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counterparts such as Microsoft Word.
These microapplications (µApps) require
very fast cycle time; that is, relatively small
teams of domain experts and developers
must build them quickly and iteratively.
The organization might allocate these peo-
ple on the fly, and they are likely to be dis-
persed geographically.

One software development solution that
has a long tradition of advocates,2 is recom-
mended by leading experts,3 and is quickly
gaining support is component-based devel-
opment. Components (for example, platform-
independent JavaBeans and Windows-only
ActiveX controls) are highly reusable units
of software functionality4; they let develop-
ers conceptualize software as intercon-
nectable building blocks.5 These software
components support modular engineering
practices, just as integrated circuits support
modular design of hardware.6 At least in

theory, building large projects out of well-
defined and well-behaved building blocks
can reduce the complexity of software de-
velopment, because building on stable sub-
strates is faster than building from scratch.7

The same organization assembling the com-
ponents might produce and maintain them
in complete applications, or acquire them
from third-party developers producing 
so-called commercial-off-the-shelf software
packages.8

Distributed software development
The component-based approach to soft-

ware development is generally attractive
and has exceptional appeal in distributed
software development. One downfall of tra-
ditional distributed software development
approaches is that software projects are of-
ten insufficiently decomposed. This results
in overlapping or misunderstood responsi-
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bilities, which can lead to significant com-
munication breakdowns and complete proj-
ect failure. The nature of components forces
designers and developers to better encapsu-
late functionality into cohesive, reasonably
well-documented chunks of software.

This article reports on the experience of a
large testbed called Educational Software
Components of Tomorrow (www.escot.
org), supported by the US National Science
Foundation. Escot is building a digital library
containing educational software focused on
middle-school mathematics.9 The ESCOT
goals include building interactive JavaBean-
based content for educational purposes and
exploring the distributed software develop-
ment process with the specific objective of
building and deploying reliable software rap-
idly. A large pool of geographically distrib-
uted stakeholders in the US and Canada par-
ticipate in the project.

The CORD process
The Component-Oriented Rapid Devel-

opment process happens in parallel predic-
tion cycles involving different subsets of
stakeholders aligned in a pipeline fashion to
output completed software at a weekly rate.
It resembles extreme programming.10 XP re-
places the four coarse sequential steps of the

waterfall model found in most object-ori-
ented software engineering approaches—in-
cluding object-oriented design, object-ori-
ented system analysis, the object modeling
technique, hierarchical object-oriented de-
sign, object-oriented structured design, and
responsibility-driven design—with an ex-
tremely large number of parallel steps, in-
cluding analysis, design, implementation,
and testing.11 CORD, like XP, employs par-
allelism, but the granularity of its parallelism
relates not only to the process but also to the
software components used and the number
of distributed teams involved in the develop-
ment process. The CORD approach involves
a number of parallel threads representing
distributed teams working on sets of compo-
nents. The components’ relatively small size
and CORD’s distributed nature suggest de-
velopment activities that are relatively small
in scope, highly parallel, and highly iterative.

CORD differs from XP in several crucial
ways. In CORD,

■ The project start includes centralized
analysis and design. A large group of
users, domain experts, designers, and
developers analyzes project require-
ments and creates application mockups
and interoperability specifications.
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Table 1
The Stakeholders, Their Roles, Responsibilities, and Products in µApp Development
Stakeholders Roles Responsibilities Products

San Diego State University and Queens Domain experts Design math activities HTML activity mockups including
University, Kingston, Ontario, Canada explanatory text and pictures
SRI International, Menlo Park, CA Integration team Organize workshop Set of paper-based low-fidelity

workshop organizers bringing together all the activity mockups  
stakeholders to analyze and Implementation schedule for
design activities  all activities

Component framework Design and evolve component framework Component repository
coordinator Provide component authoring tools Design guidelines

Organize component repository, Design and implementation services
including components and use stories
Accumulate and delegate change 
requests to component authors

University of Colorado, Boulder Developer Develop simulation components Simulation component prototypes
Combine library, hand-coded and generated Component generator tools  
components into complete µApp µApp

The MathForum, Swarthmore, PA Publisher Critique µApp design in terms of pedagogy Final µApp
Test µApp for cross-platform compatibility, Support materials for users
performance, and clarity of documentation
Publish and support µApp users through 
mentoring service

Producer Hold teams accountable for their Schedules
responsibilities, including content, adherence Reminders
to guidelines, and scheduling Feedback 

Math teachers, students Users Participate in analysis and design  Ideas leading to µApps
Provide feedback to developer Feedback
Use µApp



These mockups serve as design blue-
prints for the project’s further develop-
ment. The interoperability specifications
attempt to anticipate connectivity issues
that will arise during later component-
based development and create a robust
framework to handle them.

■ Development is distributed. After the
initial centralized analysis and design,
the group distributes development to in-
dependent teams, coordinated through
regular builds. Each build assembles all
or some components into a testable ap-
plication or applet.

■ Development is component-centered.
This approach is well suited for distrib-
uted teams using heterogeneous sets of
tools and platforms. In the ESCOT proj-
ect, we find teams producing compo-
nents using component generators, retro-
fitting off-the-shelf components, or
programming them from scratch. Some
teams use low-end programming envi-
ronments such as Sun’s Java JDK, and
others use more sophisticated integrated
development environments such as
CodeWarrior.

■ Development and delivery are cross-
platform. Individual developers and users
can use the platform of their choice.

This article describes the CORD process
in the context of ESCOT, in which teams
collaboratively produce µApps that they

publish on the Web. Middle-school students
explore them interactively, solve mathemat-
ical puzzles, and submit answers to a men-
toring service. The Web site posts a new
problem each week, and the problems relate
to the same theme for a month, with each
week’s problems becoming progressively
more difficult. The particular µApp we de-
scribe focuses on the geometry of circles.
The purpose of this µApp was to develop a
sense of spatial relationships and probabil-
ity and explain the derivation of the mathe-
matical constant π using experimental pos-
sibilities.

Stakeholders: Collaborators and roles
In the CORD process, several stakehold-

ers from geographically dispersed locations
work together. These integration teams,
which are formed based on the require-
ments for the µApp’s core components, de-
sign and build math µApps.

Creating these µApps requires more
knowledge than any single person possesses.
For instance, developers are technologically
savvy but might not sufficiently understand
the requirements of end users. End users, on
the other hand, are experts in their applica-
tion domains but might not adequately
comprehend technological limitations or
opportunities. We can accommodate this
“symmetry of ignorance” by combining col-
laborative design with distributed develop-
ment in the integration teams.12 Table 1 lists
the integration team members and the roles
they play in the creation of the component-
based distributed π µApp.

Phase 1: Centralized analysis and design
In phase 1 of the CORD process, a large

subset of the stakeholders meet to hash out
analysis and design issues.

Brainstorming through low-fidelity design 
media. Distributed software development
often disintegrates when the process is insuf-
ficiently decomposed, the stakeholders’ roles
are overlapping or poorly defined, or com-
munication breaks down. In the CORD pro-
cess, even if we distribute the software de-
velopment process, we gather all the partici-
pants together, at least in the initial analysis
and design phase. Despite scheduling issues,
gathering the entire group is important. When
group ideas are first emerging, face-to-face
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Figure 1.  A small
part of the design
mockup showing
simulation (top), 
buttons (middle), and
spreadsheet (bottom)
components. If you
randomly throw darts
at two concentric 
circles, what is the
chance of hitting the
smaller circle?



interaction is essential, enabling us to resolve
issues such as role definition and task distri-
bution early in the process. Another impor-
tant part of the process in the initial meeting
is designing activities with low-fidelity media
such as paper and Post-It notes, which are
accessible to everyone and let all the stake-
holders participate in the design process.13

The result of this step is a storyboard, a list
of components, and a sense of interaction
between the components. The component
list feeds a stepwise refinement procedure
gradually leading from the identification of
the necessary components to their imple-
mentation and integration.

In a five-day integration team workshop
held at Swarthmore College, Pennsylvania,
in August 1999, a group of domain experts,
component framework coordinators, devel-
opers, publishers, and users brainstormed
ideas for µApps, one of which was the π
µApp. We analyzed a suite of about 20 such
ideas and created mockups for each one.
The original mockup of the π µApp con-
sisted of poster-size paper sheets with Post-
It notes representing components (see Fig-
ure 1). The design became clearer when
participants returned to their home organi-
zation. It was, therefore, absolutely essential
to capture design representation (the poster
boards) and additional discussions through
a dedicated scribe.

Formalizing design with HTML mockups.
Transforming the initial design from the
low-fidelity mockup to a more formal
medium is an important next step. We turn
rough sketches of text and images into more
explicit representation, forcing designers to
fill in conceptual gaps. A geographically dis-
persed group of stakeholders can easily
share HTML documents to trigger design
discussions. These documents can also be
good starting points for soliciting feed-
back—not only from the internal group, but
also from actual users.

The publishers and the component
framework coordinator scheduled the de-
velopment of this µApp to begin in Febru-
ary 2000. The domain expert had expertise
in designing curricula for math education.
She created a preliminary design (see Figure
2) based on the paper mock-up and posted
it on the Web as a blueprint for the final ap-
plication. The Web page prompted a lot of

feedback from developers.
The simulation part of the activity (the

blue circle in the red box) consisted of
throwing darts at a target and counting the
darts hitting the blue versus the red part as
a means to approximate the value of π. This
clarified what kind of information would go
into the tables, but the static Web pages
shed little light on the way in which the sim-
ulation would work.

Specifying interoperability design patterns.
The component framework coordinator an-
alyzes the set of low-fidelity requirements,
identifying interoperability requirements
that all component-based µApps will need
to solve. In our specific case, important
common requirements include

■ synchronizing data values across com-
ponents,

■ dynamic publishing and subscribing to
data,

■ writing the state of an assemblage of
components to persistent storage (for
example, XML files),

■ overcoming component mismatches, and
■ submitting user responses to the educa-

tional activity (for example, answers to
challenges) to a server.

To address these requirements, the com-
ponent framework coordinator extends stan-
dards already well supported by the individ-
ual component vendors. In our case, ESCOT
extended a de facto standard, the design pat-
terns underlying JavaBeans, with additional
design patterns and conventions. Further-
more, ESCOT provided utility classes that im-
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Figure 2.  Other
members of the 
design team can 
easily access and
critique the HTML
mockup of a part of
the µApp.



plement these patterns, off-loading common
interoperability tasks to a centralized soft-
ware development while leaving the details of
µApp design and implementation to the inte-
gration teams.

The developers use these patterns to in-
strument component generator tools. In spirit,
these tools are similar to the rapid applica-
tion development systems, such as JBuilder,
commonplace in integrated development en-
vironments. However, unlike RAD systems,
which focus on general-purpose GUI assem-
bly, component generator tools focus on a
narrow vertical application area. ESCOT
uses two component generators, AgentSheets
and the Geometer’s Sketchpad. AgentSheets
(described in more detail later) enables au-
thors to design multiagent simulations
quickly. The Geometer’s Sketchpad lets
them design animated sketches that obey
Euclidean geometric constraints. Once an
author creates a specific design, either tool
can output a new JavaBean that conforms
to the interoperability design patterns. This
facilitates just-in-time production of new
components that are highly targeted to a
particular domain problem.

In addition, the component framework
coordinator maintains a set of end-user
(scripting) programming languages, which
fill the gaps among existing components in
the repository. ESCOT allows pluggable
scripting languages and presently supports
JavaScript and Logo (a common educational
programming language). By having script-
ing languages, we avoided the need to gen-

erate new components that only one specific
µApp required, and we implemented the be-
havior quickly in a script without resorting
to the slower cycle time required by our pri-
mary programming language, Java.

Thus, by using component generators and
scripting languages, CORD circumvents the
common component-based development prob-
lem in which existing components are “never
quite right” for the task at hand.

Phase 2: Distributed analysis, design, imple-
mentation, and testing

Phase 2 represents a fundamental shift
from a centralized mode of operation to a dis-
tributed one. Independent, geographically
separate teams now work in parallel at the
project and local team level. Team selection is
based on the requirements for the core com-
ponents, called anchor tenant components.
We use the term anchor tenant in analogy to
the large department stores that create the pri-
mary organization of shopping malls. We typ-
ically design each µApp around one major
component, such as a simulation, with many
supporting components such as control widg-
ets, data displays, and so forth.

Building anchor tenant components. Develop-
ers create prototypes of the anchor tenant
component. This is an important part of the
process, as it provides the stakeholders in-
volved in the CORD process with concrete
representations close to the final application.

In February 2000, we selected AgentSheets
as our component generator tool to build the
anchor tenant for the π µApp. AgentSheets is
an agent-based simulation component au-
thoring tool. It applies to many kinds of ap-
plications, including mathematics, sociology,
physics, chemistry, and art.14 We authored the
simulation in the Visual AgenTalk end-user
programming language and rendered it into
JavaBeans with the Ristretto component gen-
erator built into AgentSheets.15

We made the simulation available to the
other team members as a Ristretto-generated,
Java-enabled Web page for critique (see Fig-
ure 3). With the availability of an executable
prototype, email discussion increased sharply.
Based on the feedback, the design changed
significantly through multiple iterations.

In other cases in which it was impossible
or too costly to build interactive prototypes,
we sometimes built animations instead.
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Figure 3. We 
prototyped the 
central component 
of each project,
called the anchor
tenant component,
and makes available
to other teams as 
Java applets.



While some consider the cost of prototyping
generally too high, we found that building
executable prototypes was essential for stake-
holders’ discussions of crucial design and im-
plementation issues.

Assembling components. Developing the an-
chor tenant component is an essential part of
the development process, but a complete ap-
plication also requires choosing the peripheral
components such as databases, charting tools,
and buttons. In the CORD process, the devel-
opers evaluate the initial choices of compo-
nents made at the analysis and design stages
and accept or reject the choices based on com-
ponent functionality, usability, and interoper-
ability with the anchor tenant component.

In February 2000, we assembled the com-
plete µApp, including the simulation, buttons
to control the simulation, a data table to col-
lect output from the simulation, and an input
text field to define the number of samples.

Components are tightly coupled through
events and values. For instance, the simula-
tion component simultaneously writes sta-
tistical information to a table component
and reads simulation control parameters
from text field components (see Figure 4).
Developers assemble components visually
by laying them out in a work area and con-
nect components semantically by a wiring
metaphor. In simple cases, component out-
puts are directly connected to other compo-
nent inputs. More complex arrangements
require adapter components or scripts.
Guidelines and patterns stipulated by the
component framework coordinator support
the compatibility of components. Further-
more, we note compatibility problems and
use them to guide framework revision.

For distributed component-based software
development to work, it is necessary to man-
age component collections. This management
includes maintaining component repositories
and collecting component use stories. Who
has used which components in what kind of
context and how? Did they use them success-
fully, or did they have to work around issues
or even modify a component? In our case, an
ethnographer (from the µApps’ publishers)
captured use stories, which we shared among
the extended group as text. We passed the use
stories on to the component framework coor-
dinator who archived them. The plan is for
the component framework coordinator to

maintain these use stories by connecting
them to the component catalog. This man-
agement should help create a cumulative or-
ganizational memory that informs the dis-
tributed and changing teams participating
in the overall testbed.

In addition, the component framework
coordinator helps guide the improvement of
components in the repository based on spe-
cific µApp needs. This is a delicate matter of
balancing generality and functionality, as
well as granularity, of components. Devel-
opers often want highly specific functional-
ity, but components can quickly become un-
wieldy if they implement behaviors that are
only infrequently used.

Furthermore, if we add too many variant
versions of components to the repository,
the collection becomes hard to compre-
hend. Inheritance hierarchies might seem to
be a solution to this problem. However, in
our experience, ad hoc growth of an inher-
itance tree (for example, driven by needs of
individual µApps) leads to clutter. We
might use inheritance, but it should be
driven by decisions at a product line level,
where we can design branches to conform
to stable, recurrent niches in market re-
quirements.

Hence, to partly resolve tensions arising in
a single µApp cycle, the component frame-
work coordinator often advises the µApp
team to use a component generator tool or
scripting language to solve nongeneral imple-
mentation problems, so as not to clutter the
repository. The repository stays focused on
highly general and fairly large-grain compo-
nents, as these are considerably easier to
comprehend and use.

In February 2000, for the µApp’s final 
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Figure 4. We use the
ESCOT builder tool to
assemble simulation,
spreadsheet, text,
slider, and button
components into a
complete µApp.  
We specify the 
components used,
their parameters and
position, and the
wiring scheme 
between them with
the builder tool and
capture them as 
XML files.



version, we replaced the idea of throwing
darts at a board (see Figure 4) with a fish
swimming around randomly in a fish bowl.
We modified the layout a number of times in
reaction to users’ tests and replaced the crude
artwork previously showing in the simulation
component with a more sophisticated ren-
dered image (see Figure 5).

Publishing and using a µApp
Before we publish a µApp in the ESCOT

context, the publisher, the MathForum, must
test and approve it. Testing the µApp and its
components consists of a mix of formal test
cases and less formal, functional tests. For the
formal portion, the component framework co-
ordinator has been unit-testing individual
components in the repository. We maintain
unit tests in the repository and update them as
we discover bugs, so they become more com-
plete over time.

The publisher also tests the candidate
µApp at a functional level by asking a rep-
resentative sample of users to put it through
the steps needed to solve the educational
problem that the µApp will pose. Consider-
ations such as cross-platform compatibility,

performance, and clar-
ity of documentation
must pass through the
publisher’s quality con-
trol before making the
µApp available to users
(teachers and students,
in our case) through
the MathForum Elec-
tronic Problem of the
Week Web site.

After the µApp went
“live” in March 2000,
students interacted with
the activities assigned

for each week and submitted their answers 
to MathForum mentors, who guided them
through the process. A significant number
of users experienced problems loading the
µApp. Part of the problem was the use of an
ESCOT-specific runner software (a tool devel-
oped specifically for running these µApps),
which we later replaced with a browser-only
solution.

A t the surface level, component-based
approaches appear to be ideally
suited for distributed software de-

velopment. We have found CORD to be ef-
fective in building educational applications,
enabling aggressive project scheduling.
CORD’s component-based nature enables a
high degree of parallelism involving distrib-
uted teams of domain experts, component
framework coordinators, developers, pub-
lishers, and users in the software’s develop-
ment process. We advocate the use of in-
creasingly formal design representations
progressing from informal Post-It notes to-
ward working applications. Increasingly for-
mal design representations enable essential
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Figure 5. A finished
µApp. Middle-school
students first predict
the probability of the
fish’s being in a 
certain part of the
sphere. They then
use the fish bowl
simulation to track
the position of 
randomly moving 
fish and, using the
data gathered, verify 
or reject their 
predictions.



communication between the distributed team
members and avoid premature design com-
mitments by allowing the right degree of de-
sign elasticity at different points in the devel-
opment process.

The use of JavaBeans enabled our distrib-
uted, heterogeneous developer community to
build components using different tools (basic
JDKs, IDEs, and generators) and platforms
(Windows, Mac, and Unix). However, to
make sure that we properly integrated com-
ponents, we needed a component framework
coordinator. The CORD approach’s scalabil-
ity is bound by the number of components
involved in a design. Typical CORD µApps
have fewer than 20 components. However, a
component’s external complexity (that is, the
complexity of its API) does not indicate its 
internal complexity. Interactive simulations,
componentized legacy code, and database
components often have simple interfaces but
complex implementations.

On the negative side, we have a number
of issues with the JavaBean platform. While
JavaBeans have enabled true cross-platform
development, we frequently found platform
and virtual-machine-dependent implemen-
tation discrepancies that required a signifi-
cant number of additional development cy-
cles for debugging and work-around imple-
mentation. We recommend that project man-
agers prepare themselves for extremely low
development- versus testing-time ratios.
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