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Abstract

The design of an effective interactive learning
environment requires understanding the intricate
relationships among people, tools, and problems.
Many end-users do not have the necessary skills,
nor the time or patience to compose programs from
computer science-sanctioned programming
primitives. End-users require environments that
elevate the task of programming to the manipulation
of components that are directly pertinent to the
problems to be solved. This paper introduces the
Agentsheets programming substrate employed by
designers to create interactive learning
environments that are geared toward end-users
solving specific problems. A number of educational
and industrial applications are used to illustrate the
design and use of Agentsheets environments in
domains such as art, artificial life, environmental
design, games, kitchen design, and visual
programming.

1. INTRODUCTION: PROGRAMMING
SUBSTRATES CREATE LEARNING
OPPORTUNITIES

This article describes the Agentsheets
programming substrate that is used to create
Interactive Learning Environments (ILEs). The
long-term vision is to create an Agentsheets project
called “SimCity‰ in 10 minutes.” This ambitious
goal may never be achieved but it motivates
research,   design, and implementation of new
programming approaches that empower users to
create SimCity-like applications in a very short
period of time. We do not focus on a single
programming approach, but instead explore
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different approaches and analyze what kind of
problems they are suited for.

Agentsheets helps designers to build ILEs, such
as end-user programming environments, domain-
oriented visual programming environments,
simulation environments, and design environments,
for end-users. Designers and end-users of ILEs
have the following learning opportunities:

• Learning through Programming. In
the spirit of constructionism a programming
substrate should enable people to construct
personally meaningful products (Resnik,
1992). By doing so people can learn about
domains such as mathematics through
programming (Papert, 1980). The challenge
for a programming substrate is to minimize
accidental complexity of the programming
task. That is, if the objective is to learn about
a problem domain then the complexity faced
when constructing a program should reflect
the intrinsic complexity of the problem
domain and not the complexity of
formalizing the problem domain through
programming. For instance, the complexity
arising from building a SimCity-like
application should be driven by the
complexity of the city simulation model
employed and not the intricacies of a
programming substrate used to implement
the model.

• Learning about Programming.
Agentsheets supports learning about
programming principles such as object-
oriented programming, parallel
programming, and user interfaces. This type
of learning is sometimes considered a side
effect of doing the “real” thing, but for
computer science majors and, more
generally, for people interested in
programming this learning experience may
be important.

• Learning by Using. A programming
substrate should allow people to create
engaging applications that are fun and
interesting to use. For instance,
programming substrates should facilitate
real-time animation, interaction, and sound.
The application created should not be just a



Interactive Learning Environments, Vol. 4, Issue (1), 45-74 46

“toy” application that will be thrown away
once the lesson is learned. A programming
substrate that allows students to implement a
quick-sort algorithm may be an effective
way to learn through programming but
unless the student has to sort interesting
numbers very little is to be learned by
actually using the application created.

These learning opportunities are instances of
learning through problem solving. The problems to
be solved can be related to creating or using an
ILE: How should a car be programmed to behave
in certain ways in a SimCity like environment, or
where should traffic signals be introduced to
minimize traffic accidents at a dangerous
intersection. In both cases it is important to
understand how tools are used by people to interact
with some problem domain. This paper analyzes
the relationships among people, tools, and
problems, introduces the Agentsheets programming
substrate; illustrates how Agentsheets is used to
create ILEs; and finally reports on the experience
of users creating ILEs.

2. PEOPLE, TOOLS, AND PROBLEMS

To build programming tools that are effective
interactive learning environments, we need to
understand the intricate relationships among
people, tools, and problems. Guttag (1991)
summarized the difficulty of programming by
pointing out that “the wrong people are using the
wrong methods and the wrong technology to build
the wrong things.” What  people are using what
kind of tools to solve what  kind of problems? This
paper discusses the use of substrates to build
programming tools to improve the relationships
among people, tools, and problems.

The needs of end-users typically cannot be
satisfied with general-purpose programming
languages because end-users either do not have the
necessary skills, the time, or the patience to
compose programs from classical computer science
programming primitives such as iterations,
sequences, and branching (Lewis & Olson, 1987).
Usability, domain-orientation, and control are three
important characteristics describing the
relationships among people, tools, and problems
(Figure 1):

• Usability (People and Tools): How easy is
it to understand and use a tool? Usability
does not imply usefulness. A tool can, at the
same time, be usable but not useful. A

hammer, for instance, is usable by many
people, yet it is not very useful in bread
baking. Usability does not make an
assessment about how useful a tool is with
respect to a problem to be solved.

• Domain-Orientation (Tools and
Problems): Tools are oriented toward
problems, but problems are also oriented
toward tools. The problem of assembling a
car quite naturally leads to the use of
traditional tools such as screwdrivers. The
fact that screwdrivers are useful tools to
assemble a car is not accidental. These tools
have been known for a very long time and
were taken into account when the parts of
the car were designed.

• Control (People and Problems): If the
problem is to get bread, then baking the
bread from scratch, using a bread machine,
or buying the bread at a bakery are three
different approaches leading to a similar
result. However, these approaches differ
considerably with respect to how much
control a person has over the process of
creating a solution and how much effort is
involved.

The following sections elaborate the three
relationships that will lead to design principles for
programming substrates.

2.1. Usability and Domain-Orientation

If a tool is easy to use (high usability) and if the
tool’s functionality is relevant to the problem
domain (high domain-orientation) then a tool is
useful to solve a problem. In this paper I limit the
discussion on usability to the use of visualization.
By use of visualization I mean the use of effective
perceptual information (Gaver, 1991) to design a
visual representation.

Programming approaches can be characterized
along the dimensions of domain-orientation and
use of visualization (Figure 2). Visualization is a
syntactic characteristic of a programming language
in the sense that it renders the look of concepts but
not their meaning. The use of visualization is
presumed to simplify programming by capitalizing
on innate human perceptual skills (Chang, 1990;
Shu, 1988). Programming environments often
employ visualization to reduce the complexity of
syntactic issues such as the perplexing problem of
putting semicolons at the right places in Pascal or
keeping track of parentheses in Lisp.
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Figure 1: People, tools, and problems

Domain-orientation, in contrast to the use of
visualization, is a semantic characteristic that
describes the meaning of concepts without
specifying their look. Programming environments
with a low degree of domain-orientation, such as
Pascal, Lisp, Basic, and C++, are shown in the
lower half of Figure 2. These environments are
unlikely candidates for end-user programming
languages because they represent a big
transformational gap between the problem domain
and the programming domain. General purpose
visual programming languages, such as Prograph
(Golin, 1991), make high use of visualization.

Prograph is a programming language based on
the visualization of data flow and functional
programming (Figure 2, bottom right). Prograph is
highly visual, and its two-dimensional syntax

simplifies the task of program construction.
However, the language components provided by
Prograph are not domain-oriented. Visual
programming has at least partially failed in its
mission to lower the barriers of programming and,
consequently, to enable more people to program
(Brooks, 1987). To date, visualization in
programming is predominately used to address
syntactic issues. That is, numerous visual
programming languages have emerged as new
"wrappings" for classical computer science
programming concepts such as iteration, sequence,
and branching. Although these concepts are
essential for many types of programming, the
syntactic mapping of traditional text-based
programming approaches to visual programming
languages is questionable with respect to its effect
on lowering the barriers of programming (Lewis &
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Figure 2: Languages Can Be Characterized Along the Dimensions of Visualization and Domain-Orientation

Visualization is typically used to illuminate syntactic issues in a language. Domain-orientation can be used to bridge
the gap between the semantics of the problem domain and the semantics of programming concepts. The PinBall
Construction Kit is a domain-oriented visual language whereas Prograph is a general-purpose visual language.

Olson, 1987). Worse yet, some studies have found
that the comprehensibility of visual program
representations can actually be worse than their
textual counterparts (Green, Petre, & Bellamy,
1991).

Interactive programming environments such as
HyperCard with HyperTalk represent a
compromise between general purpose and domain-
oriented languages (Nardi, 1993). Nardi points out
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that HyperCard-like environments are a bad
compromise because they share the complexity of
general purpose programming languages, such as
C++, without matching their performance. At the
same time, the domain-orientation of HyperCard-
like environments is insufficient to enable end-
users to write useful applications from scratch.

Most end-user programming languages are
highly domain-oriented and, therefore, are
positioned in the upper half of Figure 2. Domain-
oriented languages narrow the semantic gap
between the problem domain and the programming
domain (Fischer & Lemke, 1988). Mathematica
and Matlab feature domain-oriented operations,
such as integration and Fourier transformations,
that are familiar to mathematicians (Figure 2). The
formula language featured by spreadsheets
furnishes task-specific primitives (Nardi & Zarmer,
1993), such as taking averages, rounding numbers,
and operating on dates, that are familiar to financial
planners.

Domain-oriented visual programming
environments elevate the task of programming to
the manipulation of components directly pertinent
to the tasks of end-users. In the PinBall
Construction Kit (Fischer & Lemke, 1988), for
instance, end-users program by manipulating
bumpers, obstacles, and flippers. The combination
of usability through visualization and domain-
orientation makes the PinBall construction kit a
useful programming mechanism for people
interested in creating working PinBall applications.

2.2. Control: Degrees of Delegation

Control is an important characteristic to
describe the interaction between people and
problems through tools. How much of the problem-
solving process can be delegated to other people or
agents? If, for example, people are interested in
solving the problem of getting bread, they have
several options. Creating the bread from scratch
gives people a high degree of control, as they get to
select all the ingredients, but, at the same time,
represents a large effort. Tasks such as kneading
could be delegated to a bread baking machine.
Simpler yet, people could buy bread at a bakery.

Delegation requires autonomous tools to reduce
the problem-solving effort. Unlike passive tools,
autonomous tools take the initiative to do tasks.
Furthermore, autonomous tools need very little
supervision to do these tasks. Consequently,
autonomous tools not only allow people to interact

with a problem on a more abstract level, hiding
irrelevant details of the problem-solving process,
but these tools help to save time. This gives people
opportunities to deal with and learn about other
tasks while the tools are active. In the bread baking
scenario the baker working at a bakery could be
considered a highly autonomous tool. A person in
need of a loaf of bread does not have to instruct the
baker to bake the bread not does the person have to
spend any time in supervising the baker. In the
following I use a theatrical metaphor (Laurel,
1993) to discuss the distribution of roles between
people and tools. Specifically, I analyze these roles
in human-computer interaction schemes based on
direct-manipulation or delegation.

Direct manipulation provides maximal control
but, at the same time, results in great effort. The
computer turns into a passive tool that needs to be
operated like a hand puppet by the user, who turns
into a puppeteer (Figure 3). In a hypertext system,
for instance, the user navigates through hyper-
spaces by following links. The initiative,
nonetheless, is up to users, for if they do not
operate the user interface by moving the mouse or
clicking buttons nothing happens.

User

Figure 3: Direct Manipulation: Users are
puppeteers
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User

Figure 4: Delegation: Users are Spectators

Direct manipulation can be too direct a means
of control for applications that model autonomous
entities such as the creatures of an artificial life
world. Negroponte (1991) suggested a theatrical
metaphor (Figure 4) in which tasks are delegated to
actors. This approach could be considered as the
opposite end of the control spectrum because once
the scripts for actors have been created and the play
has started, the audience (the users) is left with no
control over the play. In other words, users assume
the role of passive spectators.

Traditional simulation environments are based
on delegation. The definition of simulation
parameters is similar to writing the script for an
actor. After the simulation has been prepared, and
once the simulation has been started, the user of the
simulation system becomes a spectator limited to
watching the progress of the simulation.

The point here is not to advocate one approach
over the other. Instead, I suggest combining the
virtues of both approaches in the participatory
theater metaphor(Figure 5) by perceiving control
as a continuous spectrum rather than a discrete
dichotomy of direct manipulation versus
delegation.

Actors in the participatory theater will act
according to the script unless the audience tells
them to do something different. Depending on the
level of participation, the interaction can assume
any point in the control spectrum. If the viewers
(users) do not participate then they have no control
over the play and become passive observers with

ok

User

do
this!!

Figure 5: Participatory Theater

no effort involved. On the other hand, excessive
participation will result in the user taking over the
play to the level of direct manipulation.

The point here is to note that there is no optimal
way to simplify programming or baking with the
“right” degree of control and delegation. The
degree of delegation required to solve a problem
depends on many factors including the nature of
the problem, people’s skills, motivations, and the
time at hand.

3. AGENTSHEETS: A PROGRAMMING
SUBSTRATE TO CREATE INTERACTIVE
LEARNING ENVIRONMENTS

Interactive learning environments (ILE) serve
the function of tools to enable people to solve
problems. In order to create learning opportunities,
ILEs should address the relationships discussed
among people, tools, and problems. General-
purpose ILEs do not provide sufficient leverage to
end-users to do interesting things in many different
domains. ILEs have to be usable, be domain-
oriented, and should provide end-users the desired
degree of control over problem-solving processes.
Instead of building ILEs from scratch, designers
need to have programming substrates geared
toward the creation of effective ILEs for end-users.
This section outlines the general design principles
for programming substrates, illustrates how
Agentsheets addresses these principles, and
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describes the roles of designers and end-users
interacting with Agentsheets.

3.1. Design Principles

Design principles for ILEs must address the
relationship discussed above among people, tools,
and problems in order to facilitate learning
opportunities for designers and end-users.
Programming substrates should supports these
design principles.

(i) Usability ⇒ Visual Formalisms::
Visual formalisms are diagrammatic
displays such as graphs, plots, panels, maps,
outlines, and tables, with well-defined
semantics for expressing relations (Nardi &
Zarmer, 1993). Visual formalisms can be
employed to create usable tools.
Programming substrates must include visual
formalisms beneficial to designers, helping
them to create ILEs with effective visual
representations. Visual formalisms should be
versatile to allow the creation of applications
in many different domains.

(ii) Domain-Orientation ⇒
Collaborative Design: The design of
effective domain-oriented ILEs requires
collaboration between designers and end-
users. Programming substrates should
support this collaboration. The relationship
between designers and end-users of ILEs is
similar to the relationship between authors
and readers of books. To be most effective,
designers must be aware of the end-user’s
needs. Programming substrates should
facilitate dialog between designers and end-
users. To that end, a programming substrate
should serve the role of a collaboration
medium between designers and end-users.
Ideally, programming substrates endorse
face-to-face collaboration sessions by
including functionality for designers and
end-users. These collaboration sessions are
required to determine the appropriate set of
domain abstractions. Collaboration is greatly
enhanced if programming substrates allow
fast, incremental prototyping and, therefore,
encourage iterative design approaches.

(iii) Control ⇒ Participatory Theater:
Programming substrates should support
participatory theater. That is, substrates
should support the design and
implementation of ILEs that can adapt to
end-users’ needs of control over problem-

solving processes. On the one hand, ILEs
must enable end-users to control interesting
problem-solving tasks. On the other hand,
ILEs should allow end-users to delegate
problem-solving tasks that are repetitive,
time consuming, or simply too tedious to
autonomous computational mechanism
provided by programming substrates.
Consequently, programming substrates must
include interaction schemes combing the
advantages of direct manipulation and
delegation into a continuous spectrum of
control.

3.2. Agentsheets: A Programming
Substrate

Agentsheets (Repenning, 1991a; Repenning,
1993; Repenning & Citrin, 1993; Repenning &
Sumner, 1992; Repenning & Sumner, 1994) is
programming substrate for creating ILEs. In the
last four years, Agentsheets has been used to create
more than 40 educational and industrial
applications serving as construction kits, simulation
environments, visual programming languages,
design environments, and games.

Similar to spreadsheets and cellular automata
(Toffoli & Margolus, 1987), Agentsheets visual
formalism is based on a grid structure (Repenning
& Citrin, 1993). A grid location in Agentsheets
may contain any number of stacked autonomous
computational units called agents (Figure 6 (7)).
Agentsheets agents are versatile and can be
employed to create visual formalism including
graphs, maps, outlines, and tables. Unlike the cells
of spreadsheets and cellular automata, the look and
the behavior of agents can be defined by designers.
An agent may be as simple as an ordinary
spreadsheet cell but it can also represent an
arbitrarily complex domain-specific entity. For
instance, an agent representing a car may look and
act (e.g., following roads) like a car (Figure 6 (2)).
All agents can:

• move between cells: agents are not fixed
to cells.

• be autonomous: agents behave like
asynchronous processes that operate
concurrently with other agents or users.

• communicate  : agents communicate with
each other through grid coordinates or
though links.

• have graphical depictions: agents can
have any shape and color.
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• be animated: the look of agents may
change over time, reflecting the state of the
agent.

• play sounds: agents play sounds recorded
by designers

• speak text: agents can speak using the
Macintosh speech synthesizer

The creation of effective ILEs requires tight
collaboration between designers and end-users.
Agentsheets supports this process with role-specific
interface views. That is, end-users and designers
have different tools at hand. In sections 3.3. and 3.4
an example Agentsheets application, called
CityTraffic, is used to illustrate the roles of end-
users and designers and the tools provided.
CityTraffic helps urban planners to analyze traffic
patterns.

3.3. End-users

End-users create programs using language
components based on familiar, visible
representations pertinent to their problem domain.
In the CityTraffic application (Figure 6), these
components are cars, trains, streets, and railway
tracks. By assembling these domain-oriented
components and interacting with them end-users
“program” in the sense that they define behavior.
End-users have a role that is very similar to the role
of a game player of SimCity. End-users:

• assemble components: End-users select
components in the gallery (Figure 6 (1)) and
assemble them in the worksheet (2) into
meaningful diagrams. For instance, they
assemble individual road segments into a
road system, put cars onto the roads, and
install traffic signals to control traffic.

• interact with components.: End-users
select tools from the tool bar in the
worksheet (Figure 6 (2)) and apply them to
components. Tools are used to rearrange,
link, and query components. In the
CityTraffic application, the state and
frequency of traffic lights can be changed by

applying the operate-on tool, , to traffic
lights. Participatory theater (Repenning &
Sumner, 1994) allows end-users to direct the
actors (agents) without stopping the play
(running application). For instance, while
cars are moving, end-users can change
parameters of cars, introduce additional
traffic signals, and change the topology of

streets and railway tracks. This interactive
style extends direct manipulation schemes
by allowing end-users to more flexibly
interact with applications consisting of large
numbers of autonomous agents.

3.4. Designers

In collaboration with end-users, designers create
domain-oriented visual programming environments
that feature components pertinent to end-users. To
support the dialog between end-users and
designers, Agentsheets has to provide efficient,
incremental mechanisms for specifying
components. Agentsheets supports designers by
allowing them to:

• incrementally define the look of
agents: The look of an agent is defined
using the depiction editor (Figure 6 (6)). In
designer view, the gallery (Figure 6 (3)) is a
repository of depictions that support the
incremental creation of related depictions.
New depictions can be derived from existing
ones through icon transformations. In the
CityTraffic application, the designer had to
create all the depictions of streets, cars,
railway tracks, trains, and traffic signals.
The majority of icons were created
automatically. For instance, the designer
manually created a base depiction of a

straight railway track segment, , and
then automatically created variations such as

bent tracks, , using provided
transformations.

• incrementally define the behavior of
agents: Using the AgenTalk editor
(Figure 6 (5)), designers define the behavior
of agents. The behavior determines how
agents interact with each other and how they
interact with end-users through tools. The
AgenTalk language (described in section
4.2) is object-oriented and, therefore, by
means of inheritance, behavior can be
defined incrementally. The class browser
(Figure 6 (4)) helps designers locate
functionality in the form of existing agent
classes. By building on top of these provided
agent classes, agents inherit many of their
basic behaviors, such as the ability to be
linked and queried. Thus, designers need
only augment these inherited behaviors with
behaviors specific to the problem domain.
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Figure 6. End-users and Designers
Agentsheets provides role-specific views for end-users and designers. End-users compose programs by
selecting components in the gallery (1) and putting them into a worksheet (2). Designers view worksheets (2)
as agentsheets (7), i.e., agents organized in a grid. They create networks of related depictions in the expanded
gallery (3), design depictions with the depiction editor (6), define behavior with the AgenTalk editor (5) by
reusing existing agent classes found in the class browser (4), and create or subscribe to tools in the tool store
(8). Tools enable end-users to interact with agents.

In the CityTraffic application, the behaviors
of cars and trains had to be defined. Cars
have to follow roads, watch out for other
cars, avoid collisions, and obey traffic
signals.

• define interaction tools: Designers
provide mechanisms for end-users to interact
with agents by selectively subscribing to
existing tools featured in the tool store
(Figure 6 (8)), extending the behavior of
existing tools, or by creating new domain-

specific tools. Agentsheets provides a
default set of tools with predefined
behaviors. For instance, applying the eraser

tool, , to a car will delete that car unless
the designer has specified otherwise.

4. USING AGENTSHEETS

Agentsheets includes incremental mechanisms
to efficiently define the look and behavior of ILEs.
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4.1. Defining the Look of Agents

Agentsheets provides tools for the efficient
design of icons. This is essential to enable fast
prototyping. The gallery (Figure 6 (1,3)) is used by
a designer to create a network of related road icons.
First, the designer creates a base icon (Figure 7)
representing a straight street segment using the
depiction editor (Figure 6 (6)). This icon will be the
basis for syntactical transformations to yield
variations of the street icon to represent different
connectivity patterns of roads.

The transformations have emerged from
analyzing related icons in earlier applications
created with Agentsheets. Designers often created
sets of related icons by painstakingly drawing each
icon from scratch because the kind of
transformations they required were not supported
in traditional icon editors. Building some of the
observed manual transformations by icon designers
into the Agentsheets substrate has reduced the time
it takes to create icon families from hours to
minutes. This is especially true for sophisticated
color icons.

The set of classical icon transformations found
in commercial graphics applications, including
rotation and flipping, has been extended in
Agentsheets with more complex transformations
suited for icons representing conductors of flow
such as roads, railway tracks, rivers, wires, and
pipes. For instance, transformations applied to the
base icon (Figure 7) result in the icons shown in
Figure 8. A detailed description of these
transformations and their general applicability can
be found in Repenning (1994).

Figure 7: Base Icon representing Street

Instead of applying transformations to icons
individually, designers run transformation scripts

to create frequently used networks of related icons.
In a typical scenario a designer would start by
creating a set of base icons. In the gallery shown in
Figure 9 the base icons for a traffic simulation have
been drawn.

The designer selects the track icon and applies a
transformation script to create all icons required to
represent connectivity among the four adjacent
neighbors of the icon. The script creates the icons
and generates names for the icons (Figure 10).

Automatic transformations not only save time,
they also encourage designers to experiment with
different looks of icons while maintaining
consistency between related icons. Without
automatic transformations the need to change a
base icon would force designers to manually touch
up all related icons.

Transformations and transformation scripts are
not hard wired. The open architecture of
Agentsheets allows designers to add new icon
transformations and new transformation scripts.

After transforming all base icons, the gallery
can be used to draw a complete scene (Figure 11):

4.2. Defining the Behavior of Agents

Different programming approaches address
different programming needs for designers and
end-users. AgenTalk is an agent programming
language typically used only by designers.
Graphical rewrite rule, and programming by
example are programming approaches that enable
end-users to define simple behavior.

Programming Using AgenTalk

Programming using AgenTalk is the lowest
level of agent programming. AgenTalk is an
object-oriented extension of Lisp based on the
OPUS system (Repenning, 1991b) extended with
spatial primitives. Similar to *Logo (Resnik, 1992),
AgenTalk is used to program concurrent
computational entities (turtles and patches in
*Logo and agents in AgenTalk).
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Figure 8: Transformations of Base Icon

Figure 9: Gallery containing Base Icons

Unlike *Logo, however, AgenTalk is not
intended to be an end-user programming language
but, instead, is geared more toward designers who

1Base icons can be arbitrary; for instance

bending icon  will create icon .

are experienced programmers. To that end,
AgenTalk includes object-oriented mechanisms
such as class inheritance to build a large number of
heterogeneous agent classes from existing ones. In
order to enable participatory theater, AgenTalk
includes primitives to simultaneously deal with
direct manipulation and delegation (Repenning,
1993). That is, designers use AgenTalk to define
how agents react to mouse input and to define what
agents should do autonomously. Due to the
general-purpose nature of the underlying
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Figure 10: Transformed Tracks

implementation language, Common Lisp,
AgenTalk is the most flexible way to program, but
it is also the most demanding approach to define
behavior.

The programming task is to define the behavior

of a train, , to follow railway tracks, :

(1) (create-class TRAIN
(2)   (sub-class-of ACTIVE-AGENT)
(3)   (instance-methods
(4)     (FOREGROUND-TASKS ()
(5)       (case (effect (0 1) 'depiction)
(6)         (TRACK (self 'move 0 1))))))

The TRAIN class (1) is defined to be a subclass
of ACTIVE-AGENT. Active agents are
autonomous agents receiving FOREGROUND-
TASKS messages to initiate actions. The case
statement (5) contains a spatial operator,
(effect (0 1) 'depiction), returning the name of the
depiction to the right of the train agent. If the
depiction of that agent on the right is a TRACK2

2 The association between an icon and its name
to be used in AgenTalk code is established in the
gallery by naming the icon.

depiction (6) then the train moves3 to the right. As
soon as the class is defined, and the agent scheduler
is activated, the train begins to follow the tracks.
The Agentsheets scheduler (Repenning, 1993)
enables users, at any point in time, to interact with
the train by using the mouse to move it to some
new position or by applying a tool to the train.

Programming on the AgenTalk level is
demanding and is typically done only by designers
and not by end-users. AgenTalk programming
requires at least a minimal knowledge of Lisp and
familiarity with object-oriented principles.

Programming with Graphical Rewrite
Rules

The graphical rewrite rule approach of
programming allows the definition of simple
behavior by manipulating pictures. Rewrite rules
have been explored by Lieberman (1987) in the
Tinker system, by Furnas (1991) in the BitPict
system, and by Bell (Bell 1991; Bell, 1992; Bell,
Rieman, & Lewis, 1991) in ChemTrains. The

3 On a MacIIfx a train can move at a rate of
about 120 track units per second
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Figure 11: CityTraffic Simulation for Urban Planners

Figure 12: City Traffic Scene

BitPict system is limited to graphically reason
about pixels. ChemTrains can deal with more
complex objects such as boxes, circles, and entire
bitmaps. Both BitPict and ChemTrains have no
included abilities to augment graphical rules with
textual predicates. The Vampire system overcomes
this limitation with attributed graphical rules
(McIntyre & Glinert, 1992).

Graphical rewrite rules trade opportunities of
learning about programming for learning through
programming. End-users can employ graphical
rewrite rules to express simple agent behaviors
without having to understand difficult
programming concepts such as multiple inheritance
from object-oriented programming. Concepts
relevant to a problem domain such as movement
can be easily represented with graphical rewrite
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Figure 13: Rule Editor Figure 14: Train is selected and moved to right

Figure 15: Train has moved to end of track

rules.

To program a train using graphical rewrite rules
an end-user would start by drawing a scene
containing relevant agents (Figure 12):

By double-clicking the train, and after defining
the name of the rule to be “forward” the rule editor
pops up (Figure 13):

The left hand side of the rule, the IF part, shows
the situation the train was in at the time of creating
the rule. The right hand side of the rule, the THEN
part, shows the future state of the train. Initially the
THEN part is identical to the IF part. The user
programs the train by selecting the train in the
THEN part and dragging it one position to the right
(Figure 14).

In complex rules the relationship between
agents in the IF part and the THEN part can
become confusing because it is unclear what agents
in the IF part correspond to what agents in the
THEN part. Correspondence is crucial if the
elements in a rewrite rule are not just pictures but
also represent complex hidden states. The
correspondence problem of the graphical rewrite

rule is solved in Agentsheets using a technique
borrowed from data analysis called brushing. If an
agent exists on both sides, then selecting it will also
select its corresponding agent. Selecting the train in
the THEN part and moving it also selects the
corresponding train in the IF part. Agents that exist
only in the THEN part are agents that will be
created; agents that exist only in the IF part will be
erased.

The created rule is activated when the rule
editor is closed. Immediately the train begins to
move until it reaches the end of the tracks
(Figure 15).

Rules can be generalized or specialized. Adding
agents to the IF part of a rule will make the rule
more specific. Removing agents from the IF part,
on the other hand, will generalize the rule. For
instance, a more general “forward” rule eliminates
the tracks on the left and right of the train
(Figure 16):

A big problem of rewrite rules is spatial
relation literalism. That is, rewrite rules tend to
describe overly specific situations in terms of
where things are in a scene and what orientation
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Figure 16: Generalized “Forward” Train Rule

they have. For instance, in KidSim (Smith, Cypher,
& Spohrer, 1994) and in early Agentsheets
(Repenning, 1993) the rule in Figure 16 has a very
rigid Euclidean interpretation: If the train is on top
of the track shown then the train can move to the
right. Yet, most Agentsheets users when shown this
rule would expect the train to be able to follow a
complex system of tracks including turns, forks,
and intersections such as the one shown in
Figure 11. In order to enable the train to master
complex systems of tracks with the literal graphical
rewrite rules, a user would have to define 44
different rules (11 track variants from Figure 10
times 4 train variants corresponding to four
possible train directions). Instead, Agentsheets
features combined Euclidean/topological rewrite
rules. Users can attach topological semantics to
icons in the gallery. The semantics attached to
icons get transformed in addition to the look of the
icons (Repenning, 1994). The graphical rewrite
rule interpreter takes this additional information
from the gallery into account. Consequently, the
number of rules required to define the “train
follows any track” behavior drops from an
overwhelming 44 to 1. In essence, the information
stored in the Agentsheets gallery about related
icons is employed by the graphical rule interpreter
to make better informed inferences.

BitPict, ChemTrains, and Vampire employ, in
contrast to Agentsheets, the notion of a global rule
set. A centralized algorithm matches the rules in
the rule set with the current picture. If the left-hand
side of a rule is satisfied then the rule will fire by
executing the right-hand side of the rule. The
graphical rewrite rule approach used in
Agentsheets makes use of decentralized rule sets.
That is, each agent has its own set of rules. This
localistic rule matching has been used in
Agentsheets to keep state and function defined by
rules together. This is helpful because rule-based

agents preserve their object-oriented nature.
Analogous to any other agent, the behavior of rule-
based agents can be refined via class inheritance.

Programming by Example

The programming-by-example approach
(Cypher, 1993; Kurlander & Feiner, 1992; Myers,
1988) employed by Agentsheets (Figure 17) can be
viewed as an extension of the graphical rewrite rule
approach. A program acquisition agent observes
the user modifying artifacts and, similar to the
agent in Object Lens (Lai, Malone, & Yu, 1989),
creates a program for the user. The program
contains spatial operations such as moving,
deleting, or adding an agent as well as non-spatial
operations such as querying the attribute of some
agent. User operations are interpreted by the
program acquisition agent to create programs
consisting of IF-THEN rules that get attached to
the agents to be programmed.

In programming by example, the program arises
from the interaction among users, artifacts to be
programmed (Agentsheets worksheets), program
acquisition agents, and rules. Unlike programming
approaches based on the detection of repetitive user
actions, such as Eager (Cypher, 1993), the
programming by example mechanism employed in
Agentsheets is able to create programs based on a
single sequence of user operations.

Program acquisition agents observe the
interactions between users and artifacts. Based on
their observations program acquisition agents
create and modify rules. Two types of user-artifact
interactions are distinguished:

• Queries: Queries do not change the artifact
in any way. For instance, users can query the
value of agent variables without changing
them.

• Modifications: Modifications change
artifacts. Changing the value of an agent
variable, changing the look of an agent, or
moving an agent in the worksheet are
examples of modifications.

Based on the type of user-artifact interaction
program, acquisition agents make different
suggestions. Queries lead to justifications. For
instance, if a user inspects the value of an agent
variable the program acquisition agent assumes that
the value of that variable is important to the user
and, therefore, suggests the value of the variable as
justification. Modifications, on the other hand, are
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Figure 17: Interaction between User and Program Acquisition Agent

Figure 18: An Agency with two Program
Acquisition Agents

interpreted by the program acquisition agent as
actions. If, for instance, a user changes the look of
an agent then the program acquisition agent will
record a change-of-look action.

Users can edit rules. Justifications or actions
suggested by the program acquisition agent are
irrelevant if they are due to unnecessary or even
erroneous user operations. Users can simply delete
justifications or actions. In more complex cases
often the action or the justification suggested by the
program acquisition agent is too specific. Since it is
hard to infer abstract concepts from concrete
manipulations the program acquisition agents have
been provided with a repertoire of simple spatial
generalization rules. By pressing a “generalize”
button, users ask program acquisition agents to
offer a menu of generalizations. For instance, a
justification such as “because A is immediately
above B” can be generalized to “because A and B
are in the same column,” “because A is at distance
1 to B,” or “because there is an A and a B.” If the
user is not satisfied with any of the generalization
options offered by the program acquisition agent
then the user can manually edit expressions.

Users interact with program acquisition agents
(Figure 18). Program acquisition agents can be
created, selected and personalized by users. The
program acquisition agent that is selected is in
charge of making suggestions for justification and
actions.

Based on their user modifiable profiles,
program acquisition agents can detect different user
operations and react differently. For instance, the
“Tidy” program acquisition agent is personalized
by the user to be very perceptive (Figure 19). If
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Figure 19: Perception Parameters of Program
Acquisition Agent “Tidy”

Figure 20: Initial Scene of Train on Track

users drag an agent in a worksheet, Tidy will use
the agents located at the source and the destination
of the drag operation to be justifications.

To program a train using programming by
example in Agentsheets an end-user would start by
drawing a scene containing relevant agents
(Figure 20).

By double-clicking the train, Sloppy has been
selected in the Agency window (Figure 18). After
defining the name of the rule, an empty
programming-by-example rule editor appears on
the screen (Figure 21):

The Watch User flag of the rule editor is
enabled. Consequently, Sloppy, the program
acquisition agent, will observe all the operations of
the user. First, the user selects the railway track in
front of the train (Figure 22).

Sloppy notes the selection. Because the
selection does not change the worksheet in any
way, Sloppy suggests the presence of the railway
track as a justification for the Forward rule

(Figure 23).

Sloppy uses relative coordinates in the
justification because the distance between the agent
to be programmed and the agent selected is below
the relative/absolute threshold defined in Sloppy’s
and Tidy’s profile (Figure 19). Next, the user
selects the train and moves it to the right
(Figure 24).

Sloppy notes the selection of the train and
suggests the presence of the train as another
justification of the rule. The movement of the train
changes the worksheet and, therefore, is perceived
by Sloppy as action (Figure 25).

Closing the rule window will assert the rule to
the train agent. The programming-by-example
episode is complete. The train applies the Forward
rule several times and moves to the end of the
railway track (Figure 26).

5. EXPERIENCE WITH AGENTSHEETS

This chapter is about the experience gained
from people using Agentsheets. It describes a
number of ILEs created with Agentsheets. For each
ILE some learning opportunities are listed. The
learning opportunities are only examples of the
ones that we observed. They are opportunities and,
therefore, there is no guarantee that other students
would learn the same things about a particular ILE.

Some of the ILEs were created by students
(exposed to C) who in the beginning were less than
enthusiastic about the Lisp-like AgenTalk
programming language. However, in the end, they
wrote thousands of lines of AgenTalk code without
being coerced to do so. We believe this attitudinal
change was due to the incremental nature of
Agentsheets and the intrinsic visualization of
agents.
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Figure 21: Programming by Example Rule Editor

Figure 22: Railway Track in front of Train is selected

5.1. CityTraffic

CityTraffic, used throughout this paper as a
programming example, is a traffic analysis ILE
created by environmental design students to
experiment with different road topologies and to
study the impact of traffic signs on the flow of

traffic. Cars, , move on roads, , and

hopefully observe traffic signs, , , . The goal
of users is to create efficient traffic systems with a
maximum flow of cars but minimal chance of
traffic accidents (Figure 27).

Participatory theater allows users to interact
with running simulations. That is, while the
simulation is running, cars can be added, the
topology of the road can be changed, or traffic
signals can be installed. Learning opportunities:

• Learning through Programming.
Causality: what is the relationship between
trains and tracks; does the track cause the
train to move in restricted ways or is the
train the active part taking tracks into
consideration for movement?

• Learning about Programming.
Ontology: what kind of class hierarchy
makes sense to appropriately represent the
static and dynamic relationships among cars,
trains, roads, and track? Exception handling:
what should happen to cars and trains if they
end up on a patch of grass?

• Learning by Using. How many cars are
necessary to justify the need for increased
signals? What are the trade-offs between
yield signs and traffic lights?

5.2. Electric World

The Electric World application features two
types of flow: the flow of electricity and the flow
of magnetic fields. Both flow types coexist. An

electric coil, , emits an electromagnetic field if
current is flowing through the coil. The coil and the

bulbs, , are implicitly grounded. A switch
sensitive to electromagnetic fields is located on the
left of the coil. The combination of coil and
electromagnetic switch results in a solenoid
(Figure 28).  Learning opportunities:

• Learning through Programming.
Models of flow: what happen to flow if
conductors fork or join; should electricity be
conceptualized as a liquid or as a set of
discrete particles?

• Learning about Programming. Reuse:
how can the large number of wire types (16
combinations resulting from inputs/outputs
from 4 different directions) be mapped to a
small number of generic but easy to
understand classes?

• Learning by Using. Feedback: a circuit
such as the one shown in Figure 28 can lead
to feedback; current causes the coil to
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Figure 24: Train is selected and move one position to the right

Figure 23: Rule after Selecting Track

generate a magnetic field that via an
electromagnetic switch interrupts the current
to the coil.

5.3. Petri Nets

Petri Nets are used to model parallel processes.

Tokens, , reside in places, . Places are
connected to each other through links. The tokens
flow from one place to another place through
transitions, , that must be fired. Tokens,
places, and transitions are agents. The Petri Net
application was created in one afternoon by
someone interested in experiencing the dynamic
aspects of Petri Nets (Figure 29). Learning
opportunities:

• Learning through Programming.
Theoretical models: how do PetriNets work;
what are they good for; how can deadlocks
be detected?

• Learning about Programming.
Concurrency: what are the issues to be
considered when dealing with parallel
execution of code to drive the simulation?

• Learning by Using. It is very easy to
create a Petri Net leading to a deadlock.

5.4. Tax The Farmer

How should a farmer be taxed for water
pollution on the basis of land topology? Pollutants
of farming land are washed into nearby rivers by
rain. The amount of pollution washed into the river
depends on the land topology. This amount needs
to be determined in order to tax the farmer
accordingly and to predict the needs for treatment
plants (Figure 30).

This project started as a wood model. Very
quickly, it became apparent how tedious it was for
users of the model to manually simulate large
numbers of rain drops washed into rivers. The
Agentsheets solution modeled raindrops with
autonomous agents that, according to the soil
topology, would move themselves toward the water
and compute the amount of poison accumulated.
Learning opportunities:

• Learning through Programming.
Causality: what is the relationship between
poisoned patches of land and raindrops; are
the raindrops extracting poison from patches
or are patches forcing poison onto
raindrops?

• Learning about Programming. How
should the altitude of land patches be
modeled?

• Learning by Using. The altitude model
implemented turned out be problematic
because it allowed the creation of physically
impossible topologies (corresponding to
Escher’s staircase).
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Figure 25: Rule with two Justifications and one
Action

Figure 26: Train has moved to the end of the Railway Tracks

5.5. Particle World

In this naive physics model movable and

fixed particles interact with each other
through collisions (Figure 31). Students can draw
scenes consisting of particles and experience
physical as well as statistical phenomena emerging
from simple behavior. Learning opportunities:

• Learning through Programming.
Physics: under what circumstances can fixed
particles prevent the free fall of movable
particles?

• Learning about Programming. Non-
determinism: how should events with
random components be implemented?

• Learning by Using. Distribution: certain
combinations of equal distributions can lead
to a normal distribution. Particles not
constrained horizontally pile up to pyramids.

5.6. Rocky’s Other Boot

Rocky’s Other Boot is an educational
environment for students to learn about causality
and digital circuits. A teacher gives the students
tasks to design circuits that detect a combination of
spatial features of targets. For instance, a task could
be to build a circuit that detects a target containing
a cross or a circle and a triangle (Figure 32).
Students assemble circuits by selecting individual
gates and wire them up.

Rocky’s Other Boot was inspired by the original
system called Rocky’s Boot. Rocky’s Other Boot
helps students to debug circuits using a localistic
contextualized explanation facility. Every agent
that represents a gate can explain itself using voice
output based on input and state. Learning
opportunities:

• Learning through Programming.
Logic: how does Boolean logic work and
how can it be used to implement a circuit
detecting a particular set of patterns?

• Learning about Programming.
Concurrency: how can gates and wires be
programmed to act in parallel?

• Learning by Using. Real time issues:
the voice explanation travels trough the
entire circuit the same way as the electrical
signal. This explanation reveals real-time
problems such as signal racing.

5.7. Voice Dialog Design Environment

The Voice Dialog Design Environment
(Repenning & Sumner, 1992) is an industrial
application used to design complex phone-based
user interfaces (Figure 33). Designers and
customers of U S West can use this visual language
to quickly prototype the very constrained
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Figure 27: City Traffic

Figure 28: Electric World

interaction between people and information
services through phones. The visual language
includes speech output and touch-tone button input.

Voice dialog applications are a relatively new
design domain. Typical applications include voice
mail systems, voice information systems, and
touch-tone telephones as interfaces to hardware.
Involvement in this field was part of a collaborative
research effort between the University of Colorado

and U S West’s Advanced Technologies Division.

Learning opportunities:

• Learning through Programming.
Design: what are good representations of
voice dialogs helping U S West designers to
efficiently create useful designs for
customers?

• Learning about Programming.
Control flow: how can control flow
representing a voice dialog be represented
effectively on a two-dimensional display?

• Learning by Using. User interface
design: what design principles hold for good
voice dialogs? For instance, what is a good
upper number of voice menu options?

5.8. Party Planner

The Party Planner, inspired by Rich Gold
(Dewdney, 1990), deals with the optimal
arrangement of people (or agents) at a party. Every
agent at the party likes the other agents at the party
to some degree, captured by the so-called social
distance. According to behavioral scientists, social
distance is an indicator for the ideal Euclidean
distance between people. The need to be close to
somebody reflects liking somebody.
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Figure 29: Petri Net modeling two Processes sharing one Resource

Every agent at any point in time is trying to
optimize its happiness by being as close to the
other agents of interest as implied by the social
distance; close to the liked agents and far away
from the disliked agents. One of the dilemmas
arising from this process include that moving close
to some liked agent may increase the distance to
some other liked agent or decreases the distance to
some other disliked agent.

The situation depicted in Figure 34 contains 4
agents. Three agents are involved in a complex

triangular relationship: A:  , B:  and C: ,
where A likes B but B hates A, B likes C but C

hates B, and C likes A but A hates C. None of the
agents involved in this relationship will ever
become completely happy because the agents’
interests are not mutual. Consequently, a very
complex dynamic behavior will arise, leading to a
wild chase of agents. A fourth agent, called the

“party pooper” , is introduced. The pooper
likes everybody else but, at the same time, is hated
by everybody.

Unlike in the original Party Planner by Gold,
described by Dewdney (1990), the users can
participate in the party theater.
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Figure 30: Farming Land with Raindrops
and River

For instance, the chase, resulting from the
relationships among A, B, and C, can be influenced
by the user by moving agents to new locations,
changing social distances, locking agents up (by
building walls around them), or introducing new
agents.

Learning opportunities:

• Learning through Programming.
Dynamic optimization: concurrent hill
climbing is a way to conceptualize many
different problems involving autonomous
units.

• Learning about Programming. What
are efficient means of communication in
situations where everybody needs to be able
to communicate with everybody else?

• Learning by Using. Many asymmetric
relationships have no static solution but lead
to interesting dynamic patterns. The
principles involved in party planning also
describe the way people spread out in an
elevator. The same principles could be
applied to determine where to plant families
of trees.

5.9. Kitchen Planner

The hill-climbing metaphor, as it is employed in
the Party Planner, can be used as a constructive

design force. In the Kitchen Planner, appliances

such as sinks , refrigerators , and ovens

 are active components that try to maximize
their happiness (Figure 35). Design knowledge
provided by users in the form of spatial
relationships that reflect kitchen design guidelines
gets attached to components. Unlike in critiquing
systems such as Janus (Fischer, Lemke, Mastaglio,
& Morch, 1991), the knowledge is constructive and
not just evaluative. That is, guidelines can be used
not only to critique an existing situation but,
additionally, they can suggest improvements.

The kitchen design space is conveyed to the
user through tactile experience. That is, users
experience relationships between design
components, such as the work triangle, by
“touching” and moving components. Tactile
interaction makes use of principles intrinsic to the
participatory theater metaphor. On the one hand,
the user can express design intentions through
direct manipulation by simply moving components.
On the other hand, components are autonomous in
trying to optimize their happiness according to the
guidelines attached to them. This can lead to
conflicts between the intentions of the user and
design guidelines as well as to conflicts between
guidelines. To that end, users can modify the
strengths of guidelines and can freeze positions of
components.

Learning opportunities:

• Learning through Programming.
Design spaces can be conveyed through
tactile experience.

• Learning about Programming. Who
owns constraints involving multiple design
units?

• Learning by Using. Some appliances
need to be frozen in space; otherwise, the
kitchen cannot be controlled any more by
users.

5.10. Pack Agent

Pack Agent is an educational game environment
used to “lure” students into programming. Arcade
games, such as Pack Agent, are instances of
participatory theater. The objective of the
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Figure 31: Particle World

Figure 32: A Circuit Designed with Rocky’s Other Boot
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Figure 33: The Voice Dialog Design Environment
The design shown is an interface for a delivery service in a pizza parlor. If customers call outside of the
restaurant's open business hours, they hear a standard message. If customers call during business hours, they
can navigate through a series of voice menus to specify their pizza order. The design shown consists of two
programs: a subprogram processing the incoming call based on business hours and a subprogram for
specifying the desired pizza order.

Figure 34: An Agent Party
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Figure 35: A Kitchen

game is to collect dollar bills in a maze. Initially, a
player will use a manual agent and use the cursor
keys to maneuver the agent through the maze to
pick up the dollar bills. In a second phase of the
game users select automatic agents with built-in
behaviors. The most primitive agent uses a random
walk approach that is not very efficient to pick up
the dollar bills. Agents featuring more sophisticated
approaches can be selected. Users can play with the
different approaches, contrast them, and eventually
program their own automatic agent with, hopefully,
improved behavior (Figure 36). Learning
opportunities:

• Learning through Programming.
Search: what are good search algorithms?

• Learning about Programming. How
can object-oriented programming be used to
selectively refine search algorithms?

• Learning by Using. The use of
momentum improves random search
considerably.

5.11. EcoOcean

EcoOcean (Figure 37) deals with creatures
living in the ocean, such as whales, sharks, and
krill. Different types of water attract different types
of animals. The system is used to experience the
careful balance of nature as well as predator-prey
relationships.

Learning opportunities:

• Learning through Programming.
What is the life cycle of a creature; how do
different life cycles influence each other?

• Learning about Programming. How
can objects be parameterized so that end-
users can introduce their own types of
creatures?

• Learning by Using. Why do certain
whales move into shallow water?
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Figure 36: Manual and Automatic Money Collecting Agents in a Maze

5.12. Village of Idiots

The Village of Idiots (Figure 38), inspired by
Rich Gold, is a quite complex Microworld
consisting of a village inhabited by idiots. The
Village could be viewed as a zoomed-in version of
SimCity. Individual idiots can move around in the
city, meet other idiots, have sex and children, and
they can die. Additionally, idiots who are limited in
their movement by other idiots, e.g., in the case of
overpopulation, can become aggressive to a point
were they start to kill other idiots.

One design objective for building interesting
villages is to have a relatively stable population.
Villages either tend to get overpopulated, leading
to a large number of killer idiots, or the idiots die
prematurely.

One student extended the Village of Idiots to
Maslow’s Village populated by agents modeling

Maslow’s theory of the hierarchy of needs
(Schultz, 1976). Initially, these agents satisfy just
basic needs such as getting food. Over time, they
can move up levels of needs to the point were they
become self-actualized and start to help other
agents.

Learning opportunities:

• Learning through Programming.
Personality: how can human behavior be
modeled as a hierarchy of needs (Schultz,
1976)?

• Learning about Programming.
Behavior-based AI: how can a subsumption
architecture be used to implement Maslow’s
model of personality?

• Learning by Using. Hungry people can
be cruel.
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6. CONCLUSIONS

The quest for the one ideal interactive learning
environment (ILE) needs to be replaced with
research concerning programming substrates that
support the design and implementation of ILEs that
are geared toward people solving specific
problems. Agentsheets is a programming substrate
to create ILEs. The visual formalism of
Agentsheets, consisting of autonomous agents
arranged in a grid, is a versatile framework that can
be used across many different problem domains.
By including incremental mechanism to define
look and behavior, Agentsheets endorses
collaborative design of ILEs and facilitates dialog
between designers and end-users. Participatory
theater allows end-users of ILEs created with
Agentsheets to delegate repetitive, time-
consuming, or tedious tasks to autonomous agents.
The combination of visual formalism, collaborative
design, and participatory theater supports the
design and implementation of effective ILEs.

Programming substrates create learning
opportunities: learning through programming,
learning about programming, and learning by using
a program. Our experience with Agentsheets
indicates that is often difficult to predict and even
more difficult to control the specific category in
which learning will occur. This can represent a
problem in educational approaches based on the
“let the students do X to learn Y” strategy because
we will not be able to determine what Y will be nor
how we can evaluate that students really master Y.
The approach taken with Agentsheets is to create
opportunities to learn by enabling students to build
and to use engaging problem-solving tools. We
believe that if tools are engaging and if they
provide learning opportunities then students will be
motivated to learn.
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Figure 37: EcoOcean

Figure 38: Village of Idiots
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