
Conversational Programming in Action

Alexander Repenning
AgentSheets Inc.

Boulder 80301, Colorado, USA
alexander@agentsheets.com

Abstract – Accelerated by the Do-It-Yourself mindset of the
Web 2.0 culture, end-user programming, which is
programming by end users with limited, if any, formal
programming background, is growing rapidly. Especially in
educational settings, children are exposed to computational
thinking by making games, building scientific simulations and
creating stories. Early educational programming languages
such as Logo have made programming substantially more
accessible to end users. More recent approaches include visual
programming with drag-and-drop style of programming
making it nearly impossible to compose syntactically incorrect
programs. However, as the syntactic challenges of end-user
programming are gradually fading into the past, the new
frontier of semantic programming support emerges. This
demonstration introduces Future Trace, a system to make
programming more conversational. A conversational
programming agent runs programs one step into the future in
order to visualize discrepancies between the programs users
intended to write and the actual programs.

Keywords – Game design; computational thinking;
debugging; end-user programming; visual programming.

I. TOWARDS CONVERSATIONAL PROGRAMMING
In programming the interaction between the programmer
and the programming environment is typically
asymmetrical and often limited to syntactic feedback, which
is limited in nature to programs that are malformed. Miss
one semicolon in a C program and the program may no
longer work at all. A programmer may spend considerable
amount of effort to write a program before the
programming environment provides meaningful feedback.

One idea to simplify programming would be to make the
communication process between the programmer and the
programming environment more symmetrical with the goal
to aid debugging. But just how can one conceptualize
debugging? Pea [1] describes the process of debugging as:

systematic efforts to eliminate discrepancies between
the intended outcomes of a program and those brought
through the current version of the program.

A number of programming approaches including
programming by example and natural programming try to
systematically reduce these discrepancies by having
programmers demonstrate actions on concrete examples or
by providing programming languages that more closely
resemble the way users with no programming background
tend to think about certain problems. A different approach
is the notion of conversational programming employing

computational agents to provide real-time semantic
feedback to a programmer so that the programmer can
indentify discrepancies between the intended program and
the actual program.

Conversational programming could be conceptualized as a
simple form of pair programming substituting a human
partner with a computational agent called the
Conversational Programming Agent (CPA). Figure 1
describes a conversational programming architecture.

The notion of a conversation suggest the need for a:

• programming partner/agent capable to serve as that
other pair of eyes.

• more symmetrical and semantic interaction between
the programmer and the programming environment.

• shared context with a defined focus corresponding to a
conversation topic. For instance, a programmer should
be able to select an object in a game world to make the
conversation relevant to this object and its state.

The goal of Conversational Programming is to reduce the
discrepancies between intended program and actual
program by using notions of conversations to make the
interaction between the programmer and the
programming environment more symmetrical, more
timely, and more meaningful.

Figure 1. Conversational Programming: The programmer edits

the program and edits the game world. A conversational
programming agent executes the program, interprets the

situation and annotates the program semantically.

II. PREBUGGING: PROACTIVE DEBUGGING
The specific implementation of conversational
programming presented here is called Future Trace, which
is integrated into the AgentSheets [2] game and science
simulation end-user programming tool. Visual AgenTalk is
the drag and drop, rule-based programming language of
AgentSheets with a long history in educational applications
going back to 1994. AgentSheets is a popular game design
tool used in public schools especially at the middle school
level.

Novices, such as middle school students building their first
game with no programming background, as well as more
advanced programmers, such as computer science
undergraduate students, often exhibit difficulties when
trying to understand complex rules. For instance, confusion
resulting from the order of instructions is surprisingly
common and is not limited to beginning programmers [3].
Common questions include: why does this rule fire? Why
does that rule NOT fire? Why is this condition or rule not
even being tested? What is the order in which conditions
and rules are tested? Why is the rule and condition order of
fundamental importance?

Future Trace could be considered a prebugging tool [3]
providing answers to the questions above even before the
program is completely written or executed. In Future Trace
the Conversational Programming Agent (CPA) will
proactively execute parts of the program created by the
programmer and annotate it discretely in order to support
the end-user in recognizing potential differences between
the intended program and the actual program. The CPA
focuses on the agent selected by the user in the game world
and visualizes the outcome of running the program of the
selected agent one step into the future. For instance, if the
programmer had previously selected the only frog in the
worksheet (Figure 2, left) then conversational programming
annotations suggest that the frog is about to be crushed by
the truck.

The presentation will share some of the evaluation data
from middle school teachers, middle school students and
computer science undergraduate students. Further, it will
present test cases in which conversational programming

provides significant programming and debugging
advantages which are not typically found in traditional drag
and drop end-user programming environments.

III. ACKNOWLEDGEMENTS
This material is based in part upon work supported by the
National Science Foundation under Grants DLR-0833612
and IIP-0848962. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

IV. REFERENCES
1. Pea, R. D. Chameleon in the Classroom: Developing

Roles for Computers, Logo Programming and Problem
Solving. In Proceedings of the American Educational
Research Association Symposium (Montreal, Canada,
April 1983) (Montreal, Canada, 1983).

2. Repenning, A. and Ambach, J. Tactile Programming: A
Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing. Computer
Society, City, 1996.

3. Telles, M. and Hsieh, Y. The Science of Debugging.
Coriolis Group Books, Scottsdale AZ, USA, Scottsdale,
2001.

Figure 2. The truck will crush the frog selected in the worksheet (left). Rules 1 and 2 of the Frog behavior (right) are tested but contain
at least one condition keeping them from firing. All conditions of rule 3 are true. Rules annotations (background): green=would fire,

red=would not fire, and gray=not tested; Conditions annotations (text label): green=is true, red=is false, black=not tested.

