Inflatable Icons: Diffusion-based Interactive Extrusion of
2D Images into 3D Models

Alexander Repenning
AgentSheets Inc.
4565 Gunpark Drive
Boulder, CO 80301 USA
+1 303 530 1773

alexander@agentsheets.com

Abstract

There are many applications, such as rapid prototyping,
simulations and presentations, where non-professional
computer end-users could benefit from the ability to create
simple 3D models. Existing tools are geared towards the
creation of production quality 3D models by professional
users with sufficient background, time and motivation to
overcome steep learning curves. Inflatable Icons combine
diffusion-based image extrusion with a number of
interactively controllable parameters to allow end-users to
efficiently design 3D objects. Early user testing has
indicated that it takes end-users, even kids, just minutes to
draw icons and then use the Inflatable Icons approach to
create 3D models which they can use to build video games.

Keywords: diffusion-based image extrusion, interactive
user interfaces. ACM CCS descriptors: 1.3.3 (Picture/Image
Generation), 1.3.4 (Graphics Utilities, paint systems,
graphics editors), 1.3.5 (Computational Geometry and
Object Modeling).

INTRODUCTION

While 3D content has certainly managed to become
accessible in most households in form of game consoles
and personal computers, there are few tools that allow non-
expert users to quickly create simple 3D shapes. Nowadays
end-user development is quickly advancing [11] and end-
users employ all kinds of authoring tools such as word
processors and slide presentation tools to author their own
content. 3D content is lagging behind not because of a
hardware challenge — on the contrary, even the cheapest
PCs now feature amazing 3D rendering capabilities — but
because 3D authoring tools are mostly geared towards
professional developers with proper training, time and
motivation.

Inflatable Icons is the name of a new technique that can
interactively extrude 2D pixel-based images into polygon-
based 3D models with surprisingly little input required by
users. The general idea is that through the use of an
inflation process suitable 2D icon artwork can serve as
input for an interactive 2D to 3D transformation process.

Copyrights box

This makes Inflatable Icons useful for a number of end-user
applications including presentation software and 3D
sketching. However, our immediate application domain is
the use of Inflatable Icons in multi-agent simulation
authoring tools employed in education such as AgentSheets
[12] or StarLogo [15]. With these tools end-users, typically
kids, create complex simulations involving hundreds and
even thousands of agents. These agents are visualized as
icons draw by kids. Inflatable Icons add new affordances to
simulations. For instance, simulation worlds no longer have
to adopt a birds-eye, top down perspective. Instead, a
camera can be placed anywhere into a simulation world
featuring arbitrary orientation including first and third
person perspectives. 3D can disambiguate the spatial
relationships between objects. For instance, in AgentSheets
agents can be stacked on top of each other. A vase agent
can be on top of a table agent, which, in turn, can be on top
of a floor agent. In a 2D orthogonal top-down view this
often becomes extremely confusing to users.

This paper presets Inflatable Icons as a technique that is
based on an extrusion process that adds a third dimension
to a two dimensional image. In its most simplistic form this
extrusion process can be compared to the inflation of a
balloon. An icon defines the basic shape of the balloon as
well as the image painted onto the balloon. A circular
shaped balloon, for instance, will be extruded into a sphere.
This paper first introduces a simple inflation mechanism
and then gradually refines this mechanism by adding user
controllable parameters. Users can interactively steer the
extrusion process through these parameters in order to
create intricate 3D objects. The specific innovation
presented here is the combination of a highly extensible
biased diffusion technique controlled by 2D images, with
an interactive, user-controllable process.

The quality of a 3D model resulting from the technique
presented here would not likely satisfy a professional 3D
model builder but is more than sufficient for this kind of
application. The focus of this work is to allow end-users to
very quickly create simulation worlds containing large
numbers of simple 3D objects. In a multi agent simulation
application it is more important for users to be able to
visualize the spatial relationships between agents then to
have a high quality 3D representation of any individual
agent.



Polygonizing Icons

An Inflatable Icon, like a regular icon, includes a two-
dimensional pixel array. Each pixel is represented as a
RGBA color. For our first example, we use only a one-bit
alpha value: a pixel is either fully visible or invisible.
Figure 1 shows a “Lobster” icon, which will be turned into
an Inflatable Icon.

Figure 1: A low-resolution icon ready to be inflated.

The Inflatable Icon has a z,, value for each x, y coordinate.
These z values are initially set to zero. Unlike regular
icons, an Inflatable Icon is a true 3D object in the sense that
it is represented as 3D polygons. A simple but somewhat
brute force approach — in terms of number of polygons
required — is to use triangle strips and represent each pixel
as a square consisting of two triangles. As described below,
triangle strips work especially well when rendering objects
with smooth shading.

As a convention, we define the upper left corner of each
square to be the reference point representing the z value of
a pixel. Since all the z values are initialized to zero we get a
planar set of polygons (Figure 2).

N

N

Figure 2: Each pixel is polygonized with two triangle
polygons.

Diffusion-based Image Inflation

There are a number of ways of implementing an inflation
process. In Teddy [8], for instance, the system uses a
skeleton based approach [1] to inflate closed regions with
amounts depending on the width of the regions. Wide areas
become fat and narrow ones become thin. The approach
presented here, in contrast, is image-based. Inflatable Icons
are based on a diffusion process taking place at the pixel
level. In computer graphics diffusion and related operations
are often used as technique to smooth [3] or to deform [2]
3D objects.

To capture the notion of inflation we introduce the idea of a
biased diffusion process. Unlike most diffusion
applications, including the use of diffusion for smoothing,
biased diffusion does not attempt to preserve the total
amount of matter. A biased diffusion intentionally changes
the amount of matter. The resulting process resembles
inflation quite closely. The bias introduced to diffusion is a
measure for pressure. Pressure added to an Inflatable Icon
will gradually extrude the image-based mesh from a flat
shape into a 3D model.

Biased diffusion can be represented with a difference
equation computing a new value based on the four
Newman neighbors (north, south, east, west) and itself.

Biased Diffusion Equation

Zx,y = D(Zx—l,y + Zx+l,y + Zx,y—] + Zx,y+l - 4Zx,y + p) + Zx,y

D is the diffusion coefficient [0..0.5], p is a number
corresponding to pressure.

A positive pressure p will inflate, while a negative one will
deflate. All z values are initialized to 0. Z values of
invisible pixels remain always 0. Masked pixels
surrounding our Lobster icon will clamp down, i.e., the
pixels at the edge of the icon will pull the diffusion values
down to zero. Because of this clamping icon inflation
converges. The inflated lobster (Figure 5) was created with




only 10 iterations using a pressure p of 0.04, and a
diffusion coefficient of 0.25. The converged shape of an
inflated icon will only depend on the pressure p but not the
diffusion coefficient D.

Pixels inside the icon far away from the edge will assume
the highest z values. The highest z values are a function of
the pressure p. The higher the pressure, the larger the z
values will become. A pressure value of zero will flatten an
already inflated icon. Negative pressure will create concave
icons.

Applying pressure to the Inflatable Icon will gradually
pump it up like a balloon. Z values are shown as red lines
(Figure 3).

Figure 3a: Inflation: icon is still flat.

o4
////////
i N

EaRair
7

i /|

Figure 3b: Inflation: icon starts to inflate.

e

Figure 3c: Icon is fully inflated by Biased diffusion.

Rendering polygons filled and enabling lighting will make
the Inflatable Icon look like a solid object.

Figure 4: A flat shaded inflated icon.

Because of the regular grid structure of the underlying
image it is particularly simple to implement Gouraud
shading [6] by computing normal vectors for each vertex
and not just for each triangle face as follows:

Z)c—l,y - Zx+l,y

S

X,y = Zx,y—l - Zx,y+1
2m

m is the grid size (m = Ax = Ay)



Figure 5: Gouraud shaded inflated icon.

Related Work

Sketching approaches such as the Electronic Cocktail
Napkin system [7] interprets pen drawn sketches to create
diagrams with semantics by matching sketches against a
large and expandable set of graphical primitives with user
defined semantics. Digital Clay [13] not only recognizes
sketches but can also construct appropriate 3D models.
Sketch VR [4] recognizes 2D geometric shapes that it can
project into 3D architectural spaces. Gesture-based
interfaces have also been used to create 3D models of
mechanical designs [5] and CAD/CAM models [10].

Freestyle sketching approaches do not rely on domain
knowledge but use sketching to create arbitrary 3D objects
that are not interpreted semantically by the computer.
Teddy [8] is a sketching interface to create all kinds of
sophisticated 3D models that “have a hand-crafted feel
(such as sculptures and stuffed animals) which is difficult
to accomplish with most conventional modelers.” Teddy’s
inflation mechanism is based on closed regions. It does not
use image information to generate models nor does it
include texturing tools. Models created with Teddy do not
include skins and need to be textured with third party

\

‘ painting applications. On the
other hand models created with Teddy
can be more complex than inflated icons that have

been extruded from a single image.

Inflatable Icons are not necessary better or worse than these
sketching approaches but they start with radically different
input resulting in a different class of output. In contrast to
Teddy and related sketch-based approaches Inflatable Icons
start as icons. These icons are produced by the end-user or
are found in icon collection such as the Icon Factory [14].
Icons are not only decoration in the sense that they will be
used later as the skin of the model but they actively drive
the inflation process. The icon mask is used to derive the
basic shape of the model. In more complex cases
(explained below) the color value of each pixel is analyzed
as well and is used to control the diffusion process.

A number of image-based extrusion approaches add three-
dimensional looking effects to two-dimensional images
without creating tree dimensional models. William’s
automatic airbrush [16] creates compelling three-
dimensional illustrations out of images by applying
complex shading functions to selected regions. Simpler
versions of this idea are found in popular paint programs
such as Photoshop. However, the results of these
algorithms remain two-dimensional shapes with no user-
accessible 3D model information.

USER CONTROL

Our user testing indicated that the pressure parameter is not
sufficient to control the extrusion process. Below, a number
of additional parameters that provide users with more
options are described. Users suggested many of these
parameters, including noise.

Aside from providing users with an ever-growing number
of parameters an important general design principle that



emerged from user testing was that continuous feedback
helps users enormously in building inflatable icons. Most
of the parameters presented in a numerical form provide
little or no information to users. The nature of the diffusion
process is highly iterative. The extrusion of an image into
inflated icons typically requires dozens to hundreds of
iterations. Instead of keeping this computation hidden
behind the scenes it was made a part of the interface
explicitly revealing the diffusion process to its users as a
continuous inflation animation. Especially younger users
tend to playfully explore the inflation process and
particularly enjoy inflating icons to extreme degrees —
expecting the icons to pop.

Antialiasing

Icons are low-resolution small two-dimensional images. A
typical desktop icon has a size of 32 x 32 pixels. Even so-
called “huge” icons (in Apple’s OS X) have a size of 128 x
128 pixels. Small size, on the one hand, makes the inflation
computationally process feasible, but, on the other hand,
results in shapes that have a smooth surfaces but jagged
edges.

A 32 x 32 pixel, 1 bit alpha circle icon manifests highly
visible aliasing.

Figure 6: A circle icon with visible aliasing (left). The
inflated icon (right) has a smooth surface but keeps the
aliased edge.

Icon Inflation turns the circle (Figure 6, left) into a
hemisphere with a smooth surface but jagged edge (Figure
6, right). In a perspective view the edge of a rotated
hemisphere will look even worse (Figure 7, left). The
diffusion process used for the inflation also helps to
smoothen the edge.

Figure 7: The “bad” aliased part of the inflated icon is cut
away with a clipping plane (left) to get a smooth edge
(right).

A simple, yet effective, antialiasing effect is achieved
through a clipping plane (Figure 7, left) parallel to the x/y
plane with a small z value. The selection of a z value for
the clipping plane is user controlled through a slider
interface, similar to the one shown in Figure 14. A small z
value will preserve the original shape but still manifest the
jagged edges. A large z value, in contrast, will make the
edge of the shape smooth but will also thin out the shape.
Thinning out is a problem for certain shapes that include
sharp edges or intricate details. Figure 8 illustrates how the
sharp tip of a heart gets lost because of the smoothing.

v

Figure 8: The sharp edge at the bottom of the heart shapes
gets lost in the antialiasing.

Color-Based Pressure Modulation

Uniform diffusion will not always work well. In many
cases some regions of an icon need more and others need
less pressure for an inflated icon to look right. The inflated
version of a teddy bear icon does not look particularly
compelling especially when viewed from the side. One
would expect the black nose to be more prominently
extruded and the ears more pronounced. Without this the
resulting shape has the appearance of an inflated balloon
with the face of the teddy bear merely painted on (Figure 9,
right).



Figure 9: A general inflation turns a teddy icon (left) into a
non-compelling inflated icon (right)

To achieve the desired effect the universal pressure p in our
general diffusion equation is replaced with pixel coordinate
depending function. This function modulates the pressure
for each pixel based on the pixel color.

p., = p(1+m(color, ))
For the teddy bear icon we define
m(black) = 1;
m(white) = -3;
otherwise m = 0.

The black pixels representing the nose modulate the
pressure positively whereas the three white pixels serving
as edge between the main sphere of teddy’s head and his
ears modulated the pressure negatively (Figure 10).

Figure 10: Black pixels have more pressure, white pixels
have less pressure

End-users, of course, do not specify color modulation
functions. Instead, they pick colors (or color ranges) from
palettes. For each selected color they use a slider with a
limited positive and negative range to define a modulation
bias. Sliders provide a good interactive means to control
color-based pressure modulation.

Noise

Objects found in nature such as rocks often do not have
smooth surfaces. Noise can be added to give inflatable
icons a more organic look. Users are provided with two
noise parameters:

* Amount: Control the noise amplitude.

* Bumpiness: Should the surface be more spiky or smooth?

We want to create a model of a rock. A gray blob icon is
drawn quickly (Figure 10, left) and inflated (Figure 10,
right).

Figure 11: A gray blob (left) turns into a balloon (right)

Using a random function, noise gets added to each z,, of
the inflated icon with values in between —amplitude and
+amplitude. In many cases, including this one, the random
spikes added to the surface require smoothing (Figure 12).

»
w

*

Figure 12: Noise added to the balloon makes it look like a
sponge and not like a rock.

Non-noisy diffusion is applied again to smoothen the
surface. The bumpiness parameter controls the number of
follow-up smoothing diffusion cycles. With each additional
diffusion cycle, the inflated icon becomes smoother.
Continued smoothing will eventually turn the inflated icon
back into its original shape (before the noise was applied).

Figure 13: Two iterations of diffusion (left) and three
iterations of diffusion (right) applied to the sponge create a
rock look.

INTERFACE

The interface is kept simple with the main design goal to
facilitate exploration. The main pressure parameter is
accompanied with a number of optional parameters such as



the ones described above. Additionally users can specify
orientation (should an inflated icon lay on the ground, such
as the lobster icon, or should it be upright, such as the icon
of a tree), symmetry (e.g., a circle can be turned into a
complete sphere combining positively and negatively
inflated copies of a circle icon), and simple composition of
different inflatable icons into more complex shapes.

8CO

Inflation Lab

Pressure - 6 » M
- 0 +
" Noise | :!
Amount '—6 ~
0 max

Bumpiness r—e ~

spiky smooth

b Advanced: P

Figure 14: A simple user interface to inflate icons.

Figure 14 shows the inflation of an 48 x 48 pixel icon
representing a landscape. Positive pressure inflates the
landscape. Color-based pressure shapes the mountains and
the river valley: white color represents snow; blue color
represents the river. Noise makes the mountains look
rough. The view showing the Inflated Icon is an OpenGL
viewer that includes camera controls (zoom, rotate, pan),
which allow users to explore their 3D world from different
perspectives.

The interactive nature of the process keeps users in the
design loop. A change of pressure will result in
inflation/deflation of the icon by running the diffusion
process for about 50 steps. The inflation process is stable in
the sense that it converges. Only for extreme values of
pressure will the icon inflation become numerically
instable. Our first prototype tested by middle school
students did not include a pressure limit. Users enjoyed
entering extreme pressure values seeing over inflated icons
pop. Following each individual diffusion step the display is
updated providing users a sense of the process. At the same

time users may continue to edit their icons changing the
shape, the texture and, in the case of color-based pressure
modulation, selectively controlling the ongoing diffusion
process.

DISCUSSION

Not every icon is suitable to icon inflation. Especially more
modern icons that have a three dimensional look may not
inflate well for two reasons. First, their shape is pre-
distorted to look like a 3D object. The inflatable icon
approach assumes that icons are flat two-dimensional
projections. A second problem can be shading that, again,
is used to create a three dimensional appearance. The
inflated icon will inherit the statically shaded texture from
its two dimensional icon. Since the inflated icon is a true
three-dimensional object placed into a three-dimensional
world with potentially many light sources the result will be
highly confusing. In some cases the user can clean up the
icon with an icon editor. However, depending on the
complexity of the icon this may require a considerable
effort.

The polygonization approach used creates models with
large mesh sizes. Even a small 32 x 32 icon may have over
1000 polygons. Assuming that applications such as
simulations may feature thousands of Inflatable Icons
performance could become an issue. We have compared
the time required to draw a regular icon with the time to
draw an Inflatable Icon.

Test machine: Macintosh G4, 800Mhz, OS X 10.2.3, Video
Board, ATI Mobile Radeon; test icon: Lobster (Figure 1).

2D Icon: 280ps — using native operating system
call

3D Inflatable Icon: 220us - OpenGL 1.3, display
lists, one light source, Gouraud shading.

The absolute numbers are irrelevant, however, the fact that
even without optimizations such as OpenGL extensions
(e.g., compiled vertex arrays) it took less time to create a
3D inflatable icon than a regular 2D one is amazing.

Models produced by icon inflation tend to be smooth
making them viable candidates for well-established mesh
reduction algorithms [9] if optimization is required.

A somewhat constraining aspect of Inflatable Icons is the
biased diffusion process, which does not scale well to large
images. The problem is that it will take pixels far away
from the icon edge a long time to rise because the pixels
that need to raise the most are surrounded by a very large
number of pixels pulling them down. The result is that it
takes many more iterations to inflate an icon properly. One
way to overcome this limitation is by first downsampling
large images, inflate the downsampled image and then to
apply the original image as the skin of the resulting 3D
model. This way the inflation technique can be applied to
images of arbitrary size.

It is important to stress that Inflatable Icons are not meant
to replace more complex approaches and sophisticated
tools for creating 3D models. In applications such as
simulation authoring environments end-user such as kids



need to be able to create good-enough 3D models in 13. E. Schweikardt and M. D. Gross, "Digital Clay:

seconds or minutes but not in hours. Deriving digital models from freehand sketches,"
The type of models that can be extruded from a single zzélg(t)%matzon in Construction, vol. 9, pp. 107-115,

surface is intrinsically limited. On the other hand, the
approach of Inflatable Icons can be extended to introduce 14, Icon Factory, http://www.iconfactory.com/
more complex extrusion functions and to add sophisticated
composition functions. Any number of icons could be
inflated and then composed into an aggregate model. 16. L. Williams, "Shading in Two Dimensions,"
presented at Graphics Interface 91, 1991.

15. StarLogo, http://education.mit.edu/starlogo/

REFERENCES
I. J. Bloomenthal and B. Wyvill, "Interactive
techniques for implicit modeling," presented at WEB INFORMATION

Symposium on Interactive 3D Graphics, 1990. The figures from this paper, as well as short movie, are

2. G. Debunne, M. Desbrun, M.-P. Cani, and A. H. available at
Barr, "Dynamic Real-Time Deformations using
Space and Time Adaptive Sampling," presented at
SIGGRAPH '01, 2001.

3. M. Desbrun, M. Meyer, P. Schroder, and A. H.
Barr, "Implicit Fairing of Irregular Meshes using
Diffusion and Curvature Flow," presented at
SIGGRAPH 99, 1999.

4. Y .-L. Do, "Drawing Marks, Acts, and Reacts,
toward a computational sketching interface for
architectural design," AIEDAM, Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing, vol. 16, pp. 149-171, 2002.

5. L. Eggli, C. y. Hsu, B. D. Bruderlin, and G. Elber,
"Inferring 3d models from freehand sketches and
constraints," Computer-Aided Design, vol. 29, pp.
101-112, 1997.

6. H. Gouraud, "Illumination for Computer
Generated Pictures," Communications of the ACM,
vol. 18, pp. 311-317, 1971.

7. M. D. Gross, "The Cocktail Napkin, the Fat
Pencil, and the Slide Library," presented at
Association for Computer Aided Design in
Architecture (ACADIA '94), St Louis, 1994.

8. T. Igarashi, "Teddy: A Sketching Interface for 3D
Freeform Design," presented at Proceedings of
ACM SIGGRAPH 99, Los Angeles, 1999.

9. R. Klein, G. Liebich, and W. Straf8er, "Mesh
reduction with error control," presented at
Visualization 96, 1996.

10. D. Lamb and A. Bandopadhay, "Interpreting a 3D
object from a rough 2D line drawing," presented at
Visualisation '90, 1990.

11. H. Lieberman, Your Wish Is My Command:
Programming by Example: Morgan Kaufmann
Publishers, 2001.

12. A. Repenning, A. Ioannidou, and J. Zola,
"AgentSheets: End-User Programmable
Simulation," Journal of Artificial Societies and
Social Simulation, vol. 3, 2000.

http://www.acm.org/jgt/papers/Repenning04



