
Deceived by Ease of Use
Using Paradigmatic Applications to Build Visual Design Environments

Kurt Schneider, Alex ander Repenning

Department of Computer Science and Center for LifeLong Learning and Design
{ktschnei, ralex}@cs.colorado.edu
University of Colorado at Boulder

Campus Box 430, Boulder, CO 80309-0430

Abstract

Application frameworks for visual design environ-
ments usually offer a wide range of features and easy-
to-use mechanisms to develop applications. We
observed that sometimes those features deceive
application designers: Tempted by the desire to make
rapid progress, designers go into too much detail
about easy things too early in the process, like
graphical representations. After the easy-to-use
mechanisms have been exploited, they find themselves
stuck and frustrated. Premature design decisions made
during the feature-driven phase can corrupt
application system architecture or require
abandonment of much work. Extensive rework endan-
gers project success.

Paradigmatic applications can help to bridge the gap
between application framework features and intended
application – better than manuals or additional fea-
tures can. As examples and sources for reusable com-
ponents, this special kind of exemplary applicationsdi-
rects the attention of designers to higher-level building
blocks and helps them to avoid premature feature ex-
ploitation. We characterize paradigmatic applications
and describe their impact on the design process.

Keywords:

Application framework, visual design environment, analo-
gies, examples, design process

Introduction

In recent years, applications such as graphical notation
editors, computer-aided design and engineering
environments with interactive graphical interfaces, visual
programming languages, and customized direct
manipulation tools have gained increasing popularity.

The demand for these types of applications can no longer
be met by building them from scratch. Application
frameworks promise to facilitate the design and implemen-
tation of interactive graphical systems. In an application
framework, the common components and features of a class
of applications are factored out and made available within a
generic application. Class libraries are provided to spe-
cialize this generic framework to meet the specific needs of
a concrete application. In this paper, we subsume the above
class of interactive graphical systems under the notion of
visual design environments.

We carried out and supervised about 50 application-build-
ing efforts using two different, independently developed
application frameworks for visual design environments
(Agentsheets: Repenning, 1995; and vis-A-vis: Lichter and
Schneider, 1993). While most applications fit well into the
generic architectural frames, every now and then a more
complicated application seemed to suffer from the need to
map its structure to the generic architecture inherited from
the framework. Alarmingly, application designers
(sometimes including ourselves) initially were excited
about the good support provided by the application
framework and the rapid progress made. At some point,
progress stagnated dramatically and problems occurred.
Finally, those applications ended up with really messy
designs, or were canceled.

We found that in some breakdown cases, the application
design process had been driven by features of the frame-
work. As the analyses of several breakdowns (such as the
two examples discussed below) showed, the frameworks
had in some cases encouraged designers to get started with-
out deliberately designing their applications. Both example
frameworks afforded the design of sophisticated graphical
representations as well as operations that were impressing
for the application designers (such as bending icons, as in
Fig. 3, or making the appearance depend on the internal
state of the semantic object). However, the seemingly
harmless process of designing a visually appealing
graphical representation had implications on the internal
structure of the semantic model. Designers refused to revise
those structures, instead trying to maintain even premature

design results. As a consequence, more serious problems
arose, which had to be fixed and patched. Designers and
users were discouraged by the unexpected problems and the
extreme slow-down in progress. The trap had been set by
three trends that were sensible on their own:

• Framework designers obviously wanted to maximize
the set of widely useful, basic features. Framework
features are presented to be as usable as possible.

• Common features of application frameworks that can
be used in a wide range of visual design environ-
ments are often located on a very detailed, low-level
of abstraction. There is a significant cognitive dis-
tance between these features and any complex, con-
crete application.

• Application designers were driven by their sense of
completion; Green (1989) calls such a strategy "op-
portunistic design." Rapid progress could be made
by just doing what was obviously easy to do: exploit
the low-level, easy-to-use framework features.

In combination, these trends manifest in a process that
deceives application designers. The common ground of
visual design environments is the realm of graphical
representations. Their creation, modification, and
connection to underlying semantic entities are crucial. It is
only natural to make those operations easy to use. In this
context, however, opportunistic design can be guided by
too low a level of design abstraction, and lead to com-
mitments that corrupt higher-level structures.

Our solution to this problem is twofold, reflecting the two
roles involved in its creation:

• Framework designers need to provide compelling
paradigmatic applications – as comprehensive ex-
amples and for reuse of higher-level building blocks.
They must illustrate the mapping between the
framework and a concrete application.

• Application designers must withstand the extremely
strong temptation to indulge into easy-to-use features
too early in the process.

These efforts complement each other. We consider the
choice of appropriate examples to be far more crucial than
their number. While the merit of good examples is widely
accepted, there is a lack of an operational characterization
of a "good" example. Instead of providing many similar ex-
amples that again mainly illustrate the use of framework
features, we suggest developing higher-level mechanisms
and designing building-blocks and embeding them in
"paradigmatic applications" (as defined below).

Section 2, defines the scope of our arguments. Agentsheets
and vis-A-vis will briefly be described to illustrate visual
design environments. Within this paper, they represent a
wide range of similar systems. Section 3 investigates the

design process currently followed by (too) many
application designers. Section 4, takes a close look at the
gap between frameworks and concrete applications. Section
5 provides a characterization of paradigmatic applications
to tighten the gap. Section 6, points out how to turn
application design from a feature-driven to a more risk-
driven approach by reversing the process direction. Instead
of encouraging designers to work from the framework to
the application, we suggest picking up the application de-
signers close to their applications, guiding them to reusable
middle-layer mechanisms, and thus helping them to fill the
remaining gap. The final section relates our suggestions to
the work of others and concludes our arguments.

2 Application Frameworks for
Visual Design Environments

Object-oriented application frameworks contain a
generic application and a set of class libraries. The generic
application provides an architecture with some empty slots
on the detailed level. Common operations of an entire class
of applications are implemented on the generic level. A
concrete application is constructed by inheriting
architecture and common operations from the generic
application. Classes from the accompanying class libraries
can be used to customize aspects of the generic application.
Customization by setting parameters and by inheritance
fills the empty slots of the generic application and results in
a concrete application. General application frameworks
such as ET++ (Gamma et al., 1989) may provide more than
one generic application. Sometimes, application
frameworks are called "substrates" (McWhirter and Nutt,
1994).

In this paper, we talk about application frameworks built
around a generic visual design environment. Visual design
environments use a graphical representation on a canvas to
work with an underlying (design) model. We refer to the
underlying model as semantic model. To afford effective
design work in a direct manipulation style (Shneiderman,
1983), the semantic model and representation have to be
coupled. The existence and support of a semantic model
distinguishes visual design environments from graphical
editors.

Common operations of visual design environments pro-
vided by application frameworks typically include

• drawing design language symbols, usually by com-
bining graphical primitives such as rectangles, lines,
circles and icons;

• editing bitmaps and icons, and representing
relationships;

• configuring representations and semantic correspon-
dents to allow parallel creation, modification, and
removal of the semantic element and representation;

• allowing interaction with a semantic entity by point-
ing at its representation and invoking a command;

• performing operations on entire models (such as
save, load, print), which are usually implemented in
the generic application and inherited by specific
applications.

Many frameworks also provide superclasses for semantic
elements. Semantic objects can be handled by the
framework only when they inherit some "infrastructural"
methods from those superclasses. Providing semantic
superclasses allows support of common semantic
operations, but makes it more difficult to build visual
interfaces for existing semantic models.

vis-A-vis and Agentsheets (Fig. 1) are visual design envi-
ronments. Their appearance is dominated by a canvas or
worksheet for the design model. A palette (vis-A-vis) or
gallery (Agentsheets) contains icons representing design
components. On the canvas, the semantic objects are repre-
sented by this same icon (Agentsheets) or by a more elabo-
rate graphical representation (vis-A-vis). Both frameworks
provide generic operations on entire models, and allow the
definition of application-specific operations on single
model elements. In vis-A-vis, element operations are
invoked by clicking on the respective element, and then
choosing from the popup-menu that appears (see Fig. 1). In
Agentsheets, clicks and double clicks are distinguished;
custom operations can be invoked by first selecting them
from the left-hand side mode bar, and then clicking on the
element (e.g., a switch in Fig. 1). vis-A-vis further allows to
define customized operations on entire models; they appear
in the menu bar above the canvas (Derive Situation Editor,
Annotations, Views). Both frameworks allow application
designers to access their respective underlying general-pur-
pose programming language, Lisp for Agentsheets and
Smalltalk 80 for vis-A-vis.

Despite many similarities, there are major differences
between the two environments:

• Agentsheets is grid based. The worksheet is invisibly
partitioned in grid cells containing icons (light bulbs,
wires, switches). Agentsheets requires semantic ele-
ments to be instances of Agent or one of its sub-
classes (e.g., Position-Aware-Agent, Linkable-
Agent, or a custom-made subclass). From those
classes, they inherit functionality for "autonomous
behavior." They can move from one cell to another,
change their displayed icon or produce sounds. Each
Agent can easily address its neighbor cells.
Relationships usually are implict. They are derived
from spatial adjacency of Agents.

• vis-A-vis interprets the canvas as topological space;
element positions are meaningless. Relationships are
explicitly established and shown. vis-A-vis offers
mechanisms to easily address entire models, or all
instances of one semantic element class. This allows
for simulation, evaluation, code generation, etc.
While Agentsheets representations consist entirely of
bitmap icons, vis-A-vis allows a combination of a
variety of graphical primitives (rectangles, circles,
text) to customize symbols. Each component of a
symbol can independently react to changes of
aspects in semantic element state, and can change
style, color, width, etc., accordingly. Entities in
Figure 1 combine label text with an automatically
fitting rectangle.

vis-A-vis and Agentsheets are used as examples in this pa-
per because they are typical application frameworks for
visual design environments. Our arguments apply to a wide
range of similar frameworks (Golin et al. , 1992; McIntyre
and Glinert, 1992).

Some features of an application framework are particularly
easy to find and can be used almost without preparation.
For example, editing icons are necessary in most
application frameworks for visual design environments, and
therefore they are usually very well supported and easy to
perform.

Figure 1: Typical Agentsheets (left) and vis-A-vis (right) Applications

A framework designer is a person who builds an
application framework. An application designer uses a
framework to build an application. As a significant part of
an application is inherited from the generic application
provided in the framework, application design sometimes
seems to be trivial and unnecessary. We stick to the notion
of application design, as we are most concerned about
nontrivial applications in which a significant, application-
specific part of the system requires further design decisions.
We do not assume that application and framework
designers work together, or even that they are the same
people. If the roles overlap, this may reduce the danger of
being deceived, but will not eliminate it.

We call an application designer deceived by ease of
use when the exploitation of easy-to-use features of the
application framework has led to an undesirable situation
that could have been avoided had those features not been
used at that early point in time.

3 A Feature-Driven Design
Process

When actions and directions are driven by easy-to-use fea-
tures, the designer starts at the framework and tries to find a
way to the application. As the framework exists, but the
application does not, the process goes from the known to
the unknown.

The further the process proceeds

• the less guidance can be given by the framework, but

• the more work has already been expended and the
more code already exists.

Both trends more and more discourage starting anew when
a breakdown occurs. Exploiting easy-to-use features early
defers breakdowns and reinforces these trends.

Example 1: SESAMsheet

SESAMsheet is an Agentsheets application project that
developed a very promising interface within a relatively
short time (Fig. 2). SESAMsheet is supposed to visualize
information flow in a software development project.
Basically, SESAMsheet is a visually enhanced short-cut
variant of the SESAM software engineering educational
game (Ludewig et al., 1992). Simulated employees and
documents can be placed and dragged with the mouse;
when simulation time goes by (clock in the upper left
corner is activated), simulated employees and documents
exchange information. Talking employees open and close
their mouths, and utter some conversational sound.

Figure 2: SESAMsheet: Modeling Information
Flow in a Software Development Project

Figure 3: Bending Icons in Agentsheets

Most of the state represented by Figure 2 is based on spe-
cific Agentsheets features that are very convenient to use.
Drawing and placing of icons, definition of reactions to
mouse-dragging, and the definition of autonomous behavior
are very easy to perform ("talking" is represented by chang-
ing between open-mouthed and closed-mouthed icons, to-
gether with appropriate sounds). The application designer
had the comfortable feeling of making good progress.

Some work went into the perfection of icons: for example,
both male and female employees had to be represented. A
special feature of Agentsheets, inheritance and bending of
icons, further absorbed much attention: The walls around
the office consist of icons fitting into the 40x40 pixel grid
of this application. As Figure 3 shows, Agentsheets can
automatically bend icons Repenning (1994) to derive
corner-pieces from one given simple piece of walls, roads,
or any other icon. This feature is very helpful to save
drawing effort; it requires some attention, however, to draw
the initial piece exactly symmetric, so that bent and flipped
wall pieces neatly fit. One can spend much time making the

walls look natural. The impressing interface seems to fairly
reward this effort. Like all the other visual design en-
vironments shown in this paper, SESAMsheet is a colorful,
interactive application.

The SESAMsheet project stagnated when this state was
reached; the next step would have been to evaluate the in-
formation gathered by all simulated employees, compare it
to a given information reference ("the customer"), and send
the result back to the employees. Unexpectedly, there was
no broadcast or collection mechanism. It was easy for em-
ployees to address their adjacent grid cells, but very
difficult to exchange information with any central unit. It
turned out that Agents (i.e., employees) could easily be
linked with each other. The designer of this application now
tried to bypass the (missing) broadcast mechanism by
explicitly linking employees with the clock. The clock
represented the central notion of time. However, this was
more difficult than expected because the semantic class of
Employees had been defined as a subclass of Position-
Aware-Agent to implement talks across a table, not just
with immediate neighbors. Linking agents, however,
required Linkable-Agent as a superclass, which is in a
different branch of the class hierarchy than Position-
Aware-Agent. The application designer started to re-
implement the link mechanism.

Example 2: CityPlanner

In one vis-A-vis application, the canvas was supposed to
represent Euclidean space (Fig. 4). After scanning a part of
a city map as background, planners wanted to place
different kinds of colored rectangles on the map, thus
indicating different uses of city blocks. Uses, such as
commercial, industrial, or residential are color-coded on the
pieces. Diagonally striped rectangles represent portions of
the block that were expecting change of use. The width of
the diagonal line represents the time frame for this expected
change (within 2, 5, 10 years). A circle on other pieces
represents a given partial use. CityPlanner is based on Arias
and Anselin (1982).

vis-A-vis allows the creation of diagonally striped rectan-
gles with changing colors and stripe widths. Each aspect
may depend on an aspect of the internal state of the corre-
sponding semantic model element. Problems occurred,
however, when an evaluation operation was added that
included checking adjacent uses. vis-A-vis does not support
the notion of spatial relationships. The designer decided to
introduce explicit relationships ("north-of," "south-of," etc.)
and make their representation a line of zero width. This
idea is in good accordance with vis-A-vis features, as it is
easy to introduce relationships. Unfortunately, a very

inefficient update mechanism is required to keep explicit
"pseudo-spatial" relationships in synchronization with the
relative positions of model elements when they are moved.
Only later did the designer think of reusing an invisible grid
that was provided by vis-A-vis, and used to align symbols.

Figure 4: vis-A-vis Application CityPlanner

The Deceived Designer

When a designer is deceived, many problems arise at the
same time:

• Fixing a problem tends to mess up architectural
structures; if the fix is again driven by easy-to-use
features, the problem may get even worse (see
SESAMsheet example).

• Designers and customers get used to rapid progress
at the beginning. When features have been exploited
and the more application-specific aspects of the sys-
tem must be attacked, the perceived slow-down
seems dramatic. In this situation, designers refuse to
abandon parts of their work even if it is clearly pre-
mature. We learned from interviews (and, in some
cases, introspection) that they feel this would slow
down the process even further.

• Problem fixing further corrupts structures and makes
progress even more difficult in the future.

Note that the broadcast problem (SESAMsheet) would be
solved by an easy-to-use mechanism in vis-A-vis, and the
adjacency problem of CityPlanner would not exist in
Agentsheets. Exchanging the underlying application
frameworks would avoid those particular problems, but
probably encounter others.

lured
 into

...
...the trap

exploit easy-to-use representation features
(icons, symbols, backgrounds, 3D, shadows, etc.)

exploit other tool features that are obviously easy to use (interaction; movement etc.)

try to embed (more) semantic functionality in given architectural structures

encounter problem (structural clash)

try to fix problem, but to maintain existing work

use tricks, corrupt existing structures further

Figure 5: A feature-driven process; variant of code&fix

The problems cannot be denied by blaming a particular
framework. Complex applications will cause problems. The
question involves when they will occur.

Process Phases and Motivation

As illustrated by the examples and described in this section,
a feature-driven process can unfold, as follows:

Only if the application-specific part is trivial enough can
the lower three steps of Figure 5 be avoided. Framework
designers probably do not see this danger as they tend to
create examples and applications that are well supported by
the framework. From their perspective, this seems a rea-
sonable approach, since they want to demonstrate the fea-
tures of their framework.

Qualitatively, designer motivation follows the curve in
Figure 6: a long-term decline.

rep. features other easy-to-use f. extend funct. problem tricky fix extend funct. problem tricky fix

time

motivation, customer satisfaction

euphoria

frustration
long-term decline

problems

Figure 6: Project progress and motivation decrease

4 A Hidden Layer in Application
Frameworks

There is a gap between a concrete application and the fea-
tures and mechanisms of a given framework. A feature-
driven process searches its way from the given low-level
(detailed) features and mechanisms to the application. If the
application fits perfectly into the framework, the gap is
small. Most features of the application can be covered by
straightforward combinations of features. In this case, no
problems occur, and the feature-driven process is
successful.

In more complicated applications, the gap is wider. Easy-
to-use features provide a rapid start, but do not cover some
of the crucial requirements and expected functionality of a
concrete application. The combination of features and lan-

guage constructs is nontrivial. Without proper technical
design, the process can get stuck in a code&fix trap.

A first approximation to avoid the trap is demanding a dis-
ciplined design process. Such a process should deliberately
start at the application and provide a full design of the con-
crete application before any code is written, and especially
before any easy-to-use feature is exploited. Implementation
(and design evolution, if necessary) should take a risk-
driven approach (Boehm, 1988). Instead of implementing
the easiest parts first, the most critical and unclear issues
must be solved first. Convenient features can still be ex-
ploited later; it will not take long.

Demanding discipline is easy. However, it puts the burden
of acting against instincts (sense of completion and closure)
entirely on the application designer's shoulders. It is prefer-
able to encourage a risk-driven approach. Framework de-
signers can do this by providing a middle-level layer of

reusable design building blocks (e.g., "design patterns":
Gamma et al., 1994). Application designers can pick up
those building blocks, and start constructing their applica-
tion from larger components. Adapting details is easy: the
goal of the adaptation is clear, and easy-to-use features help
to work on details.

Although this sounds promising in principle, we found that
application designers had a difficult time identifying
complex reusable blocks in practice (Repenning, 1993).
Reusable components usually are abstract in order to be
reusable. Application designers simply could not map their
applications to the abstract mechanisms supplied. The

middle layer seems to be hidden and not easily accessible
(Curtis et al., 1988).

Our suggestion is to provide access from the level of con-
crete applications to those abstract building blocks (Fig. 7).
Access can be afforded by full applications that serve as
examples and by metaphors that are common to a set of
concrete applications. Working from analogous
applications down to their adaptation proceeds from large
overall structures to details. This fits much better into a
risk-driven approach than blind code&fix ever can. We will
go into more detail about paradigmatic applications and
underlying metaphors in the next section.

concrete applications

easy-to-use framework features
all framework features

concrete applications & paradigmatic applications

reusable complex mechanisms

metaphors

underlying general purpose language underlying general purpose language

are built on

use&convey

usefully
combine

general
direction
of process

general
direction
of process

search for analogies

often
unsystematic

easy-to-use features
all framework features

Figure 7: Feature-driven design process (left) and exploitation of a hidden middle-layer of
reusable complex mechanisms to reverse process direction and to make it risk-driven (right)

5 Paradigmatic Applications,
Shallow Analogies and
Metaphors to Identify Reusable
Mechanisms and Design
Building-Blocks

In the previous section, we identified a special purpose of
examples: they must provide cognitive access to abstract
building-blocks and reusable mechanisms. Many examples
provided in manuals have other goals: they illustrate how
features are used. For our purpose, we want to illustrate
how features are combined and used together to obtain a
higher-level mechanism. The difference may seem subtle,
but it has significant practical consequences, as discussed in
the previous section. Straightforward feature examples fur-
ther promote features and push a feature-driven design ap-
proach. Abstract examples are hard to relate to a concrete
application. Arbitrary applications, on the other hand, may
not contain reusable mechanisms (Curtis et al., 1988).

In the remainder of this section we describe the kind of ex-
amples we consider most helpful to avoid deception by
easy of use. We also outline how framework designers can
find them and how application designers can access them.

The key is to use metaphors and "shallow analogies" for
both purposes.

We characterize the examples we have in mind as
paradigmatic applications.

serv-us
serv- i
serv-o
serv-um
serv-e
serv-o

A paradigm is "1: example, pattern. 2:
an example of a conjugation or declension
showing a word in all its inflectional
forms." (Webster). Paradigms, in their
original meaning, are used in grammar
books to convey an abstract grammatical
pattern. See the paradigm of the Latin
word "servus" (servant).

We claim that good examples for application frameworks
are like paradigms:

1. They are concrete, useful applications, not abstract
patterns for the sole purpose of illustrating features
(serv-us, not only -us);

2. They are lean applications, showing few complica-
tions other than the one conveyed by the pattern
(serv-us, not hippopotam-us).

3. They are readily associated with the mechanism they
want to illustrate (servus always reminds the authors
of this declension).

4. They show a clear distinction between the abstract
pattern and the concrete application (the dash in
serv-us);

5. They are mostly accompanied by an explanation of
the pattern, but the paradigm alone is sufficient to re-
member the crucial points (the explanation would
name the modes: nominative, genitive etc; would
explain whether the two -o terminations have a
common root). Usually, the explanation defines the
scope of the paradigm.

6. Once you know a paradigm, it is easy to apply the
pattern to other instances within the paradigm scope
(hippopotamus is not really a problem).

It is not obvious that any application designer will associate
a given application with exactly the pattern it wants to con-
vey (3); this is a problem that also hits "design patterns"
(Gamma et al., 1994). There are two ways to make the
transfer easier:

• Explicitly: The pattern or mechanism can be
explained, and the scope defined (5).

• Implicitly: As explanations and definitions of
abstract patterns or mechanisms also tend to be
abstract, it may help more to provide a number of
analogous cases.

Analogous cases must not be detailed; there is no need to
apply the paradigm to hippopotam-us, circ-us, etc. But they
illustrate the scope. The dash helps to distinguish the pat-
tern from the particular case.

Applying these notions to our domain of application
frameworks, we propose:

• Framework designers should provide a number of
paradigmatic applications.

• They should also provide a much bigger number of
"shallow analogies": it is enough to mention another
instantiation of the mechanism and identify the over-
lapping (analogous) parts. Implementation of
analogies is not necessary.

Shallow analogies with explicit explanations of how they
are analogous to the fully implemented paradigm are supe-
rior to a big number of fully implemented applications of
the same paradigm. A bigger number and more implemen-
tation details make it more difficult to see the common
mechanism and to recognize it as the same.

A metaphor is "a Figure of speech in which a word or
phrase literally denoting one kind of object or idea is used
in place of another to suggest a likeness or analogy between
them (as in the ship plows the sea)" (Webster).

Formally speaking, a metaphor constitutes a mapping be-
tween two domains to stimulate associations. Common
mechanisms that qualify for reuse can often be character-
ized by metaphors. When several applications are mapped
to the same other domain by metaphorically speaking about
them, this target domain is a good candidate for a paradig-
matic application. Other domains that share the target do-
main of the metaphor should be provided as shallow analo-
gies. This increases the chance to identify appropriate appli-
cations.

For example, the flow of water through pipes could be im-
plemented as a paradigmatic application. In Agentsheets, it
conveys the abstract mechanism of propagating agents
through a discrete space constrained by conductors.

flow

electricity, traffic, information, money water

propagation of agents, through a discrete space
constrained by conductors

applications

abstract
reusable
mechanisms

metaphors
with common
target domain

Flow of electricity:
 electricity -> water
 wires -> pipes
 battery -> source

A switch has no straight-forward
correspondent. An open switch is
like a broken (non-functional) pipe.

Figure 8: Target domain of metaphor (water) qualifies as paradigmatic application (left); other
domains with the same target domain should be provided as commented, shallow analogies (right)

The analogies of traffic flow and electric flow should be ex-
plicitly explained, but not elaborated. A waterflow
paradigmatic application could have supported both the
electricity (flow of electricity, Fig. 1) and the SESAMsheet
(flow of information, Fig. 2) application-building efforts.

The SESAMsheet problem could have been avoided or
solved with an abstract broadcast mechanism, using a radio

("Public National Radio") paradigmatic application. In vis-
A-vis, some application involving neighbors ("a chat with
the neighbor" or "neighborhood watch") could convey the
abstract notion and mechanism of spatial adjacency. Other
examples help to identify what broadcast and spatial adja-
cency are good for. In any realistic setting, there should
also be more domain-oriented analogies. A short explana-
tion of the mapping is crucial; without it, some of the shal-

low analogies in Figures 8 and 9 may be ambiguous or un-
clear.

broadcast

TV, disease, sunrays, rumors radio

spread messages (or Agents) among all instances of
a class, without the need for them to be linked

spatially adjacent

domino, game of life, spreadsheet-cells neighbors

access from element to element by
navigating through Euclidean space

Figure 9: Mechanisms and paradigmatic
applications that would have solved our

example problems

Reusable mechanisms do not necessarily require new fea-
tures. The broadcast mechanism could be implemented
without any additional features. It is the knowledge of how
to properly combine existing features in nontrivial ways
that a reusable mechanism should convey. Reusing the
alignmentgrid of vis-A-vis to define spatial adjacency
requires intimate framework knowledge and the confidence
that the grid is qualified for reuse. A framework designer is
much more familiar with the appropriate and intended use
of features than an application designer. Framework
designers will themselves benefit from developing
complete applications and analogies; this process can help
them see the shortcomings and traps of their framework.

6 An Analogy-Driven Design
Process

Boehm's (1988) advice to apply a risk-driven approach is
still valid. However, it is especially hard to follow when
easy-to-use mechanisms exist only on a low level, close to
the framework. Just as it must have been fascinating to see
computers doing anything by just writing some lines of
code in the early days of programming, it is today fascinat-
ing to see a computer providing any graphical interaction

by just using some easy features. Both temptations lead to
unsystematic code&fix, a trap.

In a risk-driven design process, one would deliberately
refuse to do anything that appears easy; just the contrary of
what instincts dictate. Such a process relies heavily on de-
signers' discipline, which is difficult to enforce or support.

We see an analogy-driven design process as the best ap-
proximation to risk-driven design:

• It makes application designers think about bigger
structures first.

• It makes clear that something can be reused (maybe
copied), but that it probably must be adapted
(specialized, modified). This directs attention to
high-level structural problems early.

• Reuse of higher-level building blocks implies
adapting their low-level attributes only after they
have been identified as generally useful. The
exploitation of low-level features is thus deferred.

• The lack of a matching paradigm or shallow analogy
may awaken the suspicion of application designers
as to whether using the framework is really such a
good idea.

All there are four points show that an analogy-driven
design process tends to unfold from the application to the
framework. An application designer may still have to
combine several mechanisms, and invent new ones. But, his
early attention has shifted to structural, risky issues.

A psychological advantage of an analogy-driven approach
is that it shifts problems to the early phases of application
design, and saves some motivational boosts for later.
Identifying an analogy, seeing it at work, and finally cus-
tomizing it with application-specific artwork spreads the
sense of completion over the entire process, rather than
wasting all the momentum at the beginning.

By all means, application designers should exercise disci-
pline: not every application can fit into any given frame. It
is wise to find the soaring points early: to decide about suit-
ability and to discuss difficult problems as long as there is
time. Paradigmatic applications, together with explicit
analogies, can do much to facilitate (even partly afford) this
process. Trivial (well-fitting) applications are hardly
slowed down by an analogy-driven approach: it never hurts
and it sometimes helps.

time

motivation, customer satisfaction

search for
analogies

try paradigm.
applic.

adapt to own
application

add appl.-specific
mechanisms/integrate
reused mechanisms

customize details
by exploiting
easy-to-use features

similar
application
found

adaptation

complex
mechanism
works when motivation gets too low,

allow for a boost:

(iterated)
Figure 10: Motivation in an analogy-driven process (solid line) shows no continuous decline

and less extreme values than a feature-driven process (dashed line)

7 Related Work

The value of examples is widely acknowledged. Fischer et
al. (1992) suggest large collections of examples, which they
call catalogs. We endorse their principle claim for an
example-base. However, examples are not particularly
helpful if they are too shallow, overcomplicated, or too
similar. We claim that it is not as important to provide
many examples as it is to provide adequate examples that
address the hidden layer of visual design environments. An
excessive number of more or less similar examples can
even be counterproductive, as they aggravate the problem
of identifying an adequate one. Adequate examples for ap-
plication frameworks have not been characterized yet.

Nardi and Zarmer (1993) propose visual formalisms as an
intermediate layer in user-interface design. By providing a
small set of nontrivial data structures, designers can reuse
both visual representations and some semantic operations
defined on the abstract formalism. A tree is one example of
a visual formalism. It implies not only a visualization, but
also parsing, subtree selection, and some other operations
meaningful for each tree. We fully agree with this concept,
but want to generalize it and thereby extend its scope: In
visual design environments, there are many design patterns
common to a class of applications that cannot be reduced or
mapped to interface representations. In a more specific
domain (visual design environments instead of systems
with a graphical interface), more specialized support can be
given. Temporal and dynamic aspects, for example, are not
at all captured by the static formalisms Nardi describes.
Flow, our example in section 5, is not related to any static
formalism. We also stress the importance of instantiating
those abstract mechanisms within applications, and
providing cognitive access from other possible applications
by explicit analogies.

Gamma et al. (1994) present the concept of design patterns
and provide a collection of those patterns. This collection is

not meant to be "complete" in any sense; the development
of domain-specific design patterns are encouraged. When
provided in application frameworks, design patterns are lo-
cated on a middle level of abstraction. They have very
much in common with the abstract building blocks on the
hidden layer of application frameworks that we describe in
section 4. We argue that paradigmatic applications based on
metaphors, and shallow analogies can make appropriate
design patterns easier to identify for both framework de-
signers and application designers. The description of a de-
sign pattern must show how it is instantiated in a concrete
application Gamma et al. show such instantiations, but do
not base the selection of their instantiations on metaphors;
nor do they provide shallow analogies (except very brief
pointers to other known instantiations of a given pattern).
Our technique of factoring out common target domains of
metaphors as domains for paradigmatic applications can
also be applied by framework designers to identify what
rewarding design patterns could be.

7 Conclusion

Framework designers tend to provide easy-to-use mecha-
nisms on the basis of low-level framework features.
Features of application frameworks for visual design envi-
ronments are naturally concentrated around graphical rep-
resentations and maybe interaction primitives. Application
designers, on the other hand, can be deceived by low-level,
feature-based features. Because graphical representations
and interactions are the most prominent part of their
applications, designers are easily lured into a feature-driven
design process. Their sense of completion is tricked by the
overwhelming visual prominence of graphical
representations. Rapid, but unstructured, initial progress
can turn into a trap if the application turns out to also have
complicated internal structures. Rapid progress at the
beginning of the design process must eventually be paid for
by backtracking, stagnation of progress, corruption of
application architecture, and frustration.

We introduce paradigmatic applications, together with a set
of shallow analogies, as a way to reverse the design process
direction. We want application designers to attack difficult
problems first. To achieve a more risk-driven design pro-
cess, both framework and application designers must con-
tribute. We propose:

• Framework designers should encourage application
designers to start their design process at a higher
level. By examining paradigmatic applications first,
common mechanisms on the "hidden layer of visual
design environments" may be detected and reused.

• A large number of analogous applications should be
provided, but not detailed. They help to identify the
most suitable abstract mechanism.

• Despite all efforts from framework designers,
application designers must avoid doing first what
looks most impressive. Not even the most
sophisticated set of paradigmatic applications and
analogies can compensate for the fact that for each
framework there are applications that do not fit the
framework. Application designers must not rely on
the illusion of guidance by framework features and
follow an entirely opportunistic design process. It is
often advantageous to deliberately follow a risk-
driven design process.

We do not argue against evolutionary design or opportunis-
tic planning per se . However, we are convinced that those
concepts should not be used as a pretext only to indulge in
easy-to-use features at once. A simple, linear process of re-
quirements analysis and (off-line) design should be applied
whenever it is sufficient – at least to get started. The slow
and tedious process of evolution should be reserved to re-
solve difficult problems in which requirements are initially
unclear (Floyd, 1984). Neither evolutionary design nor
opportunistic planning must be abused as an excuse to
neglect systematic solution of technical design problems
resulting from the need to map an application to the appli-
cation framework's construction paradigm.

Acknowledgments

This work has been made possible by a research fellowship
from the German Academic Exchange Service (DAAD),
NSF (No. RED 925-3425 & Supplement), ARPA (No.
CDA-940860), and Apple Computer Inc. We want to thank
our colleagues at the University of Colorado at Boulder,
and at the University of Stuttgart/Germany, who have used
vis-A-vis and Agentsheets in numerous projects. vis-A-vis
would not exist without Horst Lichter.

References

Arias, E.; Anselin, L. (1982): A Modular Integrated Framework
for Impact Assessment and Policy Analysis for Cities. In
Vogt and Mickle (eds): Modeling and Simulation 14, Univ.
of Pittsburgh

Boehm, Barry W. (1988): A Spiral Model for Software
Development and Enhancement; IEEE Computer, vol. 21,
pp. 61-72

Curtis, B.; Krasner, H.; Iscoe, N. (1988): A Field Study of the
Software Design Process for Large Systems.
Communications of the ACM, vol. 31, pp. 1268-1287

Fischer, G.; Girgensohn, A.; Nakakoji, K.; Redmiles, D. (1992):
Supporting Software Designers with Integrated Domain-
Oriented Design Environments; IEEE Transactions on
Software Engineering, vol. 18, no. 6, June

Floyd, C. (1984): A Systematic Look at Prototyping; in: Budde,
Kuhlenkamp, Matthiassen, and Züllighoven (eds.):
Approaches to Prototyping. Proc. Working Conference on
Prototyping, Springer, Berlin, pp. 1-18

Gamma, E.; Johnson, R.; Helm, R.; Vlissides, J. (1994): Design
Patterns, Addison-Weseley, Reading, Mass.

Gamma, E.; Weinand, A.; Marty, R. (1989): Design and
Implementation of Et++, a Seamless Object-Oriented
Application Framework. Structured Programming, vol. 10,
no. 2

Golin, E.J.; Danz, S.; Larison, S.; Miller-Karlow, D. (1992):
Palette: An Extensible Visual Editor; Proc. of the 1992
ACM/SIGAPP Symposium on Applied Computing, pp.
1208-1216, March

Green, T. R. G. (1989): Cognitive Dimensions of Notations,
Proceedings of the Fifth Conference of the British
Computer Society, Nottingham, 1989, pp. 443-460

Lichter, H.; Schneider, K. (1993): vis-A-vis: An Object-Oriented
Application Framework for Graphical Design Tools; Proc.
of the IFIP Workshop on Interfaces in Industrial Systems
for Production and Engineering, Darmstadt, Germany,
March 15-17, Elsevier

Ludewig, J; Bassler, Th.; Deininger, M.; Schneider, K.;
Schwille, J. (1992): SESAM - Simulating Software
Projects; Proceedings of the Software Engineering and
Knowledge Engineering (SEKE) Conference, Capri, Italy

McIntyre, D.W.; Glinert, E.P. (1992): Visual tools for generating
iconic programming environments; Proc. of the IEEE 1992
Workshop on Visual Languages, VL'92, pp 162-168

McWhirter, J.D.; Nutt, G.J. (1994): Escalante: An Environment
for the Rapid Construction of Visual Language
Applications. Proc. of the 1994 IEEE Workshop On Visual
Languages, VL'94, pp. 15-22

Nardi, B.A.; Zarmer, C.L. (1993): Beyond Models and
Metaphors: Visual Formalisms in User Interface Design;
Journal of Visual Languages and Computing, iss. 4, pp. 5-
33

Norman, D. A. (1990): The Design of Everyday Things.
Currency/Doubleday, New York

Repenning, A., & Sumner, T. (1995). Agentsheets: A Medium
for Creating Domain-Oriented Visual Languages. IEEE
Computer, vol. 28, iss. 3, pp. 17-25

Repenning, A. (1994). Bending Icons: Syntactic and Semantic
Transformation of Icons. Proceedings of the 1994 IEEE
Symposium on Visual Languages, St. Louis, MO: IEEE
Computer., pp. 296-303

Shneiderman, B. (1989). Direct Manipulation: A Step Beyond
Programming Languages. In R. M. Baecker & W. A. S.
Buxton (Eds.), Human-Computer Interaction: A
Multidisciplinary Approach, Morgan Kaufmann Publishers,
INC. Los Altos, pp. 461-467

