AGES: Agentsheets Genetic Evolutionary Simulations

by
BRADEN SCOTT CRAIG

B.A. University of North Carolina-Chapel Hill, 1992

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirement for the degree of
Master of Science
Department of Computer Science

1997



Thisthesis entitled:
AGES: Agentsheets Genetic Evolutionary Simulations
written by Braden Scott Craig

has been approved for the Department of Computer Science

Prof. Clayton Lewis

Prof. Alexander Repenning

Date

Thefinal copy of thisthesis has been examined by the
signators, and we find that both the content and the form
meet acceptable presentation standards of scholarly work in

the above mentioned discipline.



Craig, Braden S. (M.S. Computer Science)
AGES: Agentsheets Genetic Evolutionary Simulations

Thesis directed by Professor Clayton Lewis

Agentsheets Genetic Evolutionary Simulations (AGES) is a system devel oped with Agentsheets with
VisuaAgenTalk (AS-VAT) to promote the study of complex adaptive systems (cas) subject to
evolution. AGES can be used to model awide array of cas, from ecological systemssuch asarain
forest to economic systems such as the New Y ork Stock Exchange. Being embedded in AS-VAT,
AGES enables non-expert end-users of all agesto explore interesting and important concepts of cas

through programming.



CONTENTS

INEFOAUCTION. ...ttt 1
AS-VAT: Agentsheets with Visual AgenTalK........cccoveeiinneeinnecnneene 5
Complex Adaptive Systems, Emergence, and Genetic Algorithms................. 5
Complex Adaptive SyStEMS (C8S).....cueererrrerreiirerreereeee e 5
EMEIQENCE......ooeie e 6
GeNetiC AlGOItNMS........cviiciciee s 8
AGES (Agentsheets Genetic Evolutionary Simulations).............cccccceccicunee. 9
GENELIC ACLIONS......cooeereecereee e 9
GENELIC CONAITIONS....c.vveeeeieereireee e 14
AGES SIMUIBLTIONS ..ot 17
GENELiC FISNEANK......c.cveiiiieie s 17
SUGAISCAPE. ......veereeieeieete et sre e e e se s see e s s s e e e sesresee e sseenenrearens 20
EMPITiCal WOTK......cooiieeiiicences et 22
My Experiences With the Science Discovery Kids.......c.ccccovvreencnnennn 22
PrEfBCE. ..ot 22
DAY L. ovoooeeeoeeeeeeeeeeseeseeeee s ees s ee e eenenes 23
(D Y722 24
DY OO 26
ANAIYSIS. .ottt 29
Comparisons With Other Alife SyStems...........ccovenereineereeeree e 30
ECHO. ..ot e e s 30
SUGAISCAPE. ...ttt r e sesre e e 32
OBttt e 32
GENESY S TIACKEN ...ttt 34
Comparison Overview & FUtUre Work...........ocooevveienneiencinceseens 35
AS-VAT Programming MaXimsS.........cccoeerreireinmeensenesesesesesseesee e 36
Maxim: Task-Based DESIQN......ccccevreiirreireeseree e 36
Maxim: FOrms VS, FOrMUIBS .......c.coecirieiiineineeeeseeees e 37
Maxim: EXpliCit ASSUMPLIONS.......cerrreerreiresriesreese e 38
Maxim: Specialization and Redundancy............ccoeerrerenecresenenenennee 39
MaXim: Par@mELErS .........covvrreireereerees e 40
Maxim: Overly General COmMMANGS .........cccovveererreermerenereeesseeseeesenene 41
MaXim: CONSISLENCY ...evverererrerirrireese et 42
Maxim: Use FOrmUlaFiElds ..o 43

CONCIUSIONS......vieceveectee et eetee et eteeete et eete e st e sabeesbesesessseeenseesseeenbeeaseeaseesseean 44



Table

1

TABLES

Overall Comparison Chart Between AGES and other AL ife systems



© o N o g A~ wDNPRE

W oW W WNDNNNRNNNNRNNREREERERREREIRERERREPRPR R
W NP OOV oNO O RMODMREPEOOONOOGMAW®WDDPREO

FIGURES

Crossover w_Cradle command with Mutation BUilt=in ..o 09
Remote Child1,2 COMMANAS .......cceiiiieiiie ettt e se e sttt re e e e esae s essetesrenteseesresrennennens 10
Eat_Neighboring_tem COMMEBNGS........cccoiiiiriieere et st st 11
4hood_Ndes*Eat Max_Food _MOVE COMMANG...........ceiieiieiieie e eee e s sree e sre e e e eneesaeereens 11
4hood Random_MOVE COMIMEANG.........cueiuiieiieeieeieiesie st seesaeseestesreeseesaestesresseseestesrestesnsessessestesaeeseesenses 12
Set Rand_BetWeen COMMIBNG ........oovciiiiieieerieee sttt st b e bbbt b et e ne b e 12
Random_Placement COMIMANG............ocieiieiiieieeie ettt e st e e e te s eesaeesaeesae e beenbeeasesneesreeseeas 12
4hood* See Food in_Neighborhood COMMENG...........c.cecieieiiie e e 14
DO_NO_SEE COMIMENG ..ottt ettt b e et b e et st b e s bt b e bt eneeae b e e bt 15
NeIghDOr_Of COMMANG......c.eieiee ettt a e s bttt be et srenae s 15
4hood* Test_ Number_Neighbors Having_Attribute command..........ccccccoevieveiieiicescce e, 15
REMOLE_TESE COMIMENT. ... ettt ettt ettt st st be s be b et b e s b et e bt s be e sbe st e bt 16
Test_ Absolute Row_Val and Test_ Absolute Column_Val commands..........ccccceeveeiieieeneesecse e 16
Test_String AttribUte COMMANG.........ccoiuieicee e e et sre e 17
LiSt Of @IS S AHITDULES........eiuiceieeee s et re e e e e se e tesaesaeese e e enaenaeneenrennens 18
How gene values relate to MEthOd CallS.........oo.oiiiiiii e e 18
HOW afish USES CrOSSOVEN 10 SPAWIN ...c.veviiieiictieeeiesteste sttt sie et e st e tesaeste s e esaesae s e tesaestesaesseenaesenseseens 19
Cralg'SWOK FOF D@Y2..... ittt b e et b e sttt b e st b e sb et b e s b et e bt ebeseeneebesbeneas 25
Rulesfor Phillip's egalitarian tel€PhONES ..........coo it e 26
Rules for Craig's reproducing Space CrUNCRENS .......c..ccuiiiiie it sttt e sne 27
IVLBIK'S TEBAGES. ...t bbbttt b e et b s bt b et b st et b e e e st sbeneene st et bt 28
Form-based PollULiON COMMANG ..........ooiiiieie e ettt se et e e 37
Formula-based 4hood ndes*eat_ max_food _move w_pollution command............ccccceeveeeveeeesesesennns 38
AHo0d* Random_MOVE COMIMENT ........c.eiuiieiiriiieterieistesee sttt b e bbbt b e b e b a s nnenes 39
Revised Random_Move_On commands with no relevant assumptions left implicit ..........c.ccoceiiiiinene 39
Set Rand_Under and Set. Rand BEtWEEN COMMEBNGS...........coeerieeeieiesiese e eteeeeee et e e sre e 40
4Hood_Ndes*Eat_Max_Food_MOVE COMMENG.........cccoiiriririeiriiniecsiesieese e 41
Parameterized version of the Eat_ Max_Food Move COMMAaNG...........ccceeveecieeieeiienie e see e 42
Two examples of the Test_ Absolute_ Column_Val command ...........ccceeveveieneeiere e 42
SEE ANA SEE A COMMIBNAS .....veiiiitieeterteeet ettt sttt et st b e se bt b et ek e s e et et e sa e st sbeseebesbe e ebesbeneas 43
Next_to and Neighbor_Of COMMENGS ........c.oiiiiiii e e 43
[INT=TTe gl oTo gl o) ore] 1T 47 0o SRS 44

Neighbor_of command wWith fFormulafield...........ccoeiiriini e 45



I ntroduction

Agentsheets Genetic Evolutionary Simulations (AGES) is a system that has been developed within
Agentsheets with VisualAgenTalk (AS-VAT) to enable awide audience of non-expert end-usersto
study complex adaptive systems (cas) through programming. Murray Gell-Mann’s broad definition of

complex adaptive systems shows how many phenomena can be described in terms of cas:

| favor a comprehensive point of view according to which the operation of CAS encompasses such
diverse processes as the prebiotic chemical reactions that produced life on Earth, biological
evolution itself, the functioning of individual organisms and ecological communities, the operation
of biological subsystems such as mammalian immune systems or human brains, aspects of human
cultural evolution, and adaptive functioning of computer hardware and software. [13]
With such anotion of casin mind, it is not surprising that one would want to study them; cas are
pervasive and can be found in many different domains of inquiry. Aswell, complex adaptive systems
tend to be characterized in terms of the interactions between their parts as opposed to being defined in
terms of properties that components exhibit when studied in isolation [18, 27, 53]. The end-users that
AGES seeksto introduce to the study of cas might be middle-school students playing with a fish tank
simulation, or they might be middle-aged professionals with interestsin Artificial Life. In any case,
such users are not experts in computer science, so they often lack the skills to program in traditional

high-level programming languages such as C/C++ or Java.

Thisisfineif usersonly want to explore cas by playing with simulations that are pre-made for them.
(Or maybe they just want to read about cas.) They might be able to modify parts of these programs
within certain limits, but it is unlikely they will be able to change the behavior of their programsin

(tm)

ways not predefined by the original programmers. For example, in SimCity" " users are able to place
houses, factories, parks, etc. in different configurationsin order to observe the interactions between
them. Cities will prosper, become more or less industrialized, etc., according to decisions a user makes.
But no such user can change the way a house or a factory behaves. No users will be ableto create a
new kind of “houseboat” for instance. Such changes would be beyond the realm of allowable changes
that were predefined by the original programmers of SimCity™™. To make these changes users would

need to construct new entities through programming.

The above considerations lead one to make comparisons between Instructionist learning on the one
hand and Constructionist learning on the other [38, 46]. Instructionist techniques for learning about
complex adaptive systems might involve reading books about them. To a certain extent, instructionist
approaches to learning focus on alearner as a passive recipient of ready-made knowledge. Knowledge
exists as predefined and communicable. A student'sjob is then to absorb such predefined knowledge.
Contrastingly, constructionist approaches to learning focus on alearner's ubiquitous nnter pretations of

any knowledge he/she learns. In this sense, a person's social, economic, and cultural histories affect



any knowledge a person learns. Each student must construct his’/her own knowledge because each must
interpret any incoming eventsin order to understand them and infuse them with meaning. Learning is

always an active event of constructing knowledge as opposed to a passive event of receiving it.

With the above considerations in mind, reading might be seen as afairly instructionist approach to
learning when compared with computer programming. 1 A reader does not literally rewrite passages of
abook in order to learn from it; he usualy just reads what an author has already written in order to
learn about a book’ s message(s). In this sense, a book instructs readers about knowledge it contains.
Within limits, readers do not construct knowledge they obtain from a book; they receive such

knowledge.

Between reading and computer programming lie games like SimCity™™. In these games alearner
molds his knowledge in order to learn. As described above, alimited modifying/molding capability is
afforded players of such strategy games. Players learn by assembling predefined pieces into more
complex aggregate constructs. The interactions between different assemblages of premade components
will indeed give rise to widely varying system-wide properties. Still, a user can only assemble

“worlds” with pre-made pieces; no new pieces can be generated/programmed by users.

Finally, at the Constructionist end of the spectrum one finds activities like "programming in
traditional high-level programming languages such as C/C++ and Java." By definition, programming
aims at constructing computatonal entities. In using languages like C/C++ and Java to explore complex
adaptive systems an expert programmer can create arbitrarily complex interactive simulations. Within
such sims a user might assembl e predefined pieces in addition to creating new ones. However, most
users are not “expert users’ and are either unwilling or unable to create such complex constructsin
traditional high-level languages. Though these languages are highly expressive, they are not very
usable. Thereisavery steep learning curve for becoming a C++ programmer capable of creating
simulations, or even agents within them, that are interesting. Again, this steep learning curve keeps
most users from becoming programmers in traditional high-level languages. Such a deterrent, in turn,

hinders any constructionist approach to studying cas through programming in such languages.

But why would users want to program in order to study cas? Is the study of complex adaptive
systems a domain where constructionist |earning techniques can be profitably applied? Given that

interesting properties of cas are, by definition, dependent upon the interactions between parts that make

1 Thisis description is not uncontroversial. Constructionists would argue that in reading (and in
linguistic discourse in general) interpretation gives meaning to atext. In turn, such interpreations are
inevitably constructed by readers as opposed to being received by them as ready-made knowledge

chunks.



up the system, studying cas seems especially well-suited to constructionist approachesto learning
utilizing programmabl e simulations. Computer simulations can serve to illustrate and make intuitive
the interactions that define cas. Resnick and other researchers at MIT explicitly promote such
approaches to learning [45, 46, 47, 51, 12]. Their ideas of Constructionism center around enabling
learners to construct personally meaningful artifacts that exemplify ideas about domains they are
interested in. Computer simulations are flexible enough in their scope to enhance learning about many
disparate domains in novel and engaging ways[51] . More specifically, agent-based simulations of

different domains pump intuitions in ways that raw numbers or even graphs just can't.

Relatedly, Csikszentimihalyi has written extensively about many aspects of human creativity [10].
He argues that the role of play is central to living and thinking creatively. It seems quite clear that
students’/children’s creativity can be enhanced if they are given more freedom to play with ideas they
encounter in classroom settings. Computer simulation tools like AGES can aid in creating such
freedom without totally abandoning structure in the classroom. Hopefully, through the use of tools like
AGES and AS-VAT kids will be motivated to construct personally meaningful worlds for themselves
that allow them to actively engage with ideas that were previously constrained to pencil and paper

presentations.

At MIT Mitch Resnick has undertaken studies with high school students to explore ways in which
simulations can aid kids in understanding complex self-organizing processes. (In the following
simulation, no explicit adaptive mechanisms are programmed into the agents of the system.
Nevertheless, complex self-organizing properties of the system emerge.) For example, in his Turtles,
Termites, and Traffic Jams Resnick speaks of atermite simulation that he built with a high school
student using StarLogo. The object of this simulation was to get logo termites to gather wood chips
into piles. A couple of approaches emerged that were more or less complicated. The first approach was
more simple. All the termites followed the following simple strategy:

-1f you're not carrying anything and you bump into awood chip, pick it up.

-If you are carrying awood chip and you bump into another wood chip, put down the wood chip
you are carrying. [46]

Both Mitch and Callie were skeptical about this strategy. (It had been suggested by someone else.)
But this strategy performed fairly well. The number of piles decreased monotonically as the simulation
ran. It worked because, as termites picked up wood chips and dispersed them into different piles,
certain piles “became extinct”. The former piles would find themselves holding no wood chips. Once
this happened, no more wood chips could be dropped at that site. Over time, this led to a steadily

decreasing number of wood chip piles.

Still, the piles seemed to decrease at arather slow rate. To aleviate this problem, Mitch and Callie
added a new rule to the strategy that “ protected” larger piles. Using this augmented strategy, termites



could only take wood chips away from piles with nine or fewer chips. Thisindeed led to quicker
convergence of wood chipsinto smaller piles, but ultimately, this strategy reached an unbridgeable
limit. After all the wood chips were located in piles of ten or more chips, no more chips could be
moved. Although, this strategy initially led to more rapid convergence, it could never lead to a state
where al the chips were located in one pile. Both Mitch and Callie preferred the feel of the ssm where
termites acted according to the original simpler strategy. This strategy eventually leads to one pile
containing all the wood chips even though it is less efficient as wood chips are first gathered. Perhaps
more interestingly, as termites follow this rule piles change size and move around, and as Callie put it,
“It [the system] feelsmore dlive.” (46: p.75-81).

Such an example shows how many simple and homogeneous agents interacting can bring about
interesting and global behavior. Both Mitch and Callie were skeptical about whether their smple
strategy would work. But by incorporating such local rulesinto a StarLogo simulation they were able
to watch the effects of their strategy and to gain new insight into it. Only after watching the sim did it
dawn on Resnick that being in a“trapped state”, i.e. that of containing no wood chips, would have a

grand effect on the formation of termite pilesin general [46: p.79].

These types of interactions with computer simulations highlight the intuitive power that sims hold. It
isdifficult, and in some cases impossible, to think of what will happen as many agents act in parallel.
But the world isahighly parallel place.[26, 46] Itisfull of “agents’” acting simultaneously. Before the
advent of computers, it was far too tedious to carry out by hand the huge numbers of calculations that
describe local interactions leading to complex global behavior in situations modeled by today’ s agent-
based simulations. With the advent of high speed computers we can today tackle problems, via

simulation, that were deemed unapproachable a mere fifty years ago.

When Mitch and Callie programmed their termitesin StarL ogo, they didn’t have to watch graphsto
notice that “the number of piles decreased monotonically.” They saw the number of piles steadily
decrease as they watched their termites pick them up and move them from pile to pile. Such metaphor-
builders as these ssimulations allow people to use their everyday-tacit knowledge in dealing with
computers. Turkle explores such “ soft” approaches to computersin her book “Life on the Screen.” As
Turkle points out, it isironic that a machine that has been so maligned by many on the grounds that it
isjust a“number cruncher” has been such an effective tool for developing more informal approaches to

math and science. [51]

| submit that computers can also be thought of as language-crunchers. Computers have been
responsible for much insight into formal and informal languages since their inception and are indebted
to such fields for their very existence. Today research aboundsin the field of Computational
Linguistics, Natural Language Processing, Formal Languages, etc. I conic programming languages,

such as VAT, might be viewed as informal languages made possible, and just as importantly, made



accessible, by new advances in computing technology. They push the boundaries of how we
understand language. By focusing on behaviors of interacting agents, they provide akind of animated
theatre-canvas upon which interested end-users can create fantastic tales to be played out in full
splendor [39, 42].

The problem this thesis addresses might then be stated as follows: Using programming, how can one
best promote constructionist learning in studying cas? A computational tool for studying cas should
allow usersto program the behavior of agentsinteracting to form the casto be simulated. Such
flexibility allows usersto create varying simulations to study different cas with only one tool. Still, in
providing such programmability any computational tool/language will be faced with a trade-off

between expressiveness and usesbility.

Traditional high-level languages like C/C++ or Java are very expressive, but they are not easy to use.
Again, learning curves for such languages are steep enough to prevent the average user from
programming in them. In contrast, languages/tools like AGES are less expressive but more easily used.
These languages are often tailored to supporting specific domains[41, 43]. The domain of complex
adaptive systems subject to evolution is the domain of AGES. AGES allows usersto program the
behavior of interacting cas agents through tactile programming in VisualAgenTalk [40]. The
programming approach of VAT allows users to quickly program the behavior of computational agents
without the need to focus on complicated syntax. As opposed to traditional high-level languages, the
learning curve for VAT isfairly flat. Users can quickly learn and use VAT to create and program novel
agents. Preliminary studiesindicate that AGES' commands are also easily understood and used in
programming VAT agents.

In addition to providing programmable agents, a domain oriented design environment for studying
cas should also allow usersto easily change the look of agents. Thiswill allow usersto create
computational agents that resemble real-world agents they represent. Sharks that eat fish should look
like sharks, and the fish they eat should look like fish. Grey and yellow blobs representing sharks and
fish, respectively, aren’t as convincing as life-like iconic agents. The ability to create iconic agents can

be important in motivating and encouraging end-users to program in AGES.

AGES exists as a number of commands in Agentsheets that are aimed at supporting the
programming of simulations for exploring complex adaptive systems. In order to understand AGES
one must first understand a bit about Agentsheets with VisualAgenTalk.

ASVAT: Agentsheetswith VisualAgenTalk

ASVAT isan visua programming language/environment that enables end-usersto create Sim-
City(tm) like simulations [40, 41, 43, 44]. Agentsin AS-VAT can be created by end-users using built-
in drawing palettes or by capturing images from the screen. Agents are programmed by dragging and



dropping conditions and actions in an agent’ s rule-editor. An agent’s rule-editor contains lists of if/then
rules that define an agent’ s behavior. More complicated programming constructs can also be achieved
by embedding method/function calls within an agent’ s if/then rules. This message-passing capability
allowsa VAT developer to program arbitrarily complex computational structuresto define the

behavior of an agent.

To create asimulation aVAT developer places agentsin a2-D grid called aworksheet. Worksheets
and AS-VAT in generd are based on concepts found in spreadsheet programming [44, 35]. Cellsin a
worksheet can contain multiple agents. Agents interact in a worksheet by checking conditions, based
on information about themselves or on information obtained from agents in other cells, and executing
those actions whose conditions are met. The actions of only one rule per method will be executed for
any agent, but since agents can call other methods in their rules, an agent might execute an arbitrary

number of actions located in an arbitrary number of rules during any given time step.

Complex Adaptive Systems, Emer gence, and Genetic Algorithms
Complex Adaptive Systems (cas)

AS-VAT canreadily be used to model different complex adaptive systems. AS-VAT agents most
often act according to rules based on local information. Such agent-based local rules often bring about
complex nonlinear interactions between agents behaving within a worksheet over time. From this play
of interacting agents, global behavioral patterns for the system as awhole often arise. These patterns

aretypical of complex systems.

Complexity also arises when the primitive components of a system can change or evolve over
time. Evolution occurs in populations of agents that change over generations. Evolution is genotypic.
Learning occursin individual agents that adapt to their external environments within agiven lifetime.
Learning is phenotypic. Systems that exhibit evolution and/or learning might be called complex
adaptive systems [18]. Complex adaptive systems are often best described in terms of nonlinear
relations between their simpler lower-level components. Within AS-VAT, agents become the lower-
level components of systems modeled in different simulations where agents interact on a grid-based
worksheet.

Emergence

Complex processes often arise as aresult of interactions between individuals and their environment
(which may include other individuals). Sometimesit is difficult, if not impossible, to describe these
processes with the vocabulary used to describe individual behavior. The need to create new categories

of description in order to describe a process might indicate that the process described is an emergent



one. Steels promotes the use of such a*“new vocabulary” criterion in recognizing emergent phenomena
in the following passage:

From the viewpoint of an observer, we call a sequence of events a behavior if acertain regularity
becomes apparent. This regularity is expressed in certain observational categories [of agents], for
example, speed, distance to walls, changesin energy level. A behavior is emergent if new
categories are needed to describe this underlying regularity that are not needed to describe the
behaviors (i.e., the regularities) generated by the underlying behavior systems on their own....
Thus, the regularities observed in the collective behavior of many molecules requires new
categories like temperature and pressure over and above those needed to describe the motion of
individual molecules. [49, emphasis added)]
Underlying behavior systems such as molecules can generate regularities, i.e. global system-wide
properties like temperature and pressure, that are not properties of these same underlying behavior
systems when they are observed in isolation. No molecule has a temperature in isolation. Temperature
isaproperty of groups of molecules that collide and release energy in doing so. A moleculein a
vacuum will have no temperature. Temperature is a new category introduced to describe interactions
between components of a system that are obviously not present when a single component actsin
isolation. This*“new vocabulary” criterion, bound up with notions of global vs. local behavior, is

important for recognizing emergence.

Steels also focuses on a distinction between controlled and uncontrolled variablesin order to define
emergent properties. Controlled variables are those that can be manipulated directly by a system. For
example, if an autonomous agent can directly manipulate the speeds at which its different motors
operate, it has direct control over the variable(s) “motor speed. Uncontrolled variables cannot be
directly manipulated within a system. Clark offers a good example of uncontrolled variables when he
speaks of Hofstadter’ s operating system that begins to “thrash around” once about thirty-five users are
on-line:

In such a case, Hofstadter notes, it would be a mistake to go to the systems programmer and ask to
have the “thrashing number” increased to, say, sixty. The reason is that the number 35 is not
determined by an inner variable upon which the programmer can directly act. Instead: “That
number 35 emerges dynamically from a host of strategic decisions made by the designers of the
operating system and the computer’ s hardware and so on. It is not available for twiddling”
(Hofstadter 1985:642) [9].

These examplesillustrate that issues of collectivity are often intertwined with issues concerning
controlled vs. uncontrolled variables. The uncontrolled “thrashing number” of Hofstadter’ s operating
system is uncontrolled precisely because it results from the interactions of numerous parts of the

computer. Clark makes the notions of collective activity and control explicit when he defines

“emergent phenomena’ in the following way:

Emergent phenomena, as| shall use the term are thus any phenomena whose roots involve
uncontrolled variables and are thus the products of collective activity rather than of dedicated
components or control systems[9].



If asystem has direct control over avariable, no collective activity is needed to change the value of
thisvariable. The variable is “twiddle-able”. When a system has no direct control over avariable,
adjusting its value in predictable ways involves understanding the interactions between many
components of the system. In this sense, issues of control and collectivity are often intimately linked,

and both are important in recognizing and defining emergent properties of a complex adaptive system.

Another important aspect of complex adaptive systems revolves around the nonlinear relations that
often hold between their parts. Chris Langton speaks of non-linear systems as those in which the
behavior of the whole is more than the sum of its parts. In contrast, the behavior of linear systemsis

best characterized as the sum of its parts. Langton expands on these notions when he writes:

Linear systems are those which obey the principle of superposition. We can break up complicated
linear systems into simpler constituent parts, and analyse these parts independently. Once we have
reached an understanding of the partsin isolation, we can achieve a full understanding of the
whole system by composing our understandings of the isolated parts. Thisis the key feature of
linear systems: by studying the partsin isolation, we can learn everything we need to know about
the complete system.

Thisis not possible for non-linear systems, which do not obey the principle of superposition. Even
if we could break such systems up into simpler constituent parts, and even if we could reach a
complete understanding of the partsin isolation, we would not be able to compose our
understandings of the individual partsinto an understanding of the whole system. The key feature
of non-linear systemsisthat their primary behaviours of interest are properties of the interactions
between parts, rather than being properties of the parts themselves, and these interaction-based
properties necessarily disappear when the parts are studied independently. [26 emphasisin
original]

Langton emphasizes the need to analyze the behavior of parts of a system in situ. Similar views are

espoused by Wimsatt in his compelling article on “Forms of Aggregativity:”

We have seen avariety of ways in which the properties of the whole may be “more” than the
“sum” of its partsif by this we mean that properties of the whole depend not only upon the
presence of the parts but also upon how they are arranged and how they interact. Probably the
majority of interesting properties of complex systems are of this sort [53].

In Wimsatt’ sterms, if a property is aggregative, it is not emergent; it isjust the sum of its parts. Only
non-aggregative properties can be emergent. Interestingly, Wimsatt al so draws a connection between

emergence and reductionism:

It is worth noting that in the progress of areductionistic research program earlier simpler models
which tend to treat parts as isolated and as characterized in terms of context-independent monadic
properties are replaced by later more complex modelsin which relational properties of the parts
enter and their behavior isthus rendered increasingly context-dependent.... If this pictureis correct
then we have, if anything, the opposite of the picture painted by the positivists. Rather than
emergence disappearing with the progress of reductionistic theories, we have it growing in
demonstrated scope and importance as we move from the earliest and simplest models to more
complex and realistic ones. Thus some holists, at least, can draw only comfort from the continued
successes of reductionistic approaches [53].

It is beyond the scope of this thesis to dealve deeply into matters relating holism to reductionism. In

any case, “reductionist” or not, simulated studies of caswill be most helpful in exploring those



relations between parts of a system that are context-dependent and nonlinear. From different
perspectives, groups of these relations can be thought of as uncontrolled variables of a system. Such
relations in a system will generate emergent properties. Emergent properties can appear in systems
with non-adaptive components merely through their interactions. Mitch and Callies termites are such
agents. They always follow the same two simplerules, yet interesting pile-building properties of the
system emerge. Similarly, molecules are non-adaptive agents that interact to create emergent properties

such as temperature and pressure.

But there are also many complex systems whose agents are adaptive. As previously mentioned, these
agents will often be subject to evolution and/or learning. In studying complex adaptive systems subject
to evolution genetic algorithms (GA's), loosely based on principles borrowed from biological genetics,
will without a doubt play arole. Such algorithms provide computational simulations the ability to

explore emergent properties exhibited by processes similar to biological evolution .
Genetic Algorithms

Genetic Algorithms (GA’s) were first introduced by John Holland in his book Adaptation in Natural
and Artificial Systems [20]. Since then, many variations of the GA have been implemented [24, 25,
22]. GA’s are used to simulate evolution in computational systems. The most simple versions of the

GA contain selection, crossover, and mutation operators described by Melanie Mitchell below:

Selection. This operator selects chromosomes in the population for reproduction. The fitter
the chromosome, the more times it islikely to be selected to reproduce.

Crossover This operator randomly chooses alocus and exchanges the subsequences before
and after that locus between two chromosomes to create two offspring. For example, the strings
10000100 and 11111111 could be crossed over after the third locus in each to produce the tow
offspring 10011111 and 11100100. The crossover operator roughly mimics biological
recombination between two single-chromosome (haploid) organisms.

Mutation This operator randomly flips some of the bitsin a chromosome. For example, the
string 00000100 might be mutated in its second position to yield 01000100. Mutation can occur at
each bit position in a string with some probability, usually very small (e.g. 0.001). [33]

Standard GA’s often use some form of Replacement as well. The replacement operator keeps the
population size constant. In contrast, some GA's do not maintain a constant population size. The actual
form and role of genomes in different implementations of the GA varieswidely. (Thiswill become

evident as different systems using GA’s are described in later sections.)

The notion of fitnessis also integral to GA’s. Fitnessis a measure of “how well” and organism s
surviving in a given environment. Some GA’s make use of exogenous fitness functions [20].
Exogenous fitness functions are external to an agent and are explicitly defined. An agent’ sfitnessis
calculated according to this function. In modeling real-world casit is often impossible to determine the

form of an exogenous fitness function. In these situations fitness is said to be endogenous [19, 26, 4].



Endogenous fitness is internal to an agent and is defined only implicitly. Holland characterizes systems

with endogenous fitness when he writes:

Discovering lever points and other critical cas phenomenais particularly difficult because contexts
and activities are continually changing as the agents adapt. It is rare that we can even determine
the utility of agiven activity. The utility of the various activities of a given agent depends too
much on the changing context provided by other agents. In mimicry, symbiosis, and other
properties, the welfare of one agent depends critically on the presence of other, different agents.
Fitness (reward, payoff) isimplicitly defined in such cases. We cannot assign afixed fitnessto a
chromosome because that fitness, however defined, is context dependent and changing. So it isfor
all cas. Our first order of business, then, isto provide a class of modelsin which the welfare of an
adaptive agent stems from itsinteractions rather than from some predetermined fitness function.
[19]

In the next section | present the commands that embody AGES. AGES commands provide end-users
the ability to easily program agent behaviorsin Agentsheets such that interacting agents in a worksheet
can easily be interpreted as forming complex adaptive systems in which intersting system-wide
properties emerge. Crossover in AGES is geared toward operating in systems where fitnessin
endogenous. Such systems are more like many real-world cas whose shapes and forms are constantly

changing.
AGES (Agentsheets Genetic Evolutionary Simulations)

The commands making up AGES are shown in Appendix |. A subset of these is described below.
When reading about these commands, the reader should keep the following “notes’ in mind:

1) A *“4hood” prefix in acommand’stitle indicates that the command operates over avon
Neumann neighborhood (4 neighbors: N, S, E, W). By default, relevant commands with no
“4hood” prefix in the title operate over Moore neighborhoods (8 neighbors: NW, N, NE, E,
SE, S, SW, W).

2) A *“Des’ prefix in an eating command'’ s title indicates that it executes destructively.
Destructive eating commands erase “ eaten” agents during execution. A “Ndes’ prefix in an
eating command’ s title indicates that it executes non-destructively. Non-destructive do not

erase “eaten” agents during execution.

3) Formulafields can take numerical values, attributes, and formulas involving valid
combinations of such data-types as arguments. Appendix 2 shows alist of valid formula
types.

Genetic Actions

Figure 1 shows a version of the Crossover_w_Cradle command used to introduce a form of genetic
algorithm into AGES.



Crozsover _w_cradle

T

Crossover _Points _

FMutation_Rate [per 10000
5

Figure 1: A version of Crossover with Mutation built-in.

The Crossover_w_Cradle command treats attribute values of AS-VAT agents as alleles on a haploid
genome. It splices these genomes together as shown in Appendix 1b and as described by Mitchell
above. It also allows users to define the direction in which to search for a parent. (See Appendix lafor
a“neighborhood” version of crossover.) Since this command looks to its neighborsto find a mate, it

can be described as employing a spatially-constrained sel ection mechanism.

Aswell, being situated in AS-VAT, my crossover command asks usersto choose a“Cradle” in
which to place their children. If two agents of the specified cradle-type are found in the Moore
neighborhood (8 neighbors) of a parent initiating crossover, two children are created and placed in their
“cradles.” If only one cradle-type agent is found in the vicinity one child is created. Else, no children
are created. Finally, users choose the number of crossover points to use during the crossover operation
and the likelihood (in 1000’ ths) that point mutation will occur at each allele in the genome. (If a point
mutation occurs 5 units are added or subtracted (random decision as to which) from the donated allele

value at that locus.)

Figure 2 shows the set of “Remote_Child_1,2" commands to be used in conjunction with one of the

crossover_w_cradle commands.



_ p—

Figure2: The“Remote_Child1,2” commands used to initialize variables of children created
with the above crossover command.

These “Remote_Child1,2" commands allow an agent to set attributes of its children to user-specified
attribute values and also to add and subtract from these attribute values. They are made to be used in
conjunction with one of the crossover commands found in Appendix 1a. Any crossover command sets
appropriate global variables that indicate the position, relative to the parent initiating crossover, of each
child created. For thisreason, “Remote_Child1,2” commands should be used directly after crossover is
used, before any agents move or perform any other actions. If this convention is not adhered to, use of

these commands will have mixed and unpredictable effects.

Figure 3 shows two versions of the Eat_Neighboring_Item command.



Les*¥eat_neig
Fizchi -

Add Hern Yalue of Att
energy

as reward for eating iterm.

Les ¥aat_neig ing_itern_rmove

Fizczhi

Add tern Yalue of &t

energy

as reward for eating itern.

Figure 3: Eat_Neighboring_Item commands.

These commands tell an agent to “eat” a neighboring agent of a user-specified type <Fisch1> and to
extract the value of a user-specified attribute of this prey/food <energy> as areward for eating the

item. Both commands shown execute over Moore neighborhoods.

The only difference between the Des*Eat_Neighboring_Item command and the
Des*Eat_Neighboring_Item_Move command is fairly straightforward. Agents executing the latter
command move to the cell previously inhabited by their just-eaten prey/food; agents executing the

former command don’t. Each of these commands eats the first prey/food agent that it finds.

Figure 4 shows the 4hood_Ndes*Eat Max_Food Move command.

dhood_ndes ¥eat max food rmove

Food
ood_Attribute_to_Eat

Enet gy

eighborhood _Depth

Figure 4: 4hood_Ndes*Eat_Max_Food_M ove command.

This command tells an agent to eat a user-specified food-type <Fisch1> and to extract a user-specified
attribute value <energy> from the food-type agent as areward for eating the food. The food-type agent
in the executing agent’ s von Neumann neighborhood of user-specified neighborhood _depth <2> with
the highest food-attribute value is eaten. The depth of the neighborhood to be searched is specified by

users in a formula-window.

Figure 5 shows the 4hood_Random_Move command.



dhood #randorn rroye B ;
vision
zells awa

Figure5: 4hood_Random_ Move command.

This command tells an agent to move a user-specified number <vision> of cells away in arandomly
chosen direction. The command executes over avon Neumann neighborhood. The step size of the

command is entered into aformulafield.

Figure 6 showsthe Set_ Rand_Between command.

Figure 6: Set_Rand_Between command.

The Set_Rand_Between command allows users to initialize attributes <vision> to random values
within a given range according to user-specified values <5, 15> entered into the command’ s formula
fields. This command can be especially helpful in seeding a population with appropriate attribute

values.

Figure 7 shows the Random_Placement command.

andom placement at

aximum-Eow-of
20
aximum-Column-of

20

Initializing-&ttribute

initialized

Figure 7: Random_Placement command.

The Random_Placement command is used to place copies of executing agents at random cellsin the
worksheet. Users specify aregion of the worksheet where the agent is to be placed by entering
maximum row <20> and maximum column <20> values for the newly replicated agent in the given
formulawindows. The agent is assumed to have arule structure such as that shown in Appendix 3.

With such arule structure a user can specify an initializing attribute <initialized> in order to initialize



the agent during the time step immediately following its random placement. This command is most

often used to maintain a stable population in sims where agents have finite lives.
Genetic Conditions

Figure 8 shows the 4hood* See Food_in_Neighborhood command.

dhood ¥zee_food_in_neighborhood

Meighborhood _Depth

Figure 8: 4hood* See Food_in_Neighborhood command.

The 4hood* See Food in_Neighborhood command looks for a user-specified food-type <Fischl>
agent in atitle-specified neighborhood type of user-specified depth <vision>. This command is often
used in conjunction with one of the eating action commands described above. It provides flexibility to
users by allowing to them treat different agents as food and by allowing them to enter attribute-based
formulasin order to specify neighborhood_depth. For example, this command could be used in
implementing long-range vs. short range vision where short range vision searches over aMoore
neighborhood of normalvision depth while long range vision searches over a von Neumann

neighborhood of longrangevision depth.

Figure 9 showsthe Do_Not_See command.

Do not see

Figure9: Do_Not_See command.

The Do_Not_See command is just the negation of the normal See command found in AS-VAT's
default command palette. It is extremely useful in defining sims that will contain shared agents. For
example, if one creates a sim with shooting space ships, one might want to determine an “immunity
list” of agents not susceptibleto laser fire. The Do_Not_See comand could be used to specify thislist.
Then, adding an agent to a given simulation might only require that a developer equip his’her new
agents with a standard method defining what to do when one gets “hit.” If sharing agents between sims
isto be agoal, negation commands (and perhaps a built-in negation operator) will be a great additions
to AS'VAT command palettes.

Figure 10 shows the Neighbor_of command.



Figure 10: Neighbor_of command.

The Neighbor_of command can be used in any situation where an agent wants to check a Moore
neighborhood of depth 1 for the presence of comparator < “>* > a user-specified number <1> of a
user-specified agent-type <Fisch1>. Such considerations are relevant to many kinds of actionsin sims;
e.g. pollution diffusion, mating, food-search, etc. In general, such considerations are integral to

research involving cellular automata or similar systems.2

Figure 11 shows the 4hood* Test_ Number_Neighbors Having_Attribute command.

dhood ¥test nurnber neighbors having attribute

pollution
Meighborhood_Lepth

wigion + 1

Figure 11: 4hood* Test Number_Neighbors Having_Attribute command.

This command can be used to test if comparator < “>* > a user-specified number of neighbors <5>ina
title-specified neighborhood-type <4hood> of user-specified neighborhood_depth <vision + 1> of a
given agent have a user-specified attribute <pollution>. (The above command checks its Moore
neighborhood of depth “vision + 1" to seeif greater than 5 agentsin this region have pollution
attributes.) This neighborhood-perusing command is also useful when programming cellular automata

and like entities.

In my opinion, it isgood to provide language pieces that address varying levels of discourse. For
example, it isdifferent to test if an agent “has a given attribute” as opposed to testing “the value of a
given attribute” that an agent definitely possesses. Even if one can always find away to pose one type
of question in terms of the other, (which is doubtful, e.g. think of situations where attribute-less agents
need to be initialized to contain certain attributes with certain initial values) the fact that these two
approaches point to different ways of representing a given question lends credence to the idea that both
forms of representation should be provided by a good language. i.e. It is often agood ideafor a
programming language to give users more than one way to implement their ideas. Providing

commands that address different levels of discourseis one way to achieve this language-design goal.

2 Cellular Automata have been extensively studied and have a vast literature associated with them.
To begin see[52, 27, 54, §].



Figure 12 shows the Remote_Test command.

Rernote_test ﬂ

Figure 12: Remote Test command.

This command tells an agent to check a user-specified attribute value <energy> of an agent at the cell
in a user-specified direction 1 cell away to seeif this attribute value is comparator < “>" > a user-
specified value <29>. This command can be used in many situations; e.g. an agent might check its

northwest neighbors energy value to seeif it is high enough for mating to ensue.

Figure 13 showsthe Test_ Absolute Row _Val and Test Absolute Column_Va commands.

Test absalute Fow wal n

rnidpoint + 10

Test absolute colurn wal n

Figure 13: Test_ Absolute Row Val and Test_ Absolute Column_Val commands.

These commands tell an agent to test itself (or any of its Moore neighbors at depth 1) to seeif itsrow
or column value (xposition and yposition in aworksheet) is comparator < “>" > a user-specified
formula value <e.g. midpoint + 10>. These commands can be used in situations where an agent
requires information about its own position within aworksheet in order to execute a given rule. For
example, | use these commands to help implement seasons in one of my Sugarscape sims. Winter and
summer aternate between northern and southern sugar& spice agents (i.e. those located above and

below the middle row of the worksheet, respectively) every seasonchange time steps.

Figure 14 showsthe Test_String_Attribute command.



zeasan

Figure 14: Test_String_Attribute command.

This command tells an agent to test if a user-specified attribute <season> is string-comparator <String-
Equal> a user-specified string <winter>. This command should be useful in numerous situations. For

example, | also use it in making sugaré& spice agents change from season to season as described above.

AGES Simulations

In this section | will present the different smulationsthat | have so far generated with AGES.
Hopefully, these smulations will give the reader afeel for the variety of casthat can be implemented
in AGES viaend-user programming in VAT. No programming in LISP is necessary to generate the

following AGES sims.

Genetic Fishtank

By using combinations of the AGES commands shown in Appendix 1a coupled with the traditional
AS-VAT commands | have been able to generate simulations of a number of different complex
adaptive systems. My first simulation stems from the work of Gorman, Papp, and Pedritti [14]. GPP
created a Genetic Fishtank Project in Agentsheets that promoted evolution of agents solely through the
use of a mutation operator. More importantly, GPP introduced an interesting use of AS-VAT agent
attribute values in their study. Designated attributes of AS-VAT agents are treated as genes. These
genes take on integer valuesin the range [0..100] and represent independent probabilities that certain
methods of an agent will be called at each time step. | use this mechanism to promote evolution in
AGES. AGES also adds a host of other commands, including crossover, that were not available in the

original Genetic Fishtank Project. (See Appendix lafor alist of all AGES commands.)

In the Genetic Fishtank fish eat plants, and sharks eat fish to survive. Plants grow at a user-specified
rate and have the ability to spread to different sites. The fish and the sharks in the tank reproduce and

contain genes that are subject to simulated evolution. Figure 15 shows alist of afish’s attributes/genes.



=—— lalues: a FISCH1

Age 1]
Down_3 65
Eat 10
Energy 100
Generation |1
Horizewad _Cr |49
Left & 5
Right_G 61
Up_ G 37
Vereval G |1
[_ok_]

Figure15: List of a Fish’s attributes.

Each gene value aboveisindicated by a“_G” suffix. (Other non-gene attributes are also manipulated
by the crossover command. This affects evolution by changing the schema boundaries of the genome
[18, 20]. However, since no effort is being made to track and analyze schemas during evolution,
variations such as these can be ignored. In fact, some algorithms explicitly shuffle gene orderings to
minimize the effect of gene placement on evolution [4].) Figure 16 shows an example of how a gene
value is used to determine the behavior of afish. It shows how the gene"up_g" isrelated to its
behavior.

SM=—————— Behavior: Fischl EE§|
S

N 2

move_energy_

[New Ru]e‘] .[Ne.\;f Method‘][Powe‘r‘Us‘e‘r..]-i T T T E =]
Figure 16: How gene valuesrelate to method calls.

The above rule-editor shows how the value of afish’sup_g determines if its method move _upis
called. A "roll of thedice" by the Attribute_Chance command generates a number in the range [O..
100]. If this number is less than the attribute value accessed by the command, the agent's move_up
method is called, else control is passed to a higher level. If move_up is called the fish moves up if it

sees water or another fish aboveit. It then callsits own move_energy _cost method to “tax” itself for



moving. Such amove_energy_cost simulates metabolismsin real fish. If the cell abovethefishis
empty, i.e. the boundary of the worksheet in the Genetic Fishtank sim is one cell above, the fish moves

down instead.
Each of the other methods of the fish issimilarly “gated” by its attribute gene values. This structure,

coupled with the crossover command that allows fish to reproduce and evolve, allows behaviorsto

emerge in fish that depend on evolution. Figure 17 shows how crossover is used to alow afish to

spawn and create evolved offspring.

SI=——— Behavior: Fisthl §E§|

Y

BT o o
|-

rossover _w_oradle §5
Parent2 n

e~ ]
(Crossover_Paints| _
lutation_Rate (per 1000)

Remnote_set_childl

 [Remote_set_chili2 3
Remote_child1_add{ |

|
Rernote_childZ_add

— — - 2

New Method Power User.. -. E =]
Figure 17: How a fish uses crossover to spawn.

In this case, no genes are involved in determining if afish will spawn or not. (One could add such a
relation if one so chose). When afish’s spawning method is called, which in these fish happens at
every time step, it first checks to seeiif it has enough energy to spawn.3 If the fish has enough energy, it

then checksin a given direction to see if it is neighboring another fish. (The crossover direction and the

3Since fish start out with an energy supply of 50 units, each fish is required to have twice that
amount to spawn. This allows each parent to donate 50 units of energy to achild. And since two
offspring are produced, optimally, at each spawning, this |eaves each parent and each of its offspring

with energy values of 50 after crossover is performed.



See adirection should be the same.) If the fish is next to another fish in the right direction, the
executing fish then checks its neighbor’ s energy level to make sure it has enough energy to mate. If all

these conditions are met, the fish executesitslist of actions.

It first decrements its own and then its neighbor’ s energy values to account for the “donations’ made
by each to their offspring. Crossover isthen performed with the appropriate parameters. In this case,
two offspring are created and placed on top of neighboring water agents. Crossover generates the
offspring’s genomes using one crossover point and a probability of mutation at each locus of 15/1000.
(See Appendix 1b for further information on the workings of the crossover operator.) The relevant
variables of the children are then set using the Remote Child commands. Similar VAT methods can be

used to support simulated evolution in awide variety of AS- VAT agents.

Appendix 4 shows the results of running the Genetic Fishtank simulation and allowing evolution to
occur. All simulations shown started with the same seeds. (i.e. Each started with fish and sharks having
the sameinitia attribute/gene values and located in the sameinitia positions.) It is easy to see that
changing the position of plantsin the tank leads to varying grouping behavior in the fish. When plants
are placed at the bottom of the tank the gene values of surviving fish evolve to promote bottom
feeding. When plants are placed at the top of the tank, the opposite occurs. Over time, appropriate sets

of gene values evolve to allow fish to gain energy and survive.

Importantly, no methods exist in afish that tell it to group. A fish’s methods only tell it to movein a
given direction, to avoid sharks vertically and/or horizontally, and to eat. Grouping behavior emerges
as aresult of evolution and interactions between fish and their environment (including other fish). Such
emergent properties are indicative of complex adaptive systems. The Genetic Fish tank shows one way
in which the commands provided by AGES can be used to model and explore emergent properties

exhibited by complex adaptive systems.
Sugar scape

The new “bottom-up” approach to “constructing” understandings, interpretations, and model s of
interesting processes that we care about (e.g. economic processes, political processes, social processes,
biological & ecological processes, and “ categories-that-blend-the-above”) has recently been
championed by Axtell and Epstein in their book Growing Artificial Societies. In thiswork challenges
are made to conventional ways of understanding economics. Traditional models tend to base their
predictions and interpretations of economic systems on global considerations. For example, marketsin
traditional Walrasian economic systems work under the guide of an imaginary auctioneer that
distributes information to all participantsin the market. The effect this has on pricesisto cause every

merchant to sell comparable goods at an optimal global clearing price. Under such analysis, untended



markets tend toward a general equilibrium. Axtell and Epstein explain such a system in the following
passage:

The equilibrium concept used in general equilibrium theory is adeterministic one. That is, once
the auctioneer announces the market-clearing price vector, all agents trade at exactly these prices.
Each agent ends up with an allocation that cannot be improved upon. That is, a Pareto-optimal set
of alocations obtains. Because these allocations are optimal, no further trading occurs, and the
economy is said to be in equilibrium. Overall, equilibrium happensin a single trade step. [4]
Agent-based models like Sugarscape, on the other hand, involve agents with internal states (rules and
attributes) that interact with a separate environment over time. Heuristically, one can think of the entire

system in the following way:

..arificial society as adiscrete dynamical system in which the vector A of all agent internal states
and the vector of all environment external states E interacting as a high-dimensional dynamical
system of the form:

At - f(At ' Et)
et g(At’ Et)
where the vector functions f(*) and g(*) map the space of all states at timet+1. [4].

Sugarscape models tend toward statistical equilibria as opposed to tending toward a static
equilibrium [11]. Thisis partly due to the fact that the environment and the agents interacting within it
are coupled in the above way. The effects of a changing environment on an agent, including a changing
population of agents, tends to eliminate static niches. These interactions between agents and an
external environment continually form and reform fitness landscapes such that agents tend not to get
stuck in any one attractor (26). Statistical equilibria arise naturally within such coupled settings.Axtell

& Epstein emphasize the importance of these considerations when they write:

This brings us to the so-called First Welfare Theorem of neoclassical economics. The result isthe
foundation for economists' claims that markets allocate goods to their optimal social uses. The
theorem states that Walrasian equilibria are Pareto-efficient. They are statesin which no
reallocation exists such that an agent can be made better off without making at |east one other
agent worse off. But in statistical equilibrium the First Welfare Theorem should be
revised to say that a market equilibrium approximates but cannot  achieve a Pareto-efficient
allocation. How close a given market comes to Pareto-efficiency can be measured by the price
dispersion in transactions. [Foley 1994: 343] Itisexactly this
price dispersion that we studied above and will investigate further below in the context of non-
neoclassical agents. Thus, the philosophical underpinning for laissez-faire policies appears to be
weak for markets that display statistical equilibrium. [2].

Axtell and Epstein go on to point out more dissimilarities between their Sugarscape models and
classical economics models as Sugarscape agents are endowed with finite lives and changing
preferences over time. Both extensions seem to make Sugarscape more like real-world agents and not

less. Thus, it seems that Sugarscape models offer an alternative way to do economics, from the bottom-

up, that captures many salient emergent properties of economic systems operating in far-from-



equilibrium conditions that cannot be described within traditional economic models. Such findings
have profound implications for future policy decisions, and they emphasi ze the importance of studying

cas through agent-based models.

Although | have not implemented all of the models described in Growing Artificial Societies, | have
been able to successfully implement most of those models found in chapters 2 and 3 in AGES.
Interesting aspects of these modelsinclude but are not limited to sexual reproduction with evolution,
primitive tag-based cultural transmission, and combat among agents. They are the precursors to agents
from chapter 4 that engage in trade and in so doing exhibit many of the interesting properties described
above. It is hoped that AGES can be extended in the future to encompass al the types of agent
transactions exemplified by Sugarscape models. (These include trade, hierarchical creditor-debtor

relationships, and tag-based immunol ogical adaptation.)

The above AGES simulations demonstrate the flexibility of AGES as atool for modeling cas. AGES
is capable of generating awide variety of simulations with no recourse to programming in LISP. Many

varied cas can be modeled simply by programming in VAT.

Empirical Work

This section will show how a small group of middle school students was aso able to use commands
from AGES to program creatures that behaved in ecologically-minded ways. Some creatures the kids
programmed eat food and gain energy for doing so in addition to reproducing by using the crossover
command. This preliminary study indicates that young children can use AGES as away to explore
ecological simulations involving ideas of metabolism and energy consumption, eating, and
reproducing. More comprehensive studies will need to be carried out in the future to better assess the

strengths and weaknesses of AGES as a pedagogical tool for studying cas.
My Experiences With the Science Discovery Kids

During athree day period | showed AS-VAT and AGES to five middle school students, ages 11-14.
These kids were recruited from a summer program at CU called Science Discovery. All who
participated did so voluntarily. The particular kids that | worked with were recruited from a*“Math and
Computers’ class that met for one hour a day for four days. During this time the kids learned a bit
about spreadsheets. Other than this, these kids claimed to have little or no “programming” experience.

The following is an account of my three-days/three-hours with them.

Preface

I had mixed experience with these kids. A couple of them were mildly interested and just wanted to

play around and have fun with the software. Thiswas fine. | was hoping that they might come up with



something interesting. | was trusting that kids would learn more if they were allowed to playfully

create worlds that were personally meaningful for them [46, 12].

All inal, this strategy seemed to work. | also had one student, Craig, who definitely preferred the
“apprentice” approach learning [28]. As opposed to creating his own simsindependently, Craig
preferred work on projects together with me. As Mitch Resnick did with his study where he introduced
StarLogo to high school kids, | openly helped students create programsin AS-VAT [46]. | saw myself
as acollaborator aswell as amentor. Again, this attitude was especially prevalent in my dealings with

Craig.
Dayl

On thefirst day | introduced five interested students to ideas about Crossover and about
Evolutionary Programming in general. | presented these ideas within the context of my Genetic

Fishtank simulation.

| described the actions of the fish in the tank in terms of their gene values. | couched these relations
in terms of "rolling the dice" to see which actions were prescribed by an agent's gene values at each

time step. (I even used percentile dice to make these ideas more concrete.)

| told the kids that they might want to add new fish or just new creatures into this fish tank to begin.
Or they might want to think about “geneticizing” a different “ Space_Ships’ sim where an Enterprise-
like ship and a Romulan vessel could shoot at one another and move around the screen via user-chosen
command keys. If they wanted, they could even start their own project. Actually, | was worried that
they might not be able to even get to my “ Genetic Commands’ due to time constraints. Again, none of
the five original participants claimed to have any programming experience. One student did say that he
had “ programmed somein VisuaBasic with his Dad.” Since | only had three days with these kids, it
was doubtful that any “evolutionary” programming would emerge. Still, | hoped that the kids would be
able to play with the simulations | had already created to help them gain an understanding of

evolutionary and ecological processes.

Onthisfirst day, in explaining the above ideas | had students adjust parameters like the rate of
growth of plantsin thefish_tank, “move _costs’ for fish and sharks, basal metabolism for fish and
sharks, and relative numbers of fish and sharksin agiven tank. My origina sims already varied food
placement and ratios of sharksto fish aswell as varying absolute number differences in populations of

fish and sharks in atank 4They did well with adjusting these parameters and picked up on ecologically

4There is abig difference between a7 to 1 ratio of sharks to fish exhibited by atank with 7 fish and
one shark as opposed to the same ratio of fish to sharks exhibited by atank that contained 42 fish and 7

sharks. Initial population counts can be extremely crucial when working with genetic algorithms.



relevant considerations. For example, Phillip quickly noticed that putting too many sharksin the tank
would result in all the fish getting eaten, which in turn would make all the sharks starve to death.

Day2

On the next day, | let the kids do what they wanted to do. | told them they could play with the
Fish_Tank, play with geneticizing the “Space_Ships’ sim, or they could start a sim of their own. Since
I had not been able to go into detail about how AS-VAT worked, not many kids had the necessary

knowledge to create a whole new simulation of their own.

| then told the students that | had planned to work on “geneticizing” the Space_Ships sim myself and
that anyone who wanted could join me. | used this as an opportunity to show them how to program in
AS-VAT. We quickly programmed the “space” in the Space_Ships game to “grow some food.”
Together we came up with the idea of making a game that was a bit of a mix between Pac Man and
“shooting” games. In this game, the space_ships would move around and eat food while having to
defend themselves from evil Red-Dwarves (another agent in the gallery). The Enterprise and Romulan
ships were equipped with torpedoes and lasers, respectively. They could use these to shoot the Red
Dwarves. | continually asked the kids what they thought we should do next, but for this session | was
on the keyboard. Again, | was showing them how to use AS-VAT.

After we programmed space to grow some food, everyone went to their respective computers and
resumed playing with AS-VAT. Craig took my place at the keyboard, and he and | remained to
program more into the Space Ships sim. We started to tackle the problem of getting the ship to eat
food and to gain energy from doing so. Since the ship already had other methods to make it fire,
navigate, etc., it seemed natural to create another method that would allow it to eat. In my Genetic
Commands | had created commands to do just this sort of thing. | asked to Craig to pick out which
condition he thought might work for our task. He picked out the command
“See Agent_in_4neighborhood” and set it with a depth of 1. He then perused the Genetic Action
Palette and quickly found the Eating Commands. He picked the “Eat_Neighboring_Item” command
and chose to extract the “energy” from the items he ate as areward for eating each item. This
combination of condition and action worked as expected. After making a new call to our eat method
and applying the new rules, the Enterprise moved around the screen eating the newly-grown food and
extracting energy for doing so. At this point, 5:30 rolled around, and the session ended. Craig’' s work

for Day?2 is shown in Figure 18.



Behavior: Enterprise =————————— [

Wil iSes_agent_in_dneighborhood {Eat_neighboring_itern §&
zighborhood _Depth|

Prrrr e
#thile running

s -
i L {Has attribute n 1
Einitializedp

initializedp

[New Ru]e] [New Method] [Power User..] - . E

Figure 18: Craig created the eat method (top) and also made a call to this new method in the
main loop of the Enterprise’s program (bottom).

Another student, Mark, made atank full of fish and plants of many varieties. After he left, | looked
at his simulation that was still running. It contained a* school” of fish at the bottom of the tank even
though there were no plants growing there. This was a classic case of overpopulation. | checked the
attribute values for these fish, and not surprisingly, many had high values for their “Down_gene” and
high “generation” values. It was obvious what had happened. Some initial fish had originally begun to
congregate at the bottom of the tank due to their initial random gene values. Being near food at the
bottom of the tank, these fish gained energy from eating and reproduced. These fish were bottom
feeders as dictated by their genes, and so they tended to produce offspring that were bottom feeders as
well. But after too much growth in the fish population due to abundant resources and overbreeding, the
fish eventually ate all the plants. As | watched the simulation run on, the fish began to die off. Too bad
Mark had to leave before his simulation dramatically played out its version of Malthusian
overpopulation tendencies. (I showed it to him the next day, and he was pleased to see the results of

letting the sim play out its theatrics.)



Day3

The next day, Craig and | continued programming the Space Ships game. | had made some
modifications overnight; | had created some Space Crunchers to be new opponents for players of the
game. The Space_Crunchers were swarming bugs that would move randomly if they were not next to a
space ship. But once they began neighboring a space ship they stayed next to it and decreased the
ship’s energy until the ship moved, died, or until it shot the Space_Cruncher.® Craig quickly tweaked
the parameters of the Space Crunchersto increase their energy-draining capabilities. He wanted to
make the game a little more difficult. The ultimate idea was to have these creatures eat food and

reproduce. Thiswould also help make them more worthy opponents for a master Space Ships player.

On this day, Phillip was sitting near, and he also wanted to make his creatures reproduce. Phillip is
quite imaginative and seemingly quite egalitarian if his programming ideas tell us anything about his
personality. Y ou see, in the fish tank, fish eat plants, and sharks eat fish, but nothing ests sharks.
Phillip told me that he added his telephones into the tank to rectify thisinequity. But he did so with a
twist for the underdog; he programmed his telephones to eat sharks, but the fish could still eat the
telephones, of course!® Now he wanted to let his telephones mate and reproduce in the tank just like
the fish and the sharks did.

| asked Craig and Phillip what they thought they needed to do to get their agents to reproduce, and
they suggested we use Crossover. (I had been talking about Crossover since the first day they came in
to play with the software.) At this point, something happened that | had not explicitly planned on.
Phillip was using the Crossover operator basically as a mating operator without really thinking of it as
an explicit genome splicer. Phillip wanted to make his tel ephones reproduce when they had no

genes/attributes. It made perfect sense within the context of his simulation.

Through Phillip’s actions | realized the crossover command could be used as away to get kids
thinking of reproducing creatures whose behaviors are not dependent on gene values as described
above. It seemsthat this gentle introduction to crossover could also pave the way for understanding

more complex genetic algorithm ideas later. Kids might be able to grasp the functionality of the

5| created Space_Crunchersin an attempt to make acreatur that would readily be understood as
engagin in collective activity with other creatures of its same type. Kids would naturally want to make
these creatures reproduce in order to observe such collective activity. Thisin turn would hopefully

lead them to use my crossover command.

6Actually, his phones either erased themselvesif they were to the |eft or to the right of afish, or they
were erased sharks if sharks were to the left or right of them. Thisisnot “eating” in the same way that

my “eating” commands define, but it sure looks the same!



crossover command one step at atime. First, it can be seen as a“mating” operator, and once kids get
familiar with thisidea, they can expand and explore ideas relating to gene values. Indeed, letting kids
use the crossover command brought to the fore interesting and somewhat unexpected modes of use that
involve no mention of genes at all. Craig was able to program his agents to reproduce, again, using one
rule and a call to the method encapsulating it. Phillip never quite got around to calling his mate
method, and when he dragged and dropped this method onto his telephones to see them reproduce it
crashed the system. Again, | had not planned on such a use for crossover. This occurrence makes clear
the extreme importance of the iterative approach to design. Phillip's and Craig's rules and calls are

shown below.

E[M==————""_"— Behavior: Telephone =————— 9=

rossover_w_cradle

arentz

Acradle
Water -

rossover_Points |

F iMutation_Rate (per 1000}
100

e
[Mew Rute | [New Method] [Power user .| (BRI (BE)

Figure 19: Rulesfor Phillip's egalitarian telephones.

The above rule editor shows the rules for Phillip’s telephones. He programmed the telephone himself
during histhird hour of using AS-VAT



Behavior: Space_Cruncher

et plnk/
#hile Funnin

[ [ | 7 [ op e
e |
o

[orozsover w_oradiel
 [Fareniz ¥

oradle |
lCrossoverPamisl |
iMutation_Rate (per 1000)

[New Rute] [New Method] [Pewer user..| (Aepig) [EK)
——

Figure 20: Rulesfor Craig'sreproducing Space Crunchers.

This rule-editor shows Craig’ s rule to make the Space Crunchers reproduce (bottom), and it shows

the call to his“mating” function in the Space_Cruncher’s main loop (top).

Another interesting use of the genetic fish tank came from Mark. Again, on the previous day, Mark
had produced overpopulation and starvation behavior that he left too early to see. On this day he had
questions for me about how to program the plants not to grow past the rocks. | went over the structure
of the program with him, and we ended up in the “ sprout” routine which called “ sprout_left” and
“sprout_right.” We looked at the “sprout_left” routine to see how the plants grew. After seeing a
couple of rules that stopped the plants from growing in certain situations Mark decided that, to make
the plants not grow if they saw arock to their left, he should make them “do nothing” if they saw a
rock to their left. He added this rule to the “sprout_left” method and a similar one to the “sprout_right”
method and was noticeably pleased with the results.

He then proceeded to carry out an interesting experiment with the fish tank. In my original examples
and in my demos | had always placed plants either at the bottom or at the top of the tank. This makes it
easy to see that schooling behavior of the fish is affected by placement of the food in the tank. In
different environments fish will school in different places, i.e. where the plants were. Putting the food
at the top and the bottom of the tank also makes for an easy interpretation of how the gene values of
genes such asthe “up_gene” and the "down_gene” of the fish affect their behavior. High values for the
“up_gene” in conjunction with plants at the top of the tank lead to schools of top-feeders. High values



for “down_genes’ in conjunction with plants at the bottom of the tank lead to schools of bottom-
feeders.

But Mark wasn’t satisfied with this. Instead, he created a tank with “ledges’, having rocks as “ plant-
ends’ and plants growing between the rocks. He placed five ledges in the tank at various heights.
Schooling behavior emerged around two of them toward the middle of the tank. Mark had used the
environment as his programming tool, and he tested how the fish would react in an environment where
the relationship between gene values and actions was not so direct. Clearly, the simulation stimul ated
him to think about the interactions of the genetically-affected fish as they interacted with their
environment (including the other fish). In doing so, he even explored the emergent schooling property
of the fish in away that my original demos had not. A screen snap of his evolved fish tank with ledges

is shown below.

Worksheet: markreco

ﬁmmmmmmmmL

Figure2l1: Mark'sledges.

The screen above shows Mark’ s ledge filled tank with schools of fish around two of the ledges. Mark
was exploring the relationships between gene values and behavior by changing the environment to see

how the fish would react.
Analysis

In analyzing the effectiveness of AGES as atool for enticing children to think about systems and the
local interactions that generate many of their interesting properties, one should remember that the
above children spent only three hours getting acquainted with and using AS-VAT and AGES. Overall,
| consider these explorations with AGES to be a success. Although no kids actually grasped the



concept of evolving gene values enough to use them in programming evolutionary creatures, all kids
seemed to understand and be interested in other important ecological concepts like basal_metabolism,
movement_costs, and ideas concerning the relationship between rewards and penalties for actions.
Craig was constantly cal culating how many points should be gained or lost for certain actions. He
wanted to make sure that the Space_Ships game was not too hard and not too easy, but just right. This
led to him think about tradeoffs between different parts of the system. He said things like the
following: How many points should the Space Crunchies suck out of a ship? How much energy should
we gain from eating a piece of food? “I’ll let the Space Crunchies take 5 points away since we get ten

points for eating a piece of food.”

Phillip was obvioudly concerned with “cycles’. His addition of telephones into the fish_tank was a
curious choice, but time did not permit me to gracefully ask him about this. Telephones may have just
been something that was fairly easy to draw in 3D. Phillip's addition of telephones to the tank instead
of fish emphasizes the importance of letting kids playfully interact with concepts in creating artifacts
that are personally meaningful to them. | would never have thought to teach Phillip to add telephones
to the tank, so he definitely generated a novel and personally meaningful way to interact with the ideas
| was presenting. And if Phil can abstract away from the situation, enough to add his somewhat
egalitarian, underdog-supporting, shark-eating, fish-leary telephones to the fish tank, who knows what
other kinds of abstractions he may be capable of carrying out intuitively when he has a say about the
context within which they are introduced-to/generated-by him.

In addition, Phillip showed me a new way to think abbout my own crossover command, asasimple
mating operator. Anyone who had listened to me talk about crossover would have thought | was well
aware of this possibility, but | really wasn't. After seeing Phillip’s approach to using crossover | will

most certainly try to present the crossover command differently the next time | introduce it to kids.

Finally, Mark’ s explorations were extremely enlightening. He was alittle older than Craig and
Phillip, and perhaps this had something to do with his grasp of the genetic concepts of the fish_tank.
Again, although Mark didn’t use AGES commands to program, per se, he did use the environment as a
programming tool in order to explore the relationships between the gene values of the fish and their

behavior in the tank.

Comparisons With Other Alife Systems

In the previous section preliminary studies with middle school students indicated that AGES is easily
learned and can be used to introduce concepts dealing with cas to grade school children. Introducing
cas to such young audiences is not the goal of the systems to be described in the following section.
Still, the following systems represent some of today's most interesting simulation-based approaches to
studying cas. In this section, four systems for studying cas will be described and compared to AGES.



An overview of these comparisons will then be presented in the form of atable, and brief mention of

directions for future work on AGES will be made.
ECHO

Echo class models were first introduced by John Holland [19]. These models are based on tag-

mediated interactions between agents. Echo class models have the following components:

1) A Performance System: A performance system is composed of a set of detectors, a set of
If/Then rules, and a set of effectors. They specify the agentscapabilities at a given point in

time.

2) A way of adapting or evolving over time: Competition between agents, with local payments,

allows agents to evolve over time and increase endogenous fitness measures.

3) A method of rule discovery: Rule Discovery allows agents to generate new rulesfor its
performance system using previously tested rulesin its performance system as building
blocks. [18]

Much likein AS-VAT, agentsin Echo class models inhabit individual sites where resources “grow”
at different rates. Numerous agents can inhabit one sight. The agents at asite are arranged in a 1-D
array in random order to simulate spatial proximity at each site. Agents gain resources from the site
and from one another through trade and interchanges with the environment. In some echo class models
atax islevied against each agent at every time step. (Thistax can be interpreted as biological
metabolism in ecological sims.) Agents also trade and interact with one another according to their
proximity in the array. Agents can move within thisarray. Aswell, if an agent gains no resources from
asite during a given number of time steps, it can move to another randomly neighboring site to seek
resources there. Agents live finite lives and try to gain resources in order to reproduce. Agents
reproduce in accordance with their fitness, i.e. the amount of energy they have gained from their
interactions with the environment. Those agents that have more energy are more likely to reproduce.
[21]

Echo agents also have the ability to create aggregate-agents. This is accomplished by enlarging
boundaries of agentsin ways that preserve quick interactions within an aggregate while maintaining
dow interactions with external agents outside the aggregate. For example, the reserves of all agentsin
an aggregate are pooled and are immediately available for use by al internal subagents. Aswell,
damage to an aggregate agent affects al internal agentsimmediately. Contrastingly, the effects of an
agent’ sinteractions with an external environment, including other agents, must percolate from agent to
agent and from site to site at each time step. Effects are not directly felt by the environment “as a

whole.”



The ability to aggregate, coupled with the ability to engage in message-passing, allows agents to
create hierarchical programs during simulated evolution.” Such mechanisms exhibit powerful rule-
discovery capabilities which enable echo class models to explore infinitely-dimensioned solution

spaces through simulated evolution.

Though echo class models provide awide variety of interactions among agents, such models do not
aim at providing end-users away to develop particular simulations, specifically tailored to their own
interests, without resorting to programming in C or C++. Although many professional researchers are
dedicated enough to endure this, many who would otherwise be greatly interested in cas, but who are
not interested in programming, would probably not use Echo models to create simulations. In this
situation, the ideas of cas, so important to us all, are left to be explored only by a programming-literate
elite.

AGES, on the other hand, aimsto spread concepts of casto a much wider audience. With thisin
mind, AGES can be seen as alimited but powerful Artificial Life construction-kit tailored toward

bringing concepts of self-organization and evolutionary adaptivity to awide range of audiences.
Sugar scape

AGES relationship with Sugarscape models has been described in a previous section, but there are
gtill afew comparisons worth mentioning. AGES and Sugarscape take almost the same approach to
modeling cas, and both even run on aMac. Agentsin both act on a2-D grid according to simple rules.
Both employ endogenous fitness functions, and both use traditional crossover operators to simulate
mating. Sugarscape even employsthe idea of a*“cradle” described in the AGES section above. (Axtell
& Epstein don’t actually talk about “cradles,” but they use the concept in their mating rule. [2: p. 56])

Unlike AGES, Sugarscape has much in the way of analytic capabilities. In this senseit is better
suited for serious researchers studying cas than is AGES. However, Sugarscape does not provide
nearly as much end-user modifiability as does AGES. To program novel simulations in Sugarscape
requires object oriented programming in C++. In this sense AGES is better suited to bringing the study
of casto awide range of audiences than are Sugarscape models. New simulations in AGES can be
programmed using only VisualAgenTalk. Both models have their strengths and their weaknesses, but it
is the overwhelming similarity between the two approaches that enabled me to replicate at |east some

of the findings of Sugarscape modelsin AGES.

"Echo agents can execute an action that isjust passing a message to another agent or to itself
indicating that some action should be executed. This ability is exhibited by AS-VAT as method calls.



Swarm

The Swarm simulation system is yet another creation emanating from researchers at the Santa Fe
Ingtitute. Information about and beta versions of Swarm can be obtained at the projects web pages:
http://www.santafe.edu/projects/swarm/. Swarm is atoolkit for building multi-agent simulations to
model complex adaptive systems. Like AGES, it attempts to provide a modeling framework within
which interested researchers from varying disciplines can create computer simulations of cas. Swarm is
based on object oriented technology and is written in Objective C. It can be run on Unix machines
running X windows. Some of its interface components are programmed in Tcl/Tk which isin turn

dependent on X windows.

In Swarm, numerous agents make up a swarm. In fact, any agent can be composed of a group of
agents. Thisis reminiscent of Echo’s aggregate agents. Each agent is an instantiation of a class and
thus has its own private state variable values while sharing its behavior/methods with other members of
its class. Swarm agents often interact within an environment. An environment is defined to be just
another agent. In principle, this alows Swarm to provide many different types of environments within

which other agents may interact.8

Swarm provides such agents as the above-mentioned space in the form of libraries. The
swar mobject library contains the core classes from which all other agentsin Swarm models inherit.
The activity library contains Swarm'’ s scheduling data structures and execution support. Interestingly,
“probe” facilities have been implemented for Swarm classes that allow an object’s state to be read or
set and its methods to be called in a generic fashion without the need to generate extra code. The
simtools library contains monitoring classes that can noiselessly “probe” Swarm simulations for data.
Different classesin this library aso provide graphs and summaries of statistical data. ga and neuro

libraries that provide various genetic algorithm and neural network capabilities for Swarm agents.

Swarm isintended to be “an efficient, reliable, reusable software apparatus for experimentation”
[32]. The goa of Swarm isto provide researchers with acommon modeling kit that gives them the
basic classes from which to develop awide variety of cas. Swarm can be used to model different casin

different fields of study, from chemistry to political science.

Swarm seems well-suited to its task, provided that researchers become familiar with concepts
surrounding object-oriented inheritance hierarchies. Such understanding is crucial if oneisto create a

simulation using agents that are similar-but-different from those provided in Swarm'’ s libraries.

8At present, only a2-D grid agent has been implemented. There are future plans to implement
spaces with continuous dynamics defined by differential equations as well as spaces with three

dimensions, non-discrete coordinates, and arbitrary graph structures.



Extensions such as these are made by specializing classes provided by Swarm’s libraries. Programming
in Objective C is required to make them. Programming in Tcl/Tk is required to make interface changes

and extensions to Swarm.

Because Swarm isaimed at such an expert audience, namely scientists and other researcher of cas,
expecting users to perform such programming may not be asking too much. Indeed, atool such as
Swarm greatly simplifies any programming effort that such a researcher would have to make if
creating a simulation from scratch. Aswell, Swarm provides a universally-avail able free software
package for creating cas simulations. If researchers wish to accurately replicate one another’ sresultsin

order to build on them, such tools are a necessity.

Nevertheless, the aim of AGES isto bring the study of casto awider audience than just professional
researchers. Although AGES in its present form does not provide all the capabilities represented in
Swarm, it does provide all end-users, not just research scientists, with an agent-based simulation
generator that supports evolutionary programming. End-users, even kids, have consistently been able
to program AS-VAT simulations that exhibit interesting and complex properties. AGES gains such
end-user modifiability for free by being embedded in AS-VAT. Aswell, preliminary studies with
middle school students indicate that the commands specific to AGES are fairly intuitive. While AGES

is neither as powerful nor as complete as Swarm, it is much easier to use.
Genesys/Tracker

The Genesys/Tracker system was devel oped for the Connection Machine by a group of distinguished
researchers at UCLA [22]. The GT system evolved from an earlier, more limited Alife system called
RAM [47]. RAM represented each organism as a parameterized L1SP function and a sequence of
parameter val ues that acted the organism’s genome.® The genome was then subject to evolution
according to aversion of the genetic algorithm. Numerous studies were and are undertaken using RAM
[50]. However, the authors wished to extend the ideas in RAM to include open-ended evolution. In
other words, they wanted to add Holland’ s third capability of Rule Discovery to their system in order

to allow the very form of the functions executed by their simulated creatures to evolve, as opposed to

9Thisis similar to the way AGES is structured. However, instead of being parameters to afunction
that describes the behavior of an agent, the genomes of AGES agents are made up of gene values that

represent independent probabilities that “a given method will get called,” “agiven action or set of
actions will be executed,” etc. Which of these latter descriptions applies depends on the end-user-
generated VAT rules used to specify the behavior of agiven agent. Of course, simulations employing

more RAM-like structures could also be implemented in AGES.



only evolving parameters to a user-defined, unchanging behavior function. GT represents the results of

this extension.

GT provides users away to simulate evolution through the use of afairly standard genetic algorithm
using a bit-string representation of the genome, executing random selection, and applying crossover
and point-mutation operations to mating pairs. The system aso employs two different representations
of phenotypes; they are represented both as Finite State Automata (FSA’s) and as Artificial Neura
Nets (ANN's). The researchers developing GT chose these two forms of representation for phenotypes
in order to assure that results obtained from simulation experiments would not be best explained as
artefacts of any particular phenotypic representation used. It was thought that FSA’sand ANN’'s are
sufficiently dissimilar representations to ensure that results obtained using both would not be best

construed as such representational artifacts. [23]

GT researchers are most concerned with exploring evolutionary systems “from scratch.” They wish
to explore open-ended evolution where little if any information about fitness functionsis built-in to
representations of the system. They are also concerned with the biological verisimilitude of their

evolving creatures.

The Genesys/Tracker system shows how explicit phenotypic representations can be used to create
more biologically realistic simulated creatures. Future work with GT might incorporate learning into
the ANN ants to further pursue such realism. Aswell, different tasks might be attempted that are more
amenabl e to spatially-constrained mating schemes as opposed to the random mating scheme currently
used.

The GT system is more robust and flexible than AGES, especially with respect to its ability to
engage in rule discovery and its ability to employ FSA's and ANN's as phenotypes. Still, GT does not
allow usersto easily create new simulations. Users must program in C++ to create new simulationsin
GT. In contrast, users can create many new and different simulationsin AGES using only VAT. Again,
this allows cas to be explored both by non-programmer expertsin various fields and by non-expert

end-users with interestsin cas.
Comparison Overview & Future Work

Table 1 provides an overview of the above comparisons between AGES and other Alife systems

used to study cas.
Table 1: System Comparison Chart
Open-Ended | End-User User- Analytic ANN Grid-Based
Evolution Modifiable | Defined Capabilities | Phenotype
(Rule- “looks’ for Available
Discovery) Agents




Echo X X X
Sugarscape X X
Swarm X X X X
Genesys/'T X X X X
AGES X X X

AsTable 1 shows, AGES is the only system surveyed that allows users to program agentsin an end-
user programming language. Although AGES is limited in other capabilities, this property alone makes
it agood candidate system for introducing ideas about complex adaptive systems to non-experts.
AGES isalso the only system surveyed that allows users to easily create iconic depictions for agents
composing acas. It is claimed that this capability makes simulations more intuitive and engaging for

end-users. Agents can take on lifelike shapes and forms that remind users of real-world cas.

Nevertheless, AGES can be extended in ways that, like GT, emphasize more biological realism and
an agent’ s ability to engage in open-ended evolution. Artificial Neural Network commands would be a
welcome addition to AGES. First steps toward introducing them could allow evolution to “train the
weights’ as GT does, via crossover and mutation. More advanced versions might introduce different
training algorithms including Backpropagation (not biologically realistic in its own right) and/or
Reinforcement Learning Algorithms [1]. Adding in the ability to engage in rule discovery might
require a more extensive reworking of the framework of AGES. In addition, analytic capabilities could
be added to AGES in order to make it a more serious university-level research tool for studying cas.

Such extensions are | eft as future work.

Interested readers might want to explore two other systems that are relevant to the topics discussed in
thisthesis. StarL ogo is a system implemented by Mitch Resnick at MIT to introduce high school
students (and perhaps younger ones) to decentralized parallel processes [46]. For those interested in
agents exhibiting biological realism, Y eager’s Polyworld is an interesting system to explore [55]. Like
GT, Polyworld also combines ANN’s and genetic algorithms, but it does so in a 3-D non-grid-based

world.

AS-VAT Programming Maxims

The following maxims apply at least to programming in AS-VAT in particular, but they are perhaps
more general than this. Similar maxims and programming guidelines can be found in works by Parnas
[36,37] and Brooks [6, 7]. In addition, though time constraints have not allowed me to reimplement my

original commands according to the maxims described below, and thus, these newly proposed




commands have not been tested, | am till fairly certain that changes made to the below commands
according to the prescribed maxims will only be helpful for future users of AGES. It is hoped that the
following maxims might be seen as a stand-alone contribution from this thesis that is not directly tied
to AGES. Again, the following maxims might be seen as general programming guidelines with special

relevance for VAT programmers.

When designing AS-VAT commands a number of issues arise as to how one should present a given
command. Deep questions about how a user can best understand a command in different contexts
become crucial. The interface of acommand can closely mimic its underlying processes or not. There
is hardly alimit to the amount of dissociation in structure to be found between the process-as-described
and the process-as-implemented. This still does not imply that relations between such ways of
understanding a process are inescapably opaque. Concrete design examples are probably most helpful

in clearing this opacity.
Maxim: Task-Based Design

“Keep your audiencein mind at all times. Design for specific explicitly defined tasks to be carried

out by members of an explicit target audience.”

This all-purpose design maxim is that espoused by many software engineers who take the iterative
approach to design. [15, 16, 29, 6]. Such an iterative approach advises designers to design tools around
the tasks that actual users of the system will useit to perform. This requires that such users and their

tasks be explicitly defined and considered in defining various aspects of the system.

In designing AS-VAT one must keep in mind the age group and levels of expertise of end-users who
will use newly-created commands. Aswell, AS-VAT command designers have much to say about the
level of flexibility a user hasin specifying parameters for different commands. More or less
information hiding, e.g., will be desired for different audiences, e.g. middle school students as opposed

to Professors holding PhD’sin variousfields.

Even so, it will always be impossible, even for the experts themselves, to predict how atool will fail
to meet certain task-dependent desiderata. Thus, it will always be necessary to produce a number of
versions of a piece of software to be tested/used by users. Feedback from such testing should then be
incorporated into around of implementation improvements which then lead to a new version of the
software to be tested.... Such an iterative process is the most effective way to arrive at pieces of

software that are tailored to the unforeseeable needs of actual users of a system.
Maxim: Formsvs. Formulas

“Form-based approaches aren’t always more simple than algebraic ones.”



It is not uncommon to present users with formsin which parameters to a given function are to be
specified. Such form-based presentations of parametric functions hide complexities of the functions
being used. Forms can often simplify the process of specifying parameters. However, it is also possible
for such information hiding to obscure important relations between parameters that are explicitly

represented in formula-based representations of such functions.

Figure 22 shows and example command whose form-based interface seems more confusing than a

corresponding formulaic version.

dhood_ndez*eat max food move w
Sugar_And_...w

ood_dttribute_to_Eat
sugar
Follution_Attribute

pollution

etabolism_Atiribute

rmetabalizm

ood_Pollution_Parameter
etabolizrn_Pollution_Farameter

eighborhood_Depth

wision

Figure 22: Form-based Pollution command

ThisEat Max_Food Move w_Pollution command implements a pollution formation rule that is

described as follows by Axtell& Epstein;

Pollution formation rule Py,: When sugar quantity sis gathered from the sugarscape, an amount of
production pollution is generated as quantity a * s. When sugar amount m is consumed
(metabolized) consumption pollution is generated according to b * m. The total pollution on asite

attimet,p”, isthe sum of the pollution present at the previous time, plus the pollution resulting
from production and consumption activities, that is,

p=p 7 +(a*s) +(b* m).[2 p47]

The command can be presented to usersin aform-based way asin the above command. The

mapping from the above equation to the command is as follows:

pt'1 = value of Pollution_Attribute s
= value of Food_Attribute to Eat

m = value of Metabolism_Attribute a
= value of Food Pollution Parameter b=

value of Metabolism_Pollution_Parameter



The user-specified neighborhood _depth and title-specified neighborhood type descriptors determine
an agent’ s range for eating food. Often times the neighborhood_depth is set to the value of an agent’s

vision attribute as in the above example.

Itishardly clear that separating the variables of the command into separate editing windows is
helpful in understanding what this command does. With such an interface to the command the
relationships between parameters described by the above equation are lost. This can sometimes be
more confusing than viewing the actual equation. The command bel ow shows the same command with

the above equation entered into a formula box:

dhood_ndes #eat max food move w
Sugar_And_...w»

ood_aAttribute_to_Eat

EUgar

Follution Forrula g

pollution + alpha¥*sugar + beta®

Follution &ttribute to Set

pollution

eighborbood _Depth

wigion

Figure 23: Formula-based 4hood_ndes*eat_max_food_move w_pollution command.

In the new command the old "Metabolism Attribute," "Food_Pollution_Parameter," and
"Metabolism_Pollution_Parameter” fields are packed into the current "Pollution Formula’ field. If the
equation could be viewed in its entirety, this command would show a mixed approach to using such
mathematical notations. Instead of using just |etters to denote variables, actual words are used. This
makes algebraic formulations more readable and intuitive to end-users/\VV AT-programmers. In addition,
such aformulaic interface to expressing functional relations between agents makes explicit the
relations between parameters that are left implicit in form-based descriptions. Such capabilities of
formula-typesin AS-VAT provide adirect bridge to applying well-known and even yet-to-be-
discovered mathematical descriptions of common real-world agent behaviors to the definition of

simulated agent behaviorsin direct and intuitive ways.
Maxim: Explicit Assumptions
“Make all relevant assumptions of acommand explicit parametersto it in some fashion.”

Although it is usually wiseto hide irrelevant details from users[36, 37] it is detrimental to hide
relevant details of functions from them. If this occurs relevant aspects of the interface of afunction that

are hidden from the user can lead to unexplained or confusing behavior. The 4hood* Random_Move



command of Figure 24 suffers from the malady of hiding relevant aspects of its functioning from

users/VAT programmers.

dhood *randorm rmowve BRI
'

Figure 24: 4Hood* Random_M ove command.

This command seems ok (except for the title) at first glance. It should make an agent moveto a
randomly chosen cell one cell away in that agent’s von Neumann neighborhood. But thereis an
implicit variable hidden in this command. When | made it, | assumed that a worksheet in which agents
would interact would be tiled with other agents to serve as an environment. Water agents serve this
purpose in the Genetic_Fish worksheets; NewSpace agents serve this purpose in my Space Ships
worksheets; etc. However, if a user wishes agents to move within blank worksheets, those with no

active agents (from the gallery) serving as external environments, this command won'’t work.

To remedy this situation, all parameters implicit in this commands functioning should be made
explicit. But once we make explicit the notion that an agent should randomly move only on top of
another type of agent, specifying different step sizes for the agent becomes problematic. It is both
computationally and conceptually intensive to think of an agent moving only on a path tiled with a
given agent-type at each step. For these reasonsit is probably best to amend this command by limiting
it to astep size of 1 and by providing either a depiction-specification or a class-specification of the
agents that can be “ stepped on.” Such modifications would result in the following two commands that

determine “paths’ of movement according to depictions or to class-types:

|Ran-:|-:-m_rn-:n.fe_-:-n IPathI I

Figure 25: Revised Random_Move_On commands with no relevant assumptions left implicit.

Determining which assumptions of a command are relevant and worthy of being included as user-
specified parameters is a somewhat artistic design decision at this point. Increased experience at
designing AS-VAT language pieces inevitably leads to increased awareness of the “relevance” of

given assumptions.
Maxim: Specialization and Redundancy

“Thereis always atrade-off between creating a number of specialized, finely-tuned yet redundant

commands and the cognitive overhead incurred by having to use a greater number of commands.”



In learning different constructs of a programming language, users/programmers will often find the
functionalities of different language pieces to be redundant. At least, there will usually be more than
one way to program a given function within alanguage. For example, there is often a choice between
implementing an iterative loop as opposed to a recursive function to program a counter. The
functionality of iterative loops and recursive functions is fairly redundant. It is good for a programmer
to be familiar with both approaches. Still, it might be best to teach beginning programmers one
approach at atime in order to minimize confusion. Exposing them to too many ideas at once can be

overwhelming. Figure 26 shows a set of AGES commands whose functionality is fairly redundant.

Set_rand_under

W1E10n

and|

' vizion

Figure 26: Set_ Rand_Under and Set_ Rand_Between commands

Both of the above commands can be used to perform the action indicated by the Set Rand_Under
command. (Just use “Set Rand Between 0 and 15 for vision.”) But only the Set Rand Between
command can be used to perform its task. Set_ Rand_Between subsumes the functionality of the
Set Rand_Under command. Any task that one can perform using Set Rand_Under, one can aso

perform using Set_Rand_Between, but not vice versa.

Often, this redundancy is not to be avoided. Users may prefer to use the two-parameter
Set_Rand_Under command as opposed to the three-parameter Set_ Rand_Between, especidly if they
encounter many situations in which the former will work well. But one must always keep in mind that
too many commands in a pal ette can be overwhelming. Depending on the audience at which a set of
commands is aimed, this maxim becomes more or lessimportant. (e.g. If the intended audience needs
to be “coaxed” into “programming,” too large a number of commands in a pal ette can seem daunting.
If the intended audience is a group of programming experts, these considerations become less

relevant.)
Maxim: Parameters
“Don’'t wrap too many command decisions into a name. Make parameters of them.”

Sometimes a function can become too specialized, working in only a small number of situations.

When this happensit is usually a good ideato make the function more flexible by making parameters



of valuesin the function that were previously treated as constants or programmer-defined variables.

Thisfix will result in more general commands/functions that empower knowledgeable programmers.

Figure 27 shows aversion of the 4hood Ndes*Eat Max_Food Move command with both the
Neighborhood-type (4hood) and the choice of non-destructive or destructive eating built-in to the title.

dhood_ndes ¥eat max food move

m Sugar_And_...w
ood_dttribute_to_Eat

eighborhood _Depth

WI1E10N

Figure 27: 4Hood_Ndes*Eat_Max_Food_M ove command.

“4hood” at the beginning of the command indicates that it operates over avon Neumann
neighborhood. “ndes’ following this indicates that the agent executing this command eats
“nondestructively.” Such wrapping of design decisions into names takes flexibility away from the user
if other specialized commands representing alternative choices are not available. Within reason, it is
good to include such considerations as command parameters. An example of such a“fix” of the

problematic components of the above command is shown below:

at_rmax_food_move

Sugar_And_...w
ood_dttribute_to_Eat

sugar

on_Destructive_Eating?

eighborhood Ty pe
Yan_MNeumanh »

eighborhood _Depth

wigion

Figure 28: Parameterized version of the Eat_ Max_Food M ove command.

This new version of the Eat_ Max_Food_Move command is more general. It allows users to choose the
neighborhood-type within which the command will search for food (e.g. Von_Neumann (4hood) as
opposed to Moore (8hood)) It also lets the user specify whether the eating takes place “ destructively”
or “non-destructively.” Such flexibility gives users more choices and alleviates the need to create

numerous specialized version of the same command.



However, such power is passed on to users at the cost of introducing a more complex command. The
new command has more parameters than the original. Still, if these parameters are relevant to the
problem at hand, understanding their meaning will be necessary in order to choose “which specialized
command to use when” in the same way that such understanding will be necessary in making choices
for parameter value specifications. My preferences in such cases, all other considerations being equal,
isto opt for creating one flexible, user-empowering command as opposed to creating many more

speciaized ones.
Maxim: Overly General Commands

“Sometimes overly general commands and/or unintuitive initial settings can lead to confusion

instead of user-empowering clarity.”

This maxim is almost the opposite of the preceding one. It warns about making commands/functions
that are overly-general and confusing. Parnas argues that only relevant interfaces of functions should
be made available to programmers, nothing more [37]. Deciding how to best present a function will
always be somewhat ill-defined and dependent on each particular programming situation. Figure 29
shows examples of the Test_ Absolute_Column_Va command that can be confusing to VAT

programmers.

Test absalute caolumn sval =

riidpoint

Test absolute colurn wal n

Figure 29: two examples of the Test_ Absolute_ Column_Val command.

Seeing the first version of this command might be confusing to some people. The direction arrow is
probably not very intuitive; it might lead one to think that the neighbor being specified has some
specia sort of “column” property, etc. However, after seeing the bottom version of the command, the
command’ s use might become more clear. This portrayal reads“ Test to seeif the absolute column val
of myself is greater than midpoint.” In such case, it might become more clear that “column val” refers

to the xposition of an agent. (Perhaps a simple renaming of this command along these linesisin order.)

Nevertheless, the command exhibits the property that an overly-general command, coupled with an

unintuitive set of initial variables, can lead to confusing interpretations of the command’s function. In



such casesit isagood ideato limit the degrees of freedom of the command, i.e. remove parameters
(such as the direction parameters above). One can also specify more intuitively appealing initial
variable values for the command; e.g. initialize the direction parameter to refer to oneself (bottom).

L earning to adequately manage such design decisions comes from experience and at this point remains

afairly artistic endeavor.
Maxim: Consistency

“Consistency with naming conventions observed by other previously-defined commands should be
strived for.”

It isacommonly held belief that consistently applied naming schemes can help users/programmers
better understand their own and others' code. Some advocate the use of non-mnemonic variable and
function names in order to force users to read code carefully in order to understand it [37]. Others

advocate mnemonic variable-naming schemes to make code more readable. In either case, the

importance of naming consistency is stressed. Figure 30 shows a naming convention adopted for the
See and See_a VAT condition commands.

— B

Ses 3 Shark

Figure 30: Seeand See_a commands.

These commands observe the naming convention that commands involving “depiction-types’
(above) do not contain indefinite articles while those commands involving “vat-class-name-types’
(below) do. If such anaming convention is to be strived for we should also try to apply it to analogous
uses of depiction-types and class-typesin other commands. The “Next to” and “Neighbor_of”

commands provide us this opportunity.

Mext to

v

1

Figure 31: Next_to and Neighbor_of commands.

Unfortunately, this naming convention doesn't easily apply here. Again, such naming conventions

should be “strived for”; these maxims are not written in stone.



Maxim: Use Formula Fields
“ Always use formula-types as parameters when the situation permits.”

Within AGES much power and flexibility in exploring cas arises when attributes/genes are subject to
evolution. Using formulafields to designate parameter values in commands makes it easier to
incorporate evolving variable values into complex attribute relations within and between agents. Figure

32 shows aversion of the Neighbor_of command that uses a simple number-type field as a parameter.

Meighbor_of - i

Figure 32: Neighbor_of command.

If this command used a formula-type parameter instead of a number-type parameter <1>, attribute
values and formulas manipulating such values, in addition to ssmple numerical values, could be

parameters to the command. The formula-type parameter subsumes the current number-type parameter.

The altered Neighbor_of command is shown below:
Meighbor _of
chornper _toler ance

Figure 33: Neighbor _of command with formulafield.

In this case, the above command checks to seeif greater than a specified threshold number of
Chompers neighbors the executing agent in its Moore neighborhood. One can make great use of
formulafields when programming sims for AGES. Again, thisis because any value that can be
expressed as an attribute is then subject to evolution according to crossover and mutation. In the above
case, the attribute "chomper_tolerance” could be subject to evolution and could be used to explore
poupulation dynamics among heterogeneous agents. An evolutionary exploration into segreagation
ideas posed by Schelling could be carried out with the help of the above command. Formula windows
allow usersto use attribute values in specifying mathematical relations within and between agents. As

attribute values evolve, so do the mathematical relations within which they are embedded.

Hopefully , the above maxims will prove useful to those designing new AS-VAT commands and
perhaps to software designersin general. Again, the preceding maxims can guide design, but they need
not fully determine it. As always, much interpretation and innovation is left in the hands of the

designer.



Conclusions

AGES has aready been used to model various complex adaptive systems. The genetic_fishtank
project points the way toward using cas in modeling ecological systems. That AGES has been used to
implement various cas as described in chapters 2 and 3 of Axtell and Epstein’s Growing Artificial
Societiesindicates that AGES is versatile enough to model systems exhibiting cultural norms and
combat as well. Such demonstrations indicate the flexibility of AGES and AS-VAT in modelling
complex adaptive systems. No programming in L1SP was necessary to implement these different cas.
All were implemented using VAT coupled with the new commands provided in AGES. Given these
findings, it islikely that experts from different fields who study cas could quickly learn to use AGES to
model cas of particular interest to them. Systems that allow users to program cas without starting from

scratch are needed as the study of cas continues to grow.

Unlike other systems, however, AGES has been demonstrated to be accessible even to children. This
points the way toward introducing studies of complex adaptive systems to grade school children. Such
an introduction would inevitably change the way kids understand science and the world in general. By
introducing children to cas through AGES we give them the chance to question centralized approaches
to explanation at an early age. In questioning these approaches they will learn more about both
centralized and decentralized thinking. Relevant applications and strengths and weaknesses of both

types of explanation can be made evident by creating simulations in AGES.

It isaso hoped that using AGES can break down the barriers between work and play. Asthese
barriers erode kids sill only be more excited and mativated to learn. As educators, we should do
everything possible to direct most kids' frenetic energy toward playful yet educational activities. AGES

represents an attempt to do just this.

AGES import, however, is not limited to teaching children. Many adults, including professional
researchers, might prefer programming in VAT to programming in lower-level languages like C and
C++. AGES allows even sophisticated usersto pursue their interestsin cas. Still, more sophisticated
analytic capabilities will need to be added to AGES before it can be used as a serious university-level

research tool for studying cas.

Finally, | believe that the field of complex adaptive systemsis one of the most important fields that
can be studied. It is crucia to the well-being of humanity that characteristics of cas be explored and
understood. The workings of global and local markets, of political and social institutions, and of the
brain itself are but afew of the important processes addressed by studies of cas. Such studies of cas are
today promoting levels of interdisciplinary scholarship that have not been seen since the Renaissance.

Hopefully, such scholarship will shed new light on old questions. | agree with John Holland in being



optimistic about the import of trying to uncover the common secrets influencing all complex adaptive

systems:

It is an endeavor that can hardly fail. At worst it will disclose new sights and perspectives. At best
it will reveal the general principles that we seek [18].

AGESisatool aimed at actively sharing such insights about cas with as wide an audience as possible.



REFERENCES

[1] Ackley, D., Littman M. (1994) A Case for Lamarckian Evolution. C.G. Langton (ed.) Artificial
Lifelll. Addison-Wesley, 3-10.

[2] Axtell, Robert. & Epstein, J. M. (1996) Growing Artificial Societies: Social Science fromthe
Bottom Up. Brookings Institution Press, MIT Press.

[3] Baecker, R.M.; Grudin, J.; Buxton, W.A.S.; Greenberg S.; (1995) Design and Evaluation. Intro to
Chapter 2 in Human-Computer Interaction: Toward the Year 2000. Morgan-Kaufmann, 73-91.

[4] Bartlett, Geoff. (1995) Genie: A First GA. in Lance Chambers (ed.) Practical Handbook of
Genetic Algorithms: Applications, Volume 1. CRC Press, Boca Raton, 31-56.

[5] Boden, Margaret. (1996) Autonomy and Artificiality. in Margaret Boden (ed.) The Philosophy of
Artificial Life. Oxford University Press, 95-108.

[6] Brooks, F.P. (1975) The Mythical Man-Month. Addison-Wesley.
[7] Brooks, F.P. (1987) No Silver Bullet. Computer. v. 20, #4, 10-19.

[8] Conway, J.H. (1982) What is Life? In Winning Ways for Your Mathematical Plays, edited by E.
Berlekamp, J. H. Conway and R. Guy, Val. 2, chap. 25. New Y ork: Academic Press.

[9] Clark, Andy. (1996) Happy Couplings. Emergence and Explanatory Interlock. in Margaret Boden
(ed.) The Philosophy of Artificial Life. Oxford University Press, 262-281.

[10] Csikszentmihalyi, M. (1996) Creativity. HarperCollins.

[11] Foley, D.K. (1994) A Statistical Equilibrium Theory of Markets. Journal of Economic Theory.
62: 321-45.

[12] Gargarian, G. (1996) The Art of Design. in Y. Kafai & M. Resnick (eds.) Constructionismin
Practice. Lawrence Erlbaum, 125-159.

[13] Gell-Mann, M. (1994) Complex Adaptive Systems. in George Cowan, David Pines, David
Meltzer (eds.) Complexity: Metaphors, Models, and Reality. Addison-Wesley, 17-28.

[14] Gorman, A., Papp, R., Pedretti, J. Genetic Fishtank Project. Unpublished paper. Fall '96. Al-
CSCI 5582 University of Colorado-Boulder

[15] Gould, J. (1995) How to Design Usable Systemsin R.M. Baecker, J. Grudin, W.A.S. Buxton, S.
Greenberg (eds.) Human Computer Interaction: Toward the Year 2000. Morgan-Kaufmann, 93-
121.

[16] Gould, J., Lewis, C. (1985) Designing for Usability: Key Principles and What Designers Think.
Communications of the ACM 28(3), 300-311.

[17] Hofstadter, D. (1985) Metamagical Themas: Questing for the Essence of Mind and Pattern.
Hammondsworth: Penguin.

[18] Holland, John H. (1995) Hidden Order: How Adaptation Builds Complexity. Addison-Wesley.
[19] Holland, John H., (1994) Echoing Emergence: Objectives, Rough Definitions, and Speculations

for ECHO-Class Models. in George A. Cowan, David Pines, David Meltzer (eds.) Complexity:
Metaphors, Models, and Reality. Addison-Wesley, 309-333.



[20] Holland, John H. (1992) Adaptation in Natural and Artificial Systems. University of Michigan
Press. Second edition: MIT Press.

[21] Hraber, P.T., Jones, T., Forrest, S. (1996) The Ecology of Echo. to appear in Artificial Life.
Addison-Wesley.

[22] Janikow, C. Z., Michalewica, Z. 1991. An experimental comparison of binary and floating point
representations in genetic algorithms. R.K. Belew and L.B.Booker (eds.) Proceedings of the
Fourth International Congress on Genetic Algorithms, Morgan Kaufman.

[23] Jefferson, D. et.al. (1991) Evolution asa Themein Artificial Life: The Genesys/Tracker System.
C. Langton, C. Taylor, J.D. Farmer, S. Rasmussen (eds.) Artificial Lifell. Addison-Wesley, 549-
578.

[24] Koza, J. (1994) Genetic Programming 1. MIT Press.

[25] Koza, J. (1992) Genetic Programming. MIT Press.

[26] Langton, Christopher G. (1996) Artificial Life. in Margaret Boden (ed.) The Philosophy of
Artificial Life. Oxford University Press, 39-94.

[27] Langton, C.G. (1986) Studying Artificial Life with Cellular Automata. Physica D 22: 120-149.
[28] Lave, J., Wenger, E. (1991) Stuated Learning. Cambridge.

[29] Lewis, C., Rieman, J. (1993) Task-Centered User Interface Design, self-published over the
Internet.

[30] Lindgren, K. (1990) Evolutionary Phenomenain Simple Dynamics. in Christopher Langton,
Charles Taylor, J.Doyne Farmer, Steen Rasmussen (eds.) Artificial Lifell. Addison-Wesley, 1990,
295-312.

[31] Luce, R.D., Raiffa, H. (1957) Games and Decisions. New Y ork: Wiley.

[32] Minar, N., Burkhart, R., Langton, C., Askenzai, M. (1996) The Swarm Simulation System: A
Toolkit for Building Multi-Agent Simulations. http://www.santafe.edu/projects/swarm/

[33] Mitchell, Melanie. (1996) An Introduction to Genetic Algorithms. MIT Press.

[34] Molander, Per. (1985) The Optimal Level of Generosity in a Selfish, Uncertain Environment.
Journal of Conflict Resolution. Vol. 29, No. 4, 611-618.

[35] Nardi, B. (1993) A Small Matter of Programming. MIT Press.

[36] Parnas, D. L. (1972) On the Criteriato be Used in Decomposing Systems into Modules.
Communications of the ACM. v. 15, #12, 1053-1058.

[37] Parnas, D.L. (1972) A Technique for Software M odul e Specifications with Examples.
Communications of the ACM. v. 15, #5, 330-336.

[38] Papert, S. (1991) Situating Constructionism. |. Harel & S. Papert (eds) Constructionism. Ablex,
1-11.

[39] Repenning, A., Ambach, J. (1996) Participatory Theater: Interacting with Autonomous Tools for
Creative Applications. Journal of Knowledge Based Systems.



[40] Repenning, A., Ambach, J. (1996) Visual AgenTalk: Anatomy of aLow Threshold, High
Ceiling End User Programming Environment. Department of Computer Science, University of
Colorado Tech Report # CU-CS-802-96, January.

[41] Repenning, A. and T. Sumner (1995) Agentsheets: A Medium for Creating Domain-Oriented
Visual Languages. Computer, VVol. 28, pp. 17-25.

[42] Repenning, A. and T. Sumner (1994) Programming as Problem Solving: A Participatory Theater
Approach. Workshop on Advanced Visual Interfaces 1994, Bari, Italy, pp. 182-191.

[43] Repenning, A. (1993) Agentsheets: A Tool for Building Domain-Oriented Dynamic, Visua
Environments. University of Colorado at Boulder, Ph.D. dissertation, Dept. of Computer Science,
171 Pages.

[44] Repenning, A. (1993) Agentsheets: A Tool for Building Domain-Oriented Visual Programming
Environments. INTERCHI '93, Conference on Human Factors in Computing Systems, Amsterdam,
NL, 1993, pp. 142-143.

[45] Resnick, M., Martin, F. Children and Artificial Life. |. Harel, S. Papert (eds.) Constructionism.
Ablex, 379-390.

[46] Resnick, M. (1994) Turtles, Termites, and Traffic Jams. MIT Press.

[47] Resnick, M. (1996) New Paradigms for Computing, New Paradigms for Thinking. Y. Kafai &
M. Resnick (eds.) Constructionismin Practice. Lawrence Erlbaum, 255-267.

[48] Smith, John Maynard. “Molecules are not Enough,” in Did Darwin Get It Right? Essays on
Games, Sex, and Evolution.. Chapman & Hall, 1989.

[49] Steels, Luc. “The Artificial Life Roots of Artificial Intelligence,” in C. Langton (ed.) Artificial
Life IV. Addison-Wesley, 1994, 75-110.

[50] Taylor, C.E., Jefferson, D.R., Turner, S., Goldman, S. (1989) RAM: Artificial Life for the
Exploration of Complex Biological Systems. C. Langton (ed.) Artificial Life. Addison-Wedley.

[51] Turkle, S. (1995) Life on the Screen. Simon & Schuster.

[52] von Neumann, J. Theory of Self Reproducing Automata, edited and completed by A. W. Burks.
University of Illinois Press, 1966.

[53] Wimsatt, William C. “Forms of Aggregativity,” in A. Donagan, A.N. Perovich, Jr., M.V. Wedin
(eds.) Human Nature and Natural Knowledge. Kluwer Academic Publishers, 1986, 259-291.

[54] Woalfram, S. “Universality and Complexity in Cellular Automata.” Physica D 10 (1984): 1-35.
[55] Yaeger, L. Computational Genetics, Physiology, Metabolism, Neural Systems, Learning, Vision,

and Behavior or PolyWorld: Lifein aNew Context. C. Langton (ed.) Artificial Life lll. Addison-
Wesley, 263-298.



APPENDIX la

In viewing these commands one might notice the lack of symmetry between certain ones. For
example, one might notice that although “4hood” versions of certain commands exist, “8hood”
versions might not. When | originally created these commands, | thought such a naming scheme might
be acceptable. Since then, asindicated in my “AS-VAT Programming Maxims’ section, | have
adopted a new and more flexible approach to defining aspects of such commands. (I an mainly
referring to the Maxim: Parameters“Don’t wrap too many command decisions into a name. Make
parameters of them.”) For this reason, | have not created “ symmetric” commandsin many cases.
Because my maxims erupted at afairly late date, | have also been unable to create new versions of
these commands in accordance with the above maxim before the printing of this thesis. Though such
changes will be complete at least immediately following, and perhaps before, my defense, they are
technically left as future work.

E[I=— Genetic_Conditions:

4hood #zee_food_in_neighborhaod

MNeighborhood_Depth

ermote_test ﬂ
a

B

[u]

EX3
o not see ﬂ E




Genetic_Actions:

rossover_w_cradle 85
Parent2 - n

Water

rossover_Faints _

utation_Rate (per 10000

rossover_any _dir_w_cradle
Parent-Type
Fisch1

radle
Water

rossover_Points _

utation_fate (per 1000
Remote_set_child]

:
s Jolo |

T [

generation

Femote_aviz_sia 1 1ok

- energy

[ feloen |

energy

as reward for eating itern.

Add ltem Yalue of Att

energy
as reward for eating itern.

4hood_ndes *eat max food move

{Food_Attribute_to_Eat

energy

wigion

(4hood_ndes ¥eat max food move w pollution|

Fos

{Food_Attribute_to_Eat

enargy

Pollution_attribute

pollution

etabolism_atiribute

retabalizm

Food_Pollution_Parameter

etabolizm_Pollution_Parareter

]Rahdomhés_s"P

[T g

oo random move BSSS

o metabotism :

Setraninder 10 Jror

3:imurn-Colurnn—of)

initializedp




CROSSOVER OPERATOR

APPENDIX 1b

Here, the Crossover_Point is 3. Genes 1-3 are donated by one parent, and genes 4-7 are donated by

the other parent.

Parent1
Ea G Up G Down_G Left G Right G Horizevad Vertevad
G
59 34 77 49 89 53 79
X
Parent2 X
Ea G Up G Down_G Left G Right G Horizevad Vertevad
G
71 95 44 19 64 53 29
from Parentl from Parent2
Childl P X =------ >
Eat G Up G Down G Left G Right_ G Horizevad Vertevad
G
59 34 77 19 64 53 29
from Parent2 from Parentl
Child2 R — X--mmmm- >
Ea G Up G Down_G Left G Right G Horizevad Vertevad_
G
71 95 44 49 89 53 79




APPENDIX 2

The leftmost column shows the form to be entered into formula-boxesin AS-VAT.
The middle column names such formulatypes.
The rightmost column shows the equivalent infix LI1SP calls for the formula.

555 Operators:
555 NOTE: == is equality, = is assignment (C-style).
HEAN quoting character: x\-y --> x-y

. lisp escape !(foo bar) --> (foo bar)

HA- comment

i X =y assignment (setf x y)
33 X =y increment (incf x y)
33 X -=y decrement (decf x y)

i X *=y multiply and store (setf x (* x y))
i X /=y divide and store (setf x (/ x y))

i Xly bitwise logical inclusive or (logior x y)
i XYY bitwise logical exclusive or (logxor X y)
si X&y bitwise logical and (logand x y)

335 X<y left shift (ash x y)

sis x>y right shift (ash x (- y))

55 X ones complement (unary) (lognot x)

;5; xandy conjunction (and x y)

i X &y conjunction (and x y)

53 Xory disjunction (or x y)

55 o x 1l y disjunction (or x y)

53 not x negation (not x)

M % exponentiation (expt x y)

S X,y sequence (progn x y)

i (YY) sequence (progn x y)

53 also parenthesis (x+y)/z --> (/ (+ X y) 2)
55 F(xL,y) functions (fFxy)

;55 ali,jl array reference (aref a i j)

333 Xty Xty arithmetic G xy) *xy)

31 Xy x/y arithmetic GCExy) (xy)
sy value negation -y

55 o x%hy remainder (mod x y)

335 X<y x>y inequalities Exy) (Gxy)

;55 X <=y x>=y inequalities (<=xy) G=xYy)
5. X == equality (= xYy)

55 x I=y equality (not (= x y))

;;; if p then g conditional (when p q)

;;; 1f p then g else r conditional (fpagr)



APPENDIX 3

SI=—————— Behavior: Chomper

P
fWhﬂe-runninEd

fHas attribute
initializedp

[ T O e

e ) (e i) o) v eer.) 000D B i

It is assumed that the initialize_me method will appropriately set all relevant attributes for its
executing agent. Assuming that each agent’s rule-editor is structured somewhat like the above rule-
editor isthe “least possible evil” when dealing with initializing newly-formed agents. This assumption
allows users to determine which variables/attributes are relevant to their given simulation. (The
Has_attribute condition is useful for initializing newly-created agents that might have no attributes. In
such case one cannot initialize on the basis of avalue of agiven variable. The Test attribute condition
isuseful when reinitializing agents that already own at least the relevant initializing variable.) If this
assumption is not made, in order to initialize newly-created agents, even more assumptions would have
to be made about which variable/attributes are relevant for initialization purposes in awide variety of
sims. Assumptions such as these are obvioudly intolerable if a user isto retain much autonomy in

programming the behavior of new AS-VAT agents.



APPENDIX 4

Worksheet: small_x_tank_24_3_h

The above wor ksheet shows a fish tank with sharks, fish, and plants. Notice that the plantsare
located at the bottom of the tank. All fish and sharks start with randomized initial values.



Worksheet: small_#_tank_24_3_b

This screen snap showsthe original tank after 19 time steps. Plants are growing well, and some
fish have started to congregate at the bottom left corner of the screen. Still, no real groups have
emerged. A few sharksarereproducing at the bottom center of the screen aswell.

Worksheet: si

Dalues: a FISCH1

VGRS

M

|| sze
Down_ 3
Eat_&
Energw
Grengration

Left &
Right &
Up_ &

|
|
|
|
|
Horizevad_(3 [62 |
|
|
|
|

Fereval G |8

E
B
52
[22.0
[4

E
E
[20

w@mwwwwwm




The above screen showsthe original tank after about 60 time steps. Fish are definitely
grouping at the bottom of the tank, wher e the food/plants are. The attribute window displayed is
from a 4th generation fish at the bottom of the tank. Its Down_G value (85) and its Up_G value
(30) have evolved to produce a tendency for thisfish to swim down. I n this environment such
actions are advantageous as thisfish will tend to stay near the food at the bottom of the tank.
Groups of like fish emerge. They too have evolved to become bottom feeders.

Worksheet: small_x_tank_24_3_t

Thistank isfull of the samefish, sharks, and plantsasthe original tank above. Thesefish have
the sameinitial attribute/gene values and the same initial positions as the agentsin the original
tank. The only difference between the two tanksisthe location of the plants. Whereas plantsare
located at the bottom of the original tank, plantsarelocated at the top of thistank.



Worksheet: small_s_tank_24_3_1

wihll L £ T I, ST, TR TR, TR, i, TR, ST SR,

@@@&@@%@@%@%@%@@@
sbendusbessobe - sl sl
Sl Bl

£ Ualues: a FISEHI
Age |1

Do | 19 %

R[> I’I

Eat G 76
Energw | 48.0

Creneration | 4

Horizevad_C |92
Left 3 [ 12
Right_C [21
Up_G [24

Verevad 3 [@ | ﬁ

This screen snap showsthe previoustank after 60 time steps. Likethefish in the tank with
bottom plants, these fish also congregate around the plants. But now the plants are located at the
top of thetank. The same fish that evolved into a group of bottom feedersin the original tank
evolveinto a group of top feedersin thistank. Quick perusal of the genes of a 4th generation fish
at thetop of the tank show evolved gene valuesthat make thisfish tend to swim up toward the
food at thetop of the tank. Groups of fish emerge as surviving fish sharethisevolutionarily fit
tendency.



APPENDIX 5

KID_PACK: GENETIC CONDITIONS

=[I= Genetic_Conditions: =M=

Attribute_chance

wision

See_agent_in_4neig

Meighborhood_Depth

gg

Test string attribute

[He1|:-] [F‘-:-wer' Llser'..]

Thisisthelimited list of conditions| gaveto thekids. | have also included the
Attribute_chance command in this palette. This command was created by GPP for the original
Genetic Fish Tank project.



KID_PACK: GENETIC ACTIONS

Genetic_Actions:

=M

:
Farent2 - ﬂ

[ ]
utation_Rate (per 10007

Remnote_set_childl

Rernote_childl _add

ildZ_subtract
on
Eatmg Commands
o

Add Itemn Yalue of Att

at_item

energy

:

Add Itern Yalue of Att

energy

as reward for eating item.

at_neighboring_item_mowve

Add Itern Yalue of Att
energy

as reward for eating item.
|Miscellaneous

R andom_rmove |

1

ells awa

hood #randorm_rmove
1

ells awa

et_rand_under m
wision

Power User..

Above arethe action commands| gaveto thekids. | gave few commands with neighbor hood-
typetagsin thetitle (e.g. 4hood), and | gave no commands with destructive/nondestr uctive tags
built in to thetitle. Such conventions are somewhat confusing and ill-thought-out and will be
changed in the future. All eating commands wer e destructive by default.



