

Making University Education more like Middle School Computer Club:
Facilitating the Flow of Inspiration

Alexander Repenning
University of Colorado Boulder

Department of Computer Science
Boulder, CO 80303
(303) 492-1349, 001

ralex@cs.colorado.edu

Ashok Basawapatna
University of Colorado Boulder

Department of Computer Science
Boulder, CO 80303
(720) 838-5838, 001

basawapa@colorado.edu

Kyu Han Koh
University of Colorado Boulder

Department of Computer Science
Boulder, CO 80303
(303) 495-0357, 001

kyu.koh@colorado.edu

ABSTRACT
The way programming is currently taught at the University level
provides little incentive and tends to discourage student peer-to-
peer interaction. These practices effectively stifle any notion of a
‘learning community’ developing among students enrolled in
university level programming classes. This approach to
programming education stands in stark contrast to the ‘middle
school computer club’ approach; As part of 10 years of research
projects aiming to teach programming to middle school children,
it is observed that middle school students in computer clubs freely
share programming ideas, code, and often query one another and
provide solutions to the various programming problems
encountered. To enable these interactions at the university level, a
novel online infrastructure has been developed over the past 6
years through use in the Educational Game Design Class at the
University of Colorado Boulder. The culmination of the
submission system, entitled the Scalable Game Design Arcade
(SGDA), seems to foster the flow of ideas among students
yielding an effective open classroom approach to programming
education.

Categories and Subject Descriptors
K.3.2 Computer and Information Science Education

General Terms
Algorithms, Design, Human Factors,

Keywords
University Programming Education, Middle School Programming
Education, Scalable Game Design, Open Classroom, peer-to-peer
interaction, flow of inspiration, Computational Thinking.

1. INTRODUCTION
The current structure in most computer science classes at the
university level resembles the so-called “Sage on the Stage”
approach to learning [1]. A single lecturer in the front of the class
talks to a group of students who are taking notes. Currently, the
emergence of remote and on-demand class viewing obviates the
need to physically be in a class wherein a teacher takes this ‘Sage
on the Stage’ approach to teaching. This approach is further

indicted by a recent study suggesting that students who on-
demand remotely view these types of lectures actually retain more
information and get a deeper understanding of the material as
compared to students who physically attend the class [8]. Thus,
the value of physically attending class is decreased when a teacher
takes this approach. Moreover, the ‘Sage on the Stage’ approach
to teaching makes no attempt to use the inherent characteristics of
a student-filled classroom to enable a better learning experience.
One could argue that with this teaching approach, a lecture
wherein one student attends would be identical to a lecture
wherein 50 students attend. Given that this is the case, it begs the
question, why even have a physical classroom environment? This
line of reasoning is unfortunate since the physical student-filled
classroom environment lends itself nicely to teaching strategies
that foster peer-to-peer student learning and the creation of a
learning community within the classroom. Unfortunately, most
undergraduate computer science classes make no attempt to create
any kind of learning community.

In computer science classes, for example, save for a possible
“computer lab”, assignments are completed outside of class with
little or no motivation or incentive for peer-to-peer interaction [2].
Furthermore, collaborations, sharing of ideas, and looking at
fellow students’ code is actually frowned upon and often
considered cheating; for example, it is not uncommon for teachers
to run automatic checks on assignments to ensure everyone’s code
is strictly their own. This has the unfortunate side effect of
inhibiting the proliferation of ideas among students drastically
reducing the opportunity for students to learn from one another.
Since students are actively discouraged from looking at fellow
classmates’ work, they are not pushed to do more based on what
their peers have accomplished on a given assignment [3]. This has
a negative effect not only on individual student achievement, but
also, reduces the level of work produced by the class as a whole

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.
WCCCE’09, May 1–2, 2009, Burnaby, BC, Canada.
Copyright 2009 ACM …$5.00.

over the duration of a given course [4]. Some classes try to allow
for peer-to-peer interactions through group projects. However, in
our experience and as documented by others, group projects often
do not yield true group collaborations as students divide the work
up and only work together to reassemble the project when
everybody’s individual part is complete [7]. Thus, most group
projects only have limited peer-to-peer interaction and learning.
The above issues motivate the following question: what changes
can be made such that students effectively learn from and inspire
one another in undergraduate computer science classes?

Surprisingly enough, an interesting solution approach to this
problem presents itself in the seemingly chaotic structure of
middle school computer clubs. For the last 10 years, as part of
several NSF funded projects, middle school students were taught
the fundamentals of programming using a rapid game prototyping
environment called AgentSheets [5]. In our most recent project
called Scalable Game Design1, we are exploring computer science
education through game design starting at middle school and
moving along all the way to graduate school. In this context we
have found that there are interesting educational phenomena
taking place at the middle school level that are perhaps worth
exploring for more advanced levels [6].

A typical AgentSheets lesson for a given day involves students in
front of a computer creating a game. However, because of the
relaxed non-classroom atmosphere of an after-school club,
students are able to run around to the computers of their peers.
Often, upon a student viewing a fellow classmate’s game, the
following sequence takes place. First, the student notices the
classmate’s interesting idea or concept and asks that classmate
“How did you do that?” The classmate then explains to the
student how to accomplish the concept even displaying the “code”
used to implement the idea. Social scaffolding, wherein more
advanced kids help others, happens naturally in this environment.
The two students converse providing feedback on the idea; then,
the wandering student would go back to the computer integrating
and updating the new code for her/his own purposes. The ability
to traverse the class and openly share concepts between
classmates enables a network capable of carrying inspiration and
influence from one student to the next. All of this appears to work
with little, if any, teacher input.

Moreover, this classroom infrastructure allows for viral ideas,
wherein one student discovers a concept at first, and that concept
soon spreads throughout the class [6]. This flow of inspiration is
not limited to simple ideas; A highly sophisticated example of this
flow appeared when a student was explained the concept of a
collaborative diffusion approach to help him give agents in his
game better AI. Though the equations associated with diffusion
involve more complex math than is learned at this student’s grade
level, by the next time the group met, one week later, a group of
students had started using diffusion equations in their own games
and were explaining the concepts to others.

These middle school experiences motivate the implementation of
a university level programming class that allows for all the same
communication modes among students. Over the past 6 years an
online cyber-infrastructure, through use in the Educational Game
Design Class at the University of Colorado Boulder, has evolved
to allow for these interactions. The culmination of this evolution

1 scalablegamedesign.cs.colorado.edu

is the newly developed Scalable Game Design Arcade (SGDA)
and, thus far, the SGDA seems to have successfully allowed for
many of the same types of interactions visible in middle school
computer clubs.

Section 2 explains the Flow of Inspiration Principles derived from
the middle school computer club experiences. Section 3 explains
previous approaches to this problem finally arriving at the SGDA
implementation. Section 4 provides initial findings of the SGDA,
along with a brief discussion, including the results of an in-class
questionnaire used to gauge the extent to which the SGDA
enables student peer-to-peer learning.

2. FLOW OF INSPIRATION PRINCIPLES
In the limited time, infrastructure and physical space allotted for
university programming classes, to integrate the benefits of
middle school computer club learning, a different approach must
be taken. Thus, the methods employed in the Educational Game
Design Class involve transferring the interactions present in the
computer club environment to one that works within the
limitations of the classroom. Specifically, a successful
implementation of this environment should support the following
five Flow of Inspiration Principles.

Flow Of Inspiration Principles
These Principles should allow students to:
1) Display projects in a public forum
2) View and run fellow students’ projects
3) Provide feedback on fellow students’ projects
4) Download and view code for any project
5) Provide motivation for students to view, download, and give
feedback on fellow classmates’ projects

The first four specifications describe general infrastructure
characteristics that enable in-class peer-to-peer interactions. The
final point, wherein the class provides incentive for these
interactions, is crucial for attaining the emerging behaviors
present in the middle school computer club environment. This
incentive is provided through an initial highly-scaffolded
curriculum that gradually gets relaxed as the semester proceeds.

2.1 Educational Game Design Class
Each week, the Educational Game Design Class consists of a
theoretical and practical part. The theoretical part discusses
gamelet creation strategies including adding educational value to
games, making games engaging, and reviewing computational
thinking patterns [12,13]. The practical part allows students to
apply this knowledge by creating gamelets. The Educational
Game Design Class has an aggressive schedule assigning students
to create one gamelet a week for 8 weeks. The remaining semester
time is spent on a final project. The first 4 weeklong assignments
are the same among all students. The next 4 weeklong
assignments comprise a period known as “Gamelet Madness.”
Gamelet Madness forces students to think of and implement their
own original simple educational game idea each week.
Furthermore, a given student must create a gamelet that has no
relation to a prior week’s Gamelet Madness game she/he created.
Generally, during Gamelet Madness, the students’ submissions for
a given week have very little relation to one-another. The final
project involves students creating an educational gamelet and
playtesting it at the local middle schools for feedback. Students

then use this feedback to improve their gamelet and present their
findings to the class. With approximately 32 students in the class
creating 9 games over the course of the semester, the Educational
Game Design Class as a whole yields around 290 games by
semester’s end.

As mentioned above, the first four homework assignments of the
Educational Game Design Class are weeklong wherein all
students create the same games: Frogger, Sokoban, Centipede and
The Sims. These games start simple but get increasingly complex
as students learn more sophisticated computational thinking
patterns [6]. Though individually-created student games may look
different, the main programming patterns used to solve various in-
game problems are the same. Thus, in Frogger, for example, if a
student wants to program the truck colliding with the frog, the
implementation structure is virtually identical among all students
in the class. This situation provides the motivation to look at
fellow students’ projects to see how they went about solving a
particular problem. Furthermore, since everyone is working on the
same project, students want to look at other projects to compare
with their own assignment and integrate interesting things fellow
classmates may have done into their own project. As the class
progresses, this scaffolding is removed as students work on the
more individualized assignments of Gamelet Madness and the
final project; By this point, the precedent of viewing other
students’ projects and using their interesting ideas has hopefully
been established.

3. EVOLUTION OF CYBERLEARNING
INFRASTRUCTURE
One possible way to replicate the Flow of Inspiration witnessed at
middle school computer clubs within a university classroom is to
employ a cyberlearning infrastructure. But what is Cyberlearning?
In the recent “Fostering Learning in the Networked World: The
Cyberlearning Opportunity and Challenge. A 21st Century
Agenda for the National Science Foundation, June 2008” report
[10] the National Science Foundation defines Cyberlearning to be

“[...] networked computing and communications
technologies to support learning. Cyberlearning has the
potential to transform education throughout a lifetime,
enabling customized interaction with diverse learning
materials on any topic—from anthropology to
biochemistry to civil engineering to zoology. Learning
does not stop with K–12 or higher education;
cyberlearning supports continuous education at any
age.”

Cyberlearning infrastructures take many forms. In the classroom
cyberlearning infrastructures, like Poogle for example, have been
used to add social elements and publicly share solutions to
homework assignments [11]. Google Code Search2, on the other
hand, is a cyberlearning infrastructure that helps developers seek
out specific programming code for use in their projects. For our
purposes, the cyberlearning infrastructure should enable the
middle school computer club interactions. The evolution of a
cyberlearning infrastructure that accomplishes the Flow of
Inspiration Principles is described in the systems that follow. The
shortcomings of prior systems with respect to the Flow of
Inspiration Principles motivate the creation of the Scalable Game
Design Arcade.

2 http://www.google.com/codesearch

3.1 Individual Homework Email Submissions
Initially, in 2003, before attempting to recreate the Flow of
Inspiration Principles, individual students in the Educational
Game Design Class would email the grader their assignments.
This is the classic structure of most university level programming
classes; none of the Inspiration Principles are met. The only
project feedback is given by the class grader who probably only
reviews each assignment briefly. Students do not view one
another’s projects and cannot see how other students went about
solving problems. Nor can students give feedback on a fellow
classmate’s project. One advantage to this system is that cheating
is more easily discovered as similarities between student-code
should not occur if students are not viewing each other’s code or
garnering illegal input from fellow students.

3.2 Group Projects
Allowing for increased student peer-to-peer interactions
necessitate a shift from the email submission system. To this end,
in 2004 and 2005, the Educational Game Design Class employed
group projects as a way to encourage student interaction. It was
thought that group projects would foster all the specifications
above and create an open classroom environment among all the
group members. However, this did not occur; instead, students
would break up projects and delegate tasks. Interaction, for the
most part, was restricted to when the group members met back up
to reassemble the project. Within this divide and conquer
approach the student goals are disparate; thus, there is very little
advantage in peer interaction. In short, the group project system
was found to be a poor peer learning model because there exists
little intrinsic motivation to learn from other students. From this
experience it became clear that to get the emergent interaction
advantages inherent in the middle school computer club, students
must be working on individual projects but with facilitated and
encouraged community interaction. One way to accomplish this
within the limitations of a university class involves creating a
cyber-infrastructure.

3.3 Gallery Organizer Repository of Projects
The Gallery Organizer Repository of Projects (GORP, 2006)
infrastructure used an online project posting submission system;
this system allowed students of the Educational Game Design
Class to put their projects online and freely view fellow student
projects [9]. Furthermore, students could comment on and easily
download other students’ projects. This cyber-infrastructure
obtained limited success in each of the above Principles laid out.
Students in theory could display, view, provide feedback and
download other students’ projects. However, students could not
rate projects in a simple manner. Furthermore, students in general
would not leave comment feedback upon viewing a project; it was
discovered that the main reason for this was that the overhead of
leaving a simple comment, logging in, meant that the student had
to go through more trouble than it was worth yielding the practice
nonexistent for more casual comments. There was also existed no
method of tracking who downloaded and viewed a project so there
was no way to evaluate how well or even if the peer-to-peer
interaction was taking place, though there was informal evidence
to suggest that it was. The shortcomings of GORP motivated the
current cyber-infrastructure, the SGDA.

3.4 Scalable Game Design Arcade
The Scalable Game Design Arcade (2009) extends the GORP
online submission interface to facilitate user feedback. The user
does not have to log in to leave feedback on given student’s
submission. Furthermore, a one to five rating system provides an
easy way to appraise projects and organize by projects that got the
best user feedback. This, in theory, makes it easy for students to
look and be inspired by the best projects and allows a simple way
to provide feedback. Embedded in the rating system and the
ability to organize by ratings is the Youtube/Facebook mentality
which allows students to gravitate towards classmate’s work who
they individually find interesting as well as work that the class as
a whole finds interesting. Furthermore, just like with Youtube,
students can sort according to many different criteria including
views, star rating, and name. Students are encouraged to submit
their work early and often so that the feedback received can be
used in the creation of subsequent game iterations. The user does,
however, have to login to download a program enabling the
tracked flow of ideas from one user’s game to another. It also
discourages cheating as directly copying a fellow student’s work
can easily be detected.

4. RESULTS
Figure 1 depicts a screenshot of the Scalable Game Design
Arcade. The SGDA Website consists of a list of game
descriptions including a thumbnail depicting the game, descriptive
text describing the game along with some additional meta-
information such as number of views. On the left of Figure 1 is
the “Title” column which contains a thumbnail screenshot of each
project along with a title. Next to the thumbnail, in the
“Description” column, is a brief synopsis of the game, game

storyline, and game-play instructions written by the student. To
the right of the description, in the “Rate” column, is the ratings
fellow students give the game out of 5 stars along with how many
students star rated the game; in the column to the right of the
rating, is the “Date Added” column which shows the time the
project was first submitted. The next column to the right, the
“Date Modified” column, displays the time of the most recent
game submission. Finally, the “Views” column furthest to the
right displays the number of times the project has been viewed by
people.

If a student clicks on the Author’s name link in the ‘Name’
column, it allows the student to run the game, leave a comment,
and download the code; Figure 2 depicts this. The projects are run
as a java applet in the browser itself. However, as mentioned
above, to download another student’s code, the student must first
log in.

In terms of accomplishing the five Flow Of Inspiration Principles,
initial indications from students using the SGDA are promising. In
order to get a better understanding of how students use the SGDA
and to what extent, if any, the SGDA enables the Flow of
Inspiration Principles, a questionnaire was given to the class. The
following sections will analyze and discuss the results of this
questionnaire.

Figure 1: Scalable Game Design Arcade with thumbnail, author description, rating, and submission time. Clicking on the

Author’s name link for any of these projects allows one to play the game, download code, rate, and add comments.

Figure 2: A detailed game description window wherein a

student can run the project, download the project code, star
rate, and comment on the project.

4.1 Student Questionnaire
The online questionnaire administered to the class consisted of 23
questions, 15 open-ended and 7 multiple choice. Replies were
anonymous, voluntary, and students could skip any question they
did not want to answer. Responses from 20 students were
collected, and the open-ended answers were categorized to
discover any trends among students. On all open-ended questions
students could give multiple answers, thus, the percentages of all
categorized answers to open-ended questions can exceed 100%.

The questionnaire is meant to answer two questions. The first
question is to what extent does the SGDA accomplish point five
of the Flow of Inspiration Principles; namely, given that students
can view, play, download and comment on classmates’ projects,
how often does this online peer-to-peer interaction actually occur.
The second question investigates the following: to the extent that
the Flow of Inspiration Principles are being integrated into the
class, is there indications that the quality of work is increasing? It
should be noted that we are not proving a causal relationship
between the quality of work and the Flow of Inspiration Principles
based on the questionnaire; however, we are trying to establish if
there is an attempt on the student’s part to improve their work
because of the SGDA. The following result sections are organized
in terms of Flow of Inspiration Principles 2-4 in order to see how
well the SGDA is accomplishing motivating these principles
(essentially how well the SGDA is accomplishing Flow of
Inspiration Principle 5; it should be noted that Flow of Inspiration
Principle 1 is essentially accomplished by the existence of the
SGDA online submission system). In each section we attempt to
answer the two questions presented above for a given Flow of
Inspiration Principle.

4.2 Viewing and Running Fellow Students’
Projects
As shown in Figure 2, running a fellow classmate’s project can be
done in the browser via clicking the “Run” link on the project
page. Students were asked to estimate how many times per week
they played a classmates’ game on their own volition (not as part

of an assignment). 95% (19/20 students) of students answered that
they played at least one classmate’s game a week and 85%
(17/20) played 2 or more classmate’s games a week with most
students, 45% (9/20), playing exactly 2 games a week. Figure 3 is
a graph that shows what benefits students hoped to gain when
they played classmates’ games on the SGDA.

Figure 3: Graph that shows what benefits students hoped to

gain from playing SGDA games.
Most students, 55% (11/20), mentioned general inspiration as the
reason for playing classmates’ projects. 30% (7/20) of the
responses mentioned specific programming reasons for playing a
fellow student’s project. These include, among other things,
looking for in-game graphics ideas, game play ideas and in-game
agent interactions. Furthermore, 30% of students played games for
pure entertainment purposes. Finally, 15% (3/20) of students
mentioned they played games out of curiosity for what their
fellow classmates were turning in and to gauge class effort for a
given assignment. The following quote is representative of how
many students answered this question:

“When I play a game created by someone else, I look for
interesting ideas and design, and hope to find some inspiration for
my own games. I also hope to be entertained for a while by their
game.”
Given that so many students hoped to be inspired by a classmate’s
game, it begs the question what effect, if any, does playing
classmates’ games on the SGDA have on a given student’s project
submissions. Asked if they had ever changed their project after
playing a classmate’s version of the game, 52.6% of the students
said ‘yes’ (10/19 with 1 person abstaining). Of those 52.6%, when
asked the reason for changing their game, 100% (10/10) replied
that they wanted to improve their own game based on what they
saw in their classmate’s game. The following is a typical student
quote:

"On the centipede gamelet i did notice other games made the
centipede smarter , so i changed so it wouldn't get stuck in certain
situations."
Furthermore, students were asked if a classmate’s game they
played from a previous week’s assignment had ever inspired the
current week’s assignment; 57.9% (11/19) said yes. One gave the
following answer:

“Yes, my Digital Logic gamelet was inspired by one of my
classmates who had done a digital logic gamelet the week before.
I got the idea of using logic circuits from their game and molded
my own game out of it.”

The questionnaire results indicate that students played other
students’ projects on a weekly basis, and thus, the SGDA is
effective in enabling and motivating students to view and run,
fellow student’s projects. Moreover, after playing classmates’
games, students often use the experience to try to improve their

own game or as inspiration for a future game. The data shows
strong evidence that the SGDA helps to increase the quality of
work submitted as students are trying to improve upon what they
turn-in based on what their peers have done.

4.3 Providing Feedback on Fellow Students’
Projects
The SGDA provides two formal mechanisms for leaving
feedback. The quickest way is to star rate a given project. The
hope is that over time, the amalgamation of star ratings should
yield a consensus as to what particular projects were liked and
disliked by the class as a whole. Star ratings can be made
anonymously.

Commenting is the other formal way students can leave feedback.
Comments allow students to give a more in-depth critique, or a
better description of things they liked. Students must give a
“handle” to leave a comment which could be the student’s real
name but did not have to be.

The final way students can provide feedback is through in-class
verbal feedback on a classmate’s game. One could argue that this
is not explicitly an SGDA feedback mechanism as students could
provide verbal feedback in any class regardless of the existence of
an online infrastructure. However, students must be able to play a
classmate’s project before having the ability to give verbal
feedback, and the characteristic of playing any classmate’s game
is explicitly enabled by the SGDA. The fact that students have to
submit their assignments publicly to the class enables in-class
verbal feedback among students to exist. The questionnaire
queried students about all three types of feedback.

When asked how many times this semester they had star rated a
classmate’s game on their own volition, 40% replied seven or
more times (8/20); 80% of the class said 3 or more times (16/20).
These results seem to indicate that there is motivation to use the
star-rating functionality in the SGDA. When asked to give the
reasons for star rating a classmate’s game, the overwhelming
majority replied that they star rated because they liked the game.
Figure 4 is a graph that shows all the reasons students said they
star rated games. 61.11% (11/18 with 2 abstaining) said they star
rated when they liked the game;

Figure 4: Reasons students gave for star-rating a classmate’s

game. Most people star rated when they liked a game.
38.89% (7/18) said they star rated as a general feedback
mechanism. Only 16.67% (3/18) said that they star rated when
they disliked a game. In the current state, most star ratings are
only given by the subsection of the class which view the game
positively. Therefore, if true, the SGDA star rating does not
reflect a class consensus as to whether a given game is good or
bad because the whole class is not involved in rating a particular
game. One student wrote the following:

“Usually I leave a rating if it's a great game... not quite as often if
I didn't think it was very good.”
 This seems to indicate an area where the SGDA needs to be
modified such that students are more willing to honestly rate
games they find good and bad. A few students suggested that star
ratings be updateable, meaning, that if a student initially gives a
project a low star rating, if the project improves, the student could
go back and replace the initial star rating. Currently, a student can
only give one star rating for a given project, and it cannot be
changed. Furthermore, other students suggested that it should be
possible to tie a star rating explicitly to a comment such that if
you give a low star rating you could couple it with an explanation
as to why the star rating was so low; this is backed by the SGDA
comment feedback data that will be presented next. This indicates
that students would not mind being critical with star ratings as
long as there exists a way to make the low star rating constructive
criticism. The reluctance to leave a bad star rating is at least partly
tied to the lack of an SGDA mechanism to explain the criticism
and reward an improved project.

When students were asked how many times this semester they left
a comment on a classmate’s project, 25% (5/20) responded seven
or more times, 75% (15/20) said they left a comment 2 or more
times, and 85% (17/20) left at least 1 comment. Though there is
room for improvement, this data seems to show that students are
leaving comments on classmates’ projects. Figure 5 shows the
student responses when asked the main reasons for leaving a
comment. Again, as with the star rating, students left comments
because they liked a given game (35.29%, 6/17 with 3 abstaining);
however, in contrast to the star rating, equally as many students
left comments to suggest improvements (35.29% 6/17). As
mentioned above, it appears that students are less reluctant to
criticize as long as they can explain their criticism.

Figure 5: Reasons students left comments. Mostly students

commented because they liked the game or to suggest
improvements.

When students were asked whether they had ever updated a
project based on comments received, 36.85% said ‘yes’ (7/19, 1
abstaining). The people that said ‘yes’ replied that usually the
comment pointed to a specific problem with their project that they
corrected. The following quote is typical of the ‘yes’ responses
received:

“YES! On some of the earlier projects I submitted early, and the
feedback told me it was too hard, or the interface was awkward.
So I switched it up, went back and resubmitted.”
On the other hand, 63.16% (12/19) answered ‘no’; however, it
should be noted that of the ‘no’ responses, at least 4 said that they
were intending to use comments made on a previous game for a
future game including game-remakes they were planning on doing
for their final projects. Many of the ‘no’ responses were because

students either commented after the project was due or the author
of the project only looked at the comments post due-date.

When asked if comments left on previous projects influenced their
current projects 38.89% said yes (7/18, 2 abstaining); 61.11%
(11/18) said ‘no’. Many of the ‘no’ responses refer to the fact that
since the assignments are so different, it is hard to apply previous
project comments to current projects. The following is a typical
quote from a student who gave the ‘no’ response:
“No, since the gamelets are so different, the comments usually
only apply to that project.”
Given that this is the case, it makes sense that the students who
are remaking old games for their final project plan on taking older
comments into consideration. Students are commenting and, to a
certain extent, using the comments to improve their projects.
However, it seems like the SGDA has to increase motivation for
pre-deadline commenting on projects. Moreover, it might be
helpful to send an email to the author such that if a comment is
made before the deadline, the project author sees it before turning
the project in rather than after the deadline. Furthermore, 57.14%
of students (8/14, 6 abstaining) said they would comment more if
they had more time. The following is a typical quote from these
answers:
“If I had more time!. . . When I spend 15-20 hours (from start to
finish) putting a game together and submitting it, and am faced
with another game due in 5-6 days, it's tough to motivate myself to
go play a bunch of other folks' games. . .”
Since students feel the workload is so large, it seems promising
that comments are occurring using the SGDA, and students are
using these comments to update their own games. A workload
change or phased development wherein students can leave
comments after an initial project phase might allow more time for
comments to be made and an opportunity for comments to readily
be used in project development.

When asked if other students had provided verbal in-class
feedback on a project (under their own volition, not as part of an
assigned discussion), 75% said ‘yes’ (15/20). Furthermore, when
asked if they had ever changed their project because of in-class
feedback received 53.5% said ‘yes’ (8/15, 5 said ‘no’ to the last
question). Interestingly, it seems like the SGDA has increased in-
class feedback, and this, in turn, has led to students attempting to
improve their project based on verbal feedback received. The
above quote about how more time would allow for increased
SGDA comments, provides insight into why many students might
prefer to instead give feedback verbally in-class. Since students
come to class anyways, playing a fellow classmate’s game and
giving comments in-class does not take away from the time the
student spends outside of class on the projects. Finally, it should
be noted that this in-class interaction mirrors the interactions that
actually happen in middle school computer clubs, and these
interactions are the very ones we want to promote regardless of
the feedback mechanism used.

4.4 Downloading and Viewing Project Code
In Figure 2 we see that in addition to running a classmate’s game
for a given assignment, students have the option of downloading
the project as a .zip file. This allows students to look at other
students’ code to figure out how they accomplished different
interactions. When downloading code, the student must login. The
reasons the SGDA requires student login for downloading is to
discourage outright cheating (identically copying someone else’s

code) and to track influence among students. Students are
encouraged to investigate other students’ code and even take parts
of their classmate’s code as long as they make it their own. When
asked if they had ever downloaded a classmate’s project code,
57.89% replied yes (11/19, 1 abstaining). Furthermore, of those
who downloaded code, 75% replied that the code was helpful
(6/8, 3 abstaining). The general consensus among those who were
helped by downloading was they were trying to figure out
something specific, and by downloading the code, it put them on
the right track to accomplishing this. The following is a quote that
is typical of what most students who found downloading helpful
said:

“Yes, I downloaded code a few times. Usually they had a cool
feature in their game and I wanted to see how they did it. Yes it
did help, it showed me how the feature was implemented.”
During the course of the semester, many students expressed
reluctance to download code even though it was encouraged from
the first day of class. When asked if they felt downloading a
classmate’s code for a given assignment before turning in the
assignment was wrong, 25% (5/20) answered ‘yes’. Furthermore,
15% (3/20) felt that it was a gray area. Many of these people
thought that it was all right after the assignment was due or later
in the semester when students submitted individual projects (as
opposed to the first four weeks wherein everyone submitted
similar games like ‘Frogger’ or ‘Sokoban’ etc.)

From the questionnaire answers it looks like the SGDA along with
the Educational Game Design Class is effective in motivating
students to download code allowing ideas to easily flow from one
student to the next. It also seems like students want more
guidelines as to when downloading and using someone else’s
code should be allowed and when it should be prohibited. A
possible solution to this would be to first explain the middle
school computer club motivation for allowing students to
download a classmate’s code. Furthermore, as was suggested with
the star ratings, maybe if we could link the downloads with
comments, such that students could openly provide feedback on
the downloaded code, it might highlight the middle school
computer club context. Overall, student-downloading seems to be
occurring using the SGDA, and students who download often
attempt to use the information garnered to improve their project.

5. CONCLUSIONS
The results of the questionnaire indicate that the Scalable Game
Design Arcade is effective in implementing the Flow of
Inspiration Principles in the Educational Game Design class.
Students use the SGDA to view other students’ projects. To
varying degrees students also use one of three feedback
mechanisms enabled by the SGDA to appraise classmates’
projects. A sizeable portion of students download and view
classmates’ code. Evidence strongly suggests that students are
attempting to increase the quality of their work after viewing
classmates’ projects, receiving feedback on their own projects,
and downloading classmates’ code. Informally, this is further
verified by our prior experiences with the Educational Game
Design Class; the current SGDA class implementation coincides
with a marked increase in the quality of submitted projects. The
SGDA seems to enable and motivate the emergent middle school
computer club peer-to-peer interactions in the Educational Game
Design Class.

Future SGDA iterations will focus on the shortcomings
highlighted by the questionnaire. Creating a class with phased
gamelet development such that students have more time to
comment on fellow students’ code might allow for increased
numbers of students to use the SGDA online feedback mechanism
more often. Allowing students to explain their critical star ratings
could enable more honest evaluations of classmates’ projects.
Finally, making the download policy more explicit might allow
students to be less tentative downloading and using classmates’
projects for their own purposes.

This questionnaire was meant to analyze the cyberlearning
infrastructure and its effects on the Educational Game Design
Class. However, the questionnaire data not only indicates the
extent to which the Scalable Game Design Arcade accomplishes
the Flow of Inspiration Principles, but also, possibly gives insight
into how the more successful SGDA characteristics are actually
enabled by the physical classroom. For example, students
preferred to give in-class verbal feedback of classmates’ games;
furthermore, in-class feedback led to many students altering their
games based on this feedback. More investigation is necessary to
see the reasons why in-class feedback was popular, but one
possibility is that face-to-face interaction might be preferred over
online feedback mechanisms. Or possibly, being in the vicinity of
others lends itself to feedback that might have not otherwise been
voiced. Some quotes from the questionnaire support the idea that
when students were programming their games in-class often
people would randomly stop by and give unsolicited feedback.
Furthermore, a few students said they asked fellow classmates’ in-
class for game feedback presumably as a quick and easy way to
see what was working and what needed improving. Though it
might be possible to provide and receive this classmate interaction
online, it seems more efficient to do it in class. Regardless of the
reason, the point still remains that the questionnaire pointed to
classroom interactions being a very important part of
accomplishing the Flow of Inspiration Principles. Thus, the “Sage
on the Stage” teaching approach might have little need for a
physical classroom anymore; however, these initial findings look
like a promising argument for the essential role of the physical
classroom within teaching strategies that employ peer-to-peer
student learning.

6. ACKNOWLEDGMENTS
We would like to thank all the students of the Educational Game
Design Class at the University of Colorado Boulder. Our thanks to
Centennial Middle School and the Boulder Valley School District.
A special thanks to David Webb for helping with the evaluation
methodology. This material is based in part upon work supported
by the National Science Foundation under Grant Number No.
DRL-0833612. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

7. REFERENCES
[1] Fischer, G., Rohde, M., Wulf, V. 2007: Community-based

learning: The core competency of residential, research-
based universities. International Journal on Computer-
Supported Collaborative Learning (iJCSCL), Vol. 2, No. 1.,
pp. 9-40.

[2] Williams, L., Layman, L., Slaten, K. M., Berenson, S. B.,
and Seaman, C. 2007. On the Impact of a Collaborative
Pedagogy on African American Millennial Students in
Software Engineering. In Proceedings of the 29th
international Conference on Software Engineering (May 20
- 26, 2007). International Conference on Software
Engineering. IEEE Computer Society, Washington, DC,
677-687.

 [3] Pollard, S. and Duvall, R. C. 2006. Everything I needed to
know about teaching I learned in kindergarten: bringing
elementary education techniques to undergraduate computer
science classes. In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education
(Houston, Texas, USA, March 03 - 05, 2006). SIGCSE '06.
ACM, New York, NY, 224-228.

[4] Hamer, J., Cutts, Q., Jackova, J., Luxton-Reilly, A.,
McCartney, R., Purchase, H., Riedesel, C., Saeli, M.,
Sanders, K., and Sheard, J. 2008. Contributing student
pedagogy. SIGCSE Bull. 40, 4 (Nov. 2008), 194-212

[5] Repenning, A. and Ioannidou, A. 2004. Agent-based end-
user development. Commun. ACM 47, 9 (Sep. 2004), 43-
46.

[6] Repenning, A. and Ioannidou, A. 2008. Broadening
participation through scalable game design. In Proceedings
of the 39th SIGCSE Technical Symposium on Computer
Science Education (Portland, OR, USA, March 12 - 15,
2008). SIGCSE '08. ACM, New York, NY, 305-309.

[7] Waite, W. M., Jackson, M. H., Diwan, A., and Leonardi, P.
M. 2004. Student culture vs group work in computer
science. SIGCSE Bull. 36, 1 (Mar. 2004), 12-16.

[8] McKinney,D., Dyck, J., Luber, E. 2009. ITunes University
and the classroom: Can podcasts replace Professors?
Computers and Education. Vol 52, 617-623.

[9] Chorost, M. (2008). Educating Learning Technology
Designers: Guiding and Inspiring Creators of Innovative
Educational Tools . New York: LEA. 357

[10] Christine, H. Abelson, L. Dirks, R. Johnson, K. R.
Koedinger, M. C. Linn, C. A. Lynch, D. G. Oblinger, R. D.
Pea, K. Salen, M. S. Smith, and A. Szalay, "Fostering
learning in the networked world: The cyberlearning
opportunity and challenge, a 21st century agenda for the
National Science Foundation," NSF Report, June 2008.

[11] Head, C. C. and Wolfman, S. A. 2008. Poogle and the
unknown-answer assignment: open-ended, sharable cs1
assignments. In Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education (Portland, OR,
USA, March 12 - 15, 2008). SIGCSE '08. ACM, New York,
NY, 133-137.

[12] Wing, J. M. 2006. Computational thinking.
Communications of the ACM 49, 3 (Mar. 2006), 33-35.

[13] Papert, S. 1996. An Exploration in the Space of
Mathematics Education. Journal of Computers for
Mathematical Learning. Vol. 1, No. 1, pp. 95-123

