigated. Thus, key
challenges facing designers are large increases in complexity
and rapid innovation within the application domain.

Some designers, in an attempt to deal with increasing
complexity, have moved from textual design specifications to
graphical representations similar to flow charts, called
“structure charts”. As illustrated in Figure 8, rectangles are used
to represent voice menus, messages, prompts, and system
actions. The example shown begins with a menu to create a mail
list for a hypothetical voice mail application. The menu
contains options for creating, editing, and deleting mailing
lists. Diamonds are used to represent decision junctions. Design
elements are linked by arrows. Arrows indicate paths that are
taken once an action has been executed. Arrows and decision
junctions control the pattern of flow throughout the design.
Currently, structure charts are constructed and maintained in
MacDraw.

For complex applications, structure charts can grow very large
and span tens of pages. These structure charts depict a flat
design space; all aspects of the design must be depicted at the
same low level of detail. A major problem facing voice dialog
designers is the comprehension and maintenance of these large,
unstructured representations. While it is easy to draw a
rectangle to represent a subsystem, simple graphics programs
such as MacDraw provide very little assistance in managing and
viewing subsystems in hierarchically decomposed
representations.

A second difficulty voice dialog designers must overcome is the
conceptual gap between the visually-based design
representation and the purely audio end product. For instance, to
conserve storage space, phrases are recorded and recombined
on-the-fly into the application’s prompts and messages. Errors
often occur when combining phrases. These purely auditory
design errors are uncovered only when a design prototype with
voice output is constructed and all prompts and messages can be
heard.

1Create
2Edit
3Delete
*Exit

MAIL LIST

Your list number is xx.
Please make a note
of the number. Record
a name for the list at the
beep and press pound.

1Replay
2Rerecord
#Accept
*Cancel

The recorded name
for list xx is <play
recording>

Enter (first/next)
number, then press
pound. To quit,
press pound.

#

To Admin

Enter list number
to edit

Enter list number
to delete

List xx, <list name>

1Edit this list
2Hear list members
3Rename list
*Exit

Enter number to
add or delete, then
press pound.
Enter
pound to quit.

List number xx, <List Name>
will be deleted.

<number>, <Name>

#Accept
*Cancel

List delete
cancelled

Mail List
xx (name)
deleted. Number

in list?

Done?

number <user
name> added

number <user
name> deleted

0

p

k

no

yes

yes

L

0

Mail List xx,
(name)
created with
y members

1Enter members
*Cancel

List xx not
created

List number
entered not in
use.

0

Valid
List
Number
 ?

GOTO next
as appropriate

GOTO next
as appropriate

Number
entered?

no

yes

Members
in Mail

List
?

(number/user name)
added to list xx

yes

no

Valid
Phone
Number
 ?

Not a valid
phone number
1reenter
*cancel

no

yes to
ADMIN

There are no
members in
this mail list.

Figure 8. Structure Chart

Why Choose Agentsheets for Voice Dia log
Des ign?

We chose Agentsheets for several reasons. First, it runs on the
same platform (Macintosh) as current voice dialog design tools.
Second, Agentsheets fulfills the requirements uncovered in our
preliminary task analysis:

• Designers rely on graphic design representations
consisting of domain-specific design units such as
prompts and voice menus as well as general purpose
programming design units such as decision junctions.
These representations suggest combining a
construction kit approach with a visual programming
environment.

• Designs are large and complex, containing many
highly interconnected design units. Spatial
relationships between design units is the essence of the
graphic representation. Specifically, we wanted a
substrate that already supported creating pseudo-spatial
design representations.

• It is difficult to represent increasingly complex
application designs in the flat, low-level structure chart
representation. An abstraction mechanism that made it
easy to create, view, and manage voice dialog
subsystems was needed.

• The voice dialog domain suffers from a conceptual gap
between the visually-oriented design representations
and the auditory end-product. This gap can be bridged
by prototyping or by design simulation. In

Agentsheets, design simulation is simply a matter of
executing the behavior associated with each building
block.

Using Agentsheets to Create a Voice Dialog Design
Environment

This section focuses on how Agentsheets supported the
iterative design and implementation of a voice dialog design
environment. What we hope to convey is how picking a well-
suited high-level substrate enabled a substantial system to be
built in less than four months. We begin with a brief
description of the current version of the system.

Overview of the Current Voice Dialog Design
Environment

The voice dialog design environment provides an on-screen
gallery of voice dialog design units, such as menus and
prompts, and a work area for design construction and
simulation. “Designing” involves placing design units into the
work area in accordance with three design unit placement rules.
These rules are described in the following section. At any time,
the behavior of the design can be simulated. Design simulation
consists of a visual trace of the execution path combined with
an audio presentation of all prompts and messages encountered.
The design of a voice mail system constructed in this
environment is illustrated in Figure 9.

Using the voice dialog design environment, designers work
with meaningful domain abstractions such as prompts and menu
design units. A portion of the design environment’s gallery of

design units is shown in Figure 9. Each design unit is an agent,
consisting of a graphical depiction (bitmap), an internal state,
and an associated behavioral component. Figure 10 illustrates
how the prompt design unit is an agent. Some design units,
such as the prompt unit, allow the designer to replace the
generic graphic depiction with a meaningful text description.

Graphic DepictionInternal State
prompt=
"To create a mailing
list, press 1.
To Edit a mailing
list, press 2.
To delete a mailing
list, press 3."

Behavioral Component

{ speak english
(prompt) }

Text Depiction

Mail
List
Prompt

Figure 10. A prompt design unit is an agent.

All voice dialog design units are built on top of existing Link
and Value agents. By refining these built-in agents, all design
units automatically inherited functionality for:

• basic user interactions;

• allowing designers to replace the graphic depiction
with a textual depiction; and

• establishing and managing connective arrows between
design elements.

We have described the current state of the system. The next
sections discuss how the graphic representation evolved during
the design process.

Creat ing a Voice Dialog Des ign Representat ion

Our first prototype of the design environment closely followed
the structure chart representation used by the the designers at
that time. However, a major shortcoming of the current
structure chart representation was the sheer quantity of
connective arrows. One voice dialog designer claimed that in
meetings with customers and other non-technical product team
members, most were so daunted by the complexity of the
representation that only a few even tried to understand it.
Furthermore, the designer rarely added the necessary arcs to
describe error and cancellation handling since this would only
compound the complexity problem.

We envisioned two methods to help alleviate the arc problem.
First, the environment could provide ways to selectively view
or hide subsets of arcs. Or, more radically, the environment
could eliminate the need for some or all of these arcs.

We took advantage of the grid-based, strict-spatial reasoning
provided by Agentsheets to create a new design representation
with fewer arcs. We used this grid structure to define a spatially-
oriented design language that can be used to determine the
placement of and relationship between design units. Figure 11
shows an example of our design unit placement rules. Our
language is very simple and is a straightforward extension of
the structure chart concept:

• The Horizontal Rule: Design units placed physically
adjacent to each other within a row are executed from
left-to-right.

• The Vertical Rule: Design units placed physically
adjacent to each other within a column describe the set
of options or choices at that point in time in the
execution sequence.

• The Arrow Rule: Arrows override all previous rules and
define an execution ordering.

Horizontal Rule Vertical Rule Arrow Rule

Figure 11. Design Unit Placement Rules

These rules eliminated most of the normal flow arcs but had
little effect on cancellation and error flow arcs. To assist the
designer when constructing or debugging these flow types, we
also added support for color-coded, typed arcs between design
units. Normal flow arcs are green, error flow are red, and
cancellation arcs are yellow. This functionality was easily added
by refining existing Link-agent and Link-Agentsheet built-in
classes. Mechanisms for selectively viewing only arcs of a
specific type are provided.

The Gallery contains voice dialog design units used in design construction. The remaining three
windows are all nested, design work areas depicting the graphic representation of a hypothetical
voice mail application. Simulation of a work area (and its nested work areas) is initiated by double-
clicking on any start or continue design unit.

Figure 9. Voice Dialog Design Environment

Providing Levels of Abstract ion

Reducing the quantity of arcs eliminated some of the visual
complexity of the design representation. However, designs
were still large, complex, and error-prone since the
representations described all necessary low-level operations in
a flat structure space. The size and low-level nature of the
representations also made it difficult to discern high-level
application objectives from the graphic representation.

To address the problems cited above, we created a
decomposition mechanism based on Agentsheets’ hyperagent
abstraction mechanism. Each hyperagent has a graphic
depiction which the designer can replace with meaningful text.
In Figure 9, many agents in the Mail List window are
hyperagents. Double-clicking on a hyperagent’s depiction
opens its associated worksheet. For instance, double-clicking
on the Delete Mail List hyperagent opens the worksheet where
the delete mail list operation is defined. During design
simulation, the flow of control passes through each nested
worksheet and automatically returns to the calling worksheet.
The Mail List window is the hierarchically abstracted
representation for the same operations illustrated in the
structure chart in Figure 8.

Des ign S imulat ion

Prototyping is an important phase during the design and
implementation of complex voice dialog applications.
Prototyping currently serves several roles. First, it helps bridge
the medium gap and discovers purely auditory defects in the
design. Second, the prototype is an important vehicle for
communicating the design to the customer. Customers cannot
envision the end-product from the graphic design
representation and rely mainly on the prototype to verify that
the design corresponds to the product they desired.
Additionally, all usability testing is performed with
prototypes.

Unfortunately, a single prototype is rarely satisfactory.
Invariably, implementing many prototypes adversely impacts
the project’s cost and time constraints. Design simulation
reduces the amount of expensive and time-consuming
prototyping required.

In the voice dialog design environment, every design unit has
an associated behavioral component that executes an action
during design simulation. Some of these actions result in audio
output, some collect user touch-tone input, and others perform
internal system actions such as managing data or evaluating
conditions.

The spatial relationships between design units describes the
order of execution flow when simulating the design
representation. Execution of the design representation proceeds
by following horizontally adjacent design units or by
traversing connective arcs. When a vertical choice point is
reached, the appropriate condition is evaluated and one of the
execution options defined within the column is taken. During
design simulation, a visual trace of the execution path is
combined with an audio presentation of all voice prompts and
messages encountered.

Summary

Agentsheets is a high-level substrate facilitating the creation of
domain-specific visual programming environments. A system
designer maps the domain semantics to a set of graphical
building blocks and defines the meaning of spatial
relationships between these blocks.

Agentsheets were used to design and build a real-world, complex
system - a voice dialog application design environment. Key
aspects of Agentsheets such as the underlying grid structure and
the rich set of object-oriented building blocks were used to
quickly prototype and implement new voice dialog design
representations. Agentsheets’ visual programming
infrastructure allowed a design simulation tool to be constructed
with very little effort.

The following Agentsheet properties contributed to the success
and rapid development of the voice dialog design environment:

• High-level Support for Spatial Representations. By
building on top of existing agent classes, we were able
to quickly implement an initial design environment
based on the existing structure chart representation.
Using the underlying grid structure, we created a new,
easier-to-comprehend graphic representation that
combined both strict and pseudo-spatial
representations.

• Design by Construction. Voice dialog designers can
construct new applications by manipulating
meaningful domain elements such as menus and
prompts. Much of the functionality of these design
units did not have to be implemented from scratch, but
was inherited by refining built-in agent classes.

• Design Simulation. Design simulation was a natural by-
product of using the Agentsheets system; we only had
to define an action for each design unit and a graphic
representation dictating execution flow.

• A Hierarchical Abstraction Mechanism. Existing voice
dialog design representations suffered from too much
complexity in a flat design space. Using hyperagents,
we were able to create a hierarchical design

decomposition mechanism that made it easy to create,
view, and simulate nested voice dialog subsystems.

Acknowledgements

This research was funded by the United States Bureau of
Reclamation through the Advanced Decision Support program,
Hewlett-Packard Switzerland and Advanced Technologies of US
WEST. Many thanks to our reviewers: Clayton Lewis, John
Rieman, Carrol Marra, Scott Henninger, Brent Reeves, Andreas
Girgensohn, and David Redmiles.

References
1 . S.-K. Chang, Principles on Visual Programming Systems,

Prentice Hall, New Jersey, 1990.

2 . G. Fischer and A. C. Lemke, "Construction Kits and
Design Environments: Steps Toward Human Problem-
Domain Communication," HCI, Vol. 3, pp. 179-222,
1988.

3 . M. R. Genesereth and N. J. Nilson, Logical Foundations
of Artificial Intelligence, Morgan Kaufman Publishers,
Inc., Los Altos, 1987.

4 . E. P. Glinert, "Towards "Second Generation" Interactive,
Graphical Programming Environments," IEEE Computer
Society, Workshop on Visual Languages, Dallas, 1986,
pp. 61-70.

5 . M. Minsky, The Society of Minds, Simon & Schuster,
Inc., New York, 1985.

6 . J. Müller-Brockmann, Grid Systems in Graphic Design: A
Visual Communication Manual for Graphic Designers,
Typographers and Three Dimensional Designers., Verlag
Arthur Niggli, Niederteufen, 1981.

7 . A. Repenning, "Agentsheets: Applying Grid-Based
Spatial Reasoning to Human-Computer Interaction,"
Technical Report, CU-CS-547-91, Department of
Computer Science, Campus Box 430, University of
Colorado at Boulder, Boulder, Colorado 80309-0430,
1991.

8 . A. Repenning, "Creating User Interfaces with
Agentsheets," 1991 Symposium on Applied Computing,
Kansas City, MO, 1991, pp. 190-196.

9 . N. C. Shu, "Visual Programming: Perspectives and
Approaches," IBM Systems Journal, Vol. 28, pp. 525-
547, 1989.

1 0 . G. Steele L., Common LISP: The Language, Digital Press,
1990.

1 1 . M. Stephik and D. G. Bobrow, "Object-Oriented
Programming: Themes and Variations," The AI Magazine,
, pp. 40-61, 1984.

1 2 . T. Sumner, S. Davies, A. C. Lemke and P. G. Polson,
"Iterative Design of a Voice Dialog Design
Environment," Technical Report, CU-CS-546-91,
Department of Computer Science, Campus Box 430,
University of Colorado at Boulder, Boulder, Colorado
80309-0430, 1991.

