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3D game development can be an enticing way to attract K-12 students to computer

science, but designing and programming 3D games is far from trivial. Students need to

achieve a certain level of 3D fluency in modeling, animation, and programming to be

able to create compelling 3D content. The combination of innovative end-user

development tools and standards-based curriculum that promotes IT fluency by shifting

the pedagogical focus from programming to design, can address motivational aspects

without sacrificing principled educational goals. The AgentCubes 3D game-authoring

environment raises the ceiling of end-user development without raising the threshold.

Our formal user study shows that with Incremental 3D, the gradual approach to

transition from 2D to 3D authoring, middle school students can build sophisticated 3D

games including 3D models, animations, and programming.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction: why Incremental 3D?

Kindergarten to 12th grade (K-12) Information Tech-
nology (IT) education fails to attract the necessary number
of students to Computer Science (CS) especially at the
middle school level, when students make critical career
decisions by judging their own aptitudes for math and
science. Fueled by bad experiences with programming,
middle school IT curricula have disintegrated into key-
boarding, web browsing, word processing and PowerPoint
workshops with little authentic enticement foreshadow-
ing CS careers. This is a very serious problem because,
despite the growing need for IT workers, the enrollment in
undergraduate degree-granting CS programs in the US
dropped by 70% between 2000 and 2005 [1].

The notion of IT fluency is slowly gaining momentum
in education as a means to train and evaluate IT skills
beyond just using applications. For instance, the National
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Academy of Sciences’ Fluency with Information Technol-
ogy (FIT) framework [2] postulates a set of skills including
meta-skills such as problem solving, creativity, working in
groups, algorithmic thinking, and computational thinking
[3]. Game design [4] and computational science [5] are
gradually establishing themselves as application domains
capable of balancing the educational and motivational
concerns of IT fluency and attracting not only boys, but
students underrepresented in CS such as girls and
minorities. In fact, an independent study conducted by
the Stanford School of Education using AgentSheets [6–9],
our 2D authoring environment, suggested that girls and
boys alike are interested in game design [10]. With the
right combination of tools, curriculum and teacher
training, game design can be employed effectively to
teach IT to middle school students in a motivating way.

A fundamental challenge to the notion of fluency is the
need to define skills, explore motivational means of
promoting skills, and devise ways to assess these skills.
Some talk about programming as the new literacy [11].
The focus of our research is to promote the notion of 3D
fluency. People live in a 3D world; meanwhile, because
of computer gaming, today’s computers are highly capable
of processing 3D information. Unfortunately, creating
ncremental 3D end-user development, Journal of Visual
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computational 3D artifacts and games can be a truly
daunting task. Even end users familiar with making 2D
games are likely to find the transition to 3D to be difficult.
A completely new set of tools is usually necessary to
create 3D models that can be animated and programmed.
For instance, there is very little skill transfer from 2D paint
programs such as Photoshop to a 3D modeling editor such
as Maya 3D. This raises the question: Is this discontinuity
a conceptual consequence of 2D vs. 3D with potential
roots in human cognition, or is it more of an accidental
consequence of computational tools that have emerged
disjointedly for 2D and 3D applications?

Our goal is to promote 3D fluency through a gradual
approach that we call Incremental 3D. We reconceptualize
the universe of 2D and 3D tools and skills as a continuum
rather than a dichotomy. Most tools support either 2D or
3D authoring. For example, NetLogo [12] and Scratch [13]
are 2D authoring environments aimed at K-12; BlueJ
[14,15] and GreenFoot [16] are targeted for more advanced
students, typically at the undergraduate level, and
Macromedia Flash at professional designers. Alice [17],
NetLogo 3D, StarLogo TNG [18], DarkBASIC [19], and
Macromedia Director are 3D authoring environments
with varying degrees of usability for different audiences.
Some 2D tools are starting to integrate 3D authoring.
However, some of them have a limited degree of
integration with the 2D product (e.g. Swift3D is a separate
component for Flash) or force the user to drop from a
visual language level to a textual language with a 3D
application programming interface (API) (e.g. GameMaker
Fig. 1. The AgentCubes tec

Please cite this article as: A. Ioannidou, et al., AgentCubes: I
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[20]). AgentCubes, on the other hand, is a tool that
supports 3D authoring through incremental approaches
for all components of the 3D authoring process, namely
modeling, animation, and programming. A gentle slope
[21–23] approach allows end users to develop 3D games
by first creating a 2D version of that game and then
gradually moving along well-defined stepping-stones
towards a 3D version. Our hope is that this incremental
process ultimately allows end users to make 3D applica-
tions just as easily as 2D applications by transferring
existing skills.

This article assesses the idea of Incremental 3D as an
approach for end users to create 3D games and acquire IT
fluency in the process. The focus of the paper is not the
technical implementation but to describe and evaluate the
notion of Incremental 3D. A more detailed description of
the AgentCubes architecture can be found elsewhere [30].
We first describe the components of Incremental 3D,
namely incremental modeling, animation, and program-
ming, in the context of AgentCubes, then outline the steps
to transform a 2D into a 3D application, and report the
findings from assessing 3D fluency in two schools.
2. AgentCubes: an Incremental 3D authoring
environment

AgentCubes is a 3D rapid game-prototyping environ-
ment that enables even 10-year-old children to make
simulations and games in just a few hours. While simple
hnical architecture.

ncremental 3D end-user development, Journal of Visual
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compared with commercial games, these are complete,
playable games. Versatility is an essential characteristic
for systems to be used for Scalable Game Design [9]. They
should enable students to easily create simple content,
but also allow the creation of more sophisticated content.
AgentSheets [7,9], our 2D simulation and game-authoring
tool, has a low threshold and a relatively high ceiling, but
AgentCubes raises the ceiling considerably while keeping
the threshold low. Rich media such as audio, 2D images,
and 3D models, a 3D environment with layers, and camera
controls to switch perspectives (first-person vs. bird’s eye
view), and sophisticated user-controlled animations en-
able the creation of 3D games.

The AgentCubes architecture (Fig. 1) provides the
following layers of functionality:
�

Fig
unf

con

P
L

Application layer: At the highest level, AgentCubes
supports the creation of games and computational
science applications that can be embedded in curricu-
lum material to implement Scalable Game Design.

�
 Pattern layer: AgentCubes enables the customization of

templates to instantiate model shapes (e.g. templates
for inflatable icons) and patterns of behavior (e.g.
templates for perspective-dependent programming).

�
 End-user development layer: End-user development

[24] in AgentCubes is supported by Incremental 3D
modeling, animation, programming, and visualization
(for details, see Section 3).

�
 Engine layer: AD3D, the underlying simulation/game

engine in AgentCubes, is built on top of our open-
source Open Agent Engine. It provides the necessary
APIs to the low-level functionality.

�
 Media layer: AgentCubes provides libraries and inter-

faces to low-level functionality such as OpenGL for 3D
. 2. A Traffic Simulation in AgentCubes: (1) the gallery where all the agents a

olds; (3) an Inflatable Icons Editor for creating 3D objects from 2D image

ditions (5), and actions (6).

lease cite this article as: A. Ioannidou, et al., AgentCubes: I
anguage and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
graphics and QuickTime for media capabilities (sounds,
2D/3D images, models, movies). It also provides a
unique interface to XML used for specifying resources
and fonts.

AgentCubes is an agent-based framework. Agents are
computational objects that can have autonomous beha-
viors [25] defined by end users. In AgentCubes, an agent
has a visual manifestation on the screen called a shape.
With this shape, the agent can represent real-world
objects such as cars, people, and animals or more abstract
entities such as ideas and numbers. In AgentCubes, agents
are organized spatially in a three-dimensional space
called the agentcube. An agentcube consists of layers.
Each layer has a row–column grid similar to a spread-
sheet. Each cell identified by a row, column, and layer can
contain a stack of agents. In Fig. 2(2), stacks of agents
organized in a layer of a cube are used to represent a city
with agents such as cars, road pieces, and building
components.

AgentCubes components (Fig. 2) include the following:
(1)
nd th

s; (4

ncre
1

Gallery: The gallery (Fig. 2(1)) is the project inventory
where end users create and manage agents. Through
the gallery, users select agents and access their shapes
and behaviors.
(2)
 World: The world (Fig. 2(2)) contains all the agents
organized in the agentcube. In the world, users add,
select, delete, and copy agents. Using drag and drop,
users move agents from one location to another in the
same world or even into different worlds. The world
toolbar includes tools for camera control (e.g. zoom,
pan, and rotate), animation control (from running as
fast as possible without any animation all the way to
eir shapes are defined; (2) the world where the simulation or game

) rule-based agent behavior defined in Visual AgenTalk 3D, using

mental 3D end-user development, Journal of Visual

dx.doi.org/10.1016/j.jvlc.2009.04.001


ARTICLE IN PRESS

Pl
La

A. Ioannidou et al. / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]4
animating all transitions that result from moving and
rotating agents – details in Section 3.2), process
control (run, stop, and step simulations) and screen
control (window mode or full screen mode). Agents
can be piled up in the world as stacks or can be
positioned in suspended layers.
(3)
 Inflatable Icons Editor: The Inflatable Icons Editor
(Fig. 2(3)) allows end users to quickly draft 3D shapes
by drawing 2D icons, which they render into an
organic 3D shape through an inflation process [26].
The ability to quickly draft 3D shapes is an important
part of the design process (Section 3.1).
(4)
 Behavior Editor: Behavior Editors (Fig. 2(4)) are used to
define, modify and test agent behaviors. Visual
AgenTalk 3D (VAT3D) is a conceptual extension of
Visual AgentTalk (VAT) [6,8] which is part of Agent-
Sheets. VAT3D is a rule-based language based on
conditions and actions which end users assemble
through a drag and drop mechanism into complete
behaviors. Groups of rules can be turned into methods
with a name. These methods can then be invoked
through actions sending messages spatially, e.g. send
an ‘‘impact’’ message to the agent to the right of you,
or via more general mechanisms such as broadcasting,
e.g. send the ‘‘melt’’ message to all agents anywhere in
the world of type ‘‘candle’’. Like VAT in AgentSheets,
VAT3D includes a number of helpful testing and
debugging tools [8] including the ability to test if
conditions are true with the currently selected agent
or to run actions on the currently selected agent to see
what they do (Section 3.3).
(5)
 Condition Palette: Conditions (Fig. 2(5)) are language
primitives used to test the environment and receive
input from users. Basic conditions can check for
agents next to the agent that executes them, deal
with probability or with timers. Attribute conditions
can check and compare the values of agent attributes
and simulation properties. User input includes key-
board, mouse and game pads. Camera control condi-
tions can determine if the world is in bird’s eye or
first-person view and if there is a camera attached to a
specific agent.
(6)
 Action Palette: Actions (Fig. 2(6)) make agents do
things. Basic actions include the ability to move
and rotate. Message actions allow agents to send
messages to other agents through space or by class
association. Sound and speech actions allow agents to
play sounds and speak synthesized text. Attribute
actions enable agents to set attributes and simulation
properties and to plot in 3D visualizations overlaid on
the world.
Some of these components of AgentCubes are also
discussed in subsequent sections in the context of
incrementally building interactive 3D worlds (Section 4),
and problem-solving situations (Section 5.1). While 3D
authoring is far from a simple task, AgentCubes’ Incre-
mental 3D approach is a scaffolding mechanism [27–29]
that provides considerable support for modeling, anima-
tion, and programming.
ease cite this article as: A. Ioannidou, et al., AgentCubes: I
nguage and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
3. Incremental 3D

Incremental 3D [30] is a design approach featured in
AgentCubes for media-rich end-user development with
low threshold, i.e. a low barrier of entry to create simple
projects, and high ceiling, i.e. the ability to create highly
sophisticated projects. The fundamental idea of Incre-
mental 3D is that a user should be able to suspend
important design decisions to the point in the design and
development process when the decision really needs to be
made. Many game and simulation applications can start as
simple 2D applications that may be turned into 3D
applications. Initially, the user should not have to worry
about the precise look, size, orientation, and location of
objects in 3D space or how objects need to be animated
when they move. For instance, by utilizing grids we
transition from dealing with Euclidian information (e.g.
move my object 1.5 m to the right), to topological
information (e.g. move my object right to the next space).

The main aim of Incremental 3D is not just to address
usability concerns, but also to support a gradual design
and problem-solving process aligned with computational
thinking [3]. Specifically this means that Incremental 3D
must support a gradual formalization process. Problem
descriptions may initially exist in textual form. Users can
recognize objects through nouns and relationships be-
tween objects through verbs, in ways consistent with
object-oriented design. To facilitate computational think-
ing, users should be able to gradually capture objects and
their relationships. Initially, they may represent objects as
highly abstract 2D blobs. As their understanding of the
problem gradually increases, they should be able refine or
change existing representations. This way, a game or a
science simulation will gradually transition from an
informal set of 2D blobs with no behavior, to a formal,
fully working 3D application.

Our Incremental 3D approach no longer limits the
scope of authoring to programming, but includes all
aspects of development necessary to create 3D applica-
tions, namely modeling, animation, programming, and
visualization.
3.1. Incremental modeling

Incremental 3D modeling is enabled through the
Inflatable Icons technology [26]. Instead of limiting end
users to using only stock 3D art, including licensed
characters such as The Sims in Alice, or professional 3D
modeling tools with very steep learning curves, such as
Maya 3D, we enable them to gradually acquire 3D fluency
in modeling by creating their own 3D models. With
Inflatable Icons, users draw 2D images and gradually turn
them into 3D models using diffusion-based inflation
techniques.

Early user-testing in local schools confirmed that
students were able to make basic inflatable icons
quickly, but needed additional means for producing
more sophisticated 3D models, including benchmark
shapes such as bugs and cars. Selection-based inflation
is one such feature. We therefore created an Adobe
ncremental 3D end-user development, Journal of Visual
1
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Photoshop-inspired set of tools that allows users to make
and extend pixel selections. For instance, we included a
magic wand tool to make selections based on pixel color
values.

Say we want to create a frog. First we use the 2D
editor with the symmetry mode enabled to sketch a frog
(Fig. 3a). In the 3D view, the frog looks completely flat
(Fig. 3b). Inflating the entire frog is a good start (Fig. 3c),
but fails to highlight the strong legs of the frog. Using the
magic wand, the frog legs get selected and inflated more
(Fig. 3d).
3.2. Incremental animation

End users who program 3D worlds appear to have
higher expectations for run-time behavior. For instance, if
agents move or rotate, users would like to have at least the
option to have the world change in an animated way. With
Fig. 3. A frog as an Incremental 3D shape.

Fig. 4. (a) Cube agents programmed to move up to 4 cells and rotate randomly.

moving and rotating. (c) Agents arrive at their final positions at the end of the cy

without the intermediate animation frames.

Please cite this article as: A. Ioannidou, et al., AgentCubes: I
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
no animation, the agents in Fig. 4a, which are pro-
grammed to simply move and rotate randomly, would
instantly arrive at the next frame (Fig. 4c) without seeing
any in-between frames. However, with animation, the
agents move and rotate smoothly in a series of frames
such as the one shown in Fig. 4b.

AgentCubes supports incremental animations. That is,
initially users may not need or want to deal with
animations. As they are getting ready, they can access
animation parameters that are optional to language pieces
such as move and rotate actions. Moreover, built-in scene
awareness assisted by the notions of grids, stacks, and
layers (e.g. built-in gravity) significantly scaffolds 3D
animation authoring for users. Finally, the Parallel Time-
Jump animation approach [30] allows any number of
agents to animate in parallel without the need to track
object locations and the overhead of sequential animation.

An important role of animation is to communicate
complex relationships among objects. We have devised a
novel animation approach that can be employed incre-
mentally.

Facilitating the perception of causality through anima-

tion: With his work on the perception of causality,
Michotte [31] showed that humans perceive causality
between objects depending on the exact timing of move-
ments. To be able to achieve the desired effect in the
Michottian sense, AgentCubes includes a number of
mechanisms to enable and control animations. Users can
adjust the time, the trajectory, and the acceleration of an
animation.

Separation of logic and animation: An important aspect
of Incremental 3D is that logic and animation are kept
(b) A snapshot of a frame in the middle of animation, showing the agents

cle. Without animation, the viewer would only see the first and last frame

Fig. 5. Separate logic from animation: (a) move right action; (b)

disclosed version showing additional parameters relevant to animation.

ncremental 3D end-user development, Journal of Visual
1
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separate. The logic part describes what the agent will do.
For instance, in a Frogger game, the cursor-controlled frog
will move one grid space to the right. The user will simply
use the Move /rightS action to achieve this (Fig. 5a). Later
in the development process, the user may want to add
animation information by using an accelerated animation
in which the agent continuously accelerates and at the
mid-point starts to decelerate until it comes to a complete
stop (Fig. 5b).

Scene awareness: Animations quickly become complex
for users if they have no physical awareness of a scene.
The Move action hides enormous complexity, as it
includes automatic interpretations of the world. In 2D
environments, a move will simply remove an agent from
one location in the grid and add it to a new one. It should
not be any harder for a user to do this in 3D, but the
system has to interpret a move in 3D space. An agent
moving from one stack to another will automatically
move on top of the new stack, using a trajectory of
automatically generated x, y, z animation components to
avoid object intersections. If an agent moves out of the
middle of a stack, then the stack will be compacted.
Consistent with a world with gravity, all the agents above
that agent will drop.

Parallel Time-Jump: AgentCubes uses the novel Parallel
Time-Jump animation approach to allow any number of
agents to animate in parallel. Even in a simple simulation
in which agents are moving around randomly, agents
moving to the same stack in the same layer will have to
pile up (Fig. 6). This would not be a problem if animation
was handled sequentially, with the first agent moving to
the stack and then the second agent moving on op of it.
The total time it takes to transition an agent world from
one step to the next will be the product of the animation
time and the number of agents. While this would work
with a small number of agents, animating, for example,
1000 agents with 0.3 s per animation would total in a
seemingly never-ending 5-min animation. In such a case,
animation should be done in parallel. But if animations
need to be done in parallel, we can know where the agents
are moving only once all the agents got dispatched and
moved to their final destinations. Parallel Time-Jump [30]
Fig. 6. (a) Two crate agents (left, right) both want to move on top of the

brick agent. (b) Right crate gets dispatched first, but both crates know

where they need to move to. Both crates move in parallel to their

respective destinations. The animation makes the left crate overshoot

vertically to avoid intersection.

Please cite this article as: A. Ioannidou, et al., AgentCubes: I
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
deals with this by moving forward and backward in time.
Conceptually speaking, the Parallel Time-Jump will first
dispatch, move and rotate all agents without animation
and without displaying the changes on the screen. Then it
leaps back in time and generates all the transitional
animations from where the agents currently are to where
they should end up. This way, 1000 agents will only take
0.3 s to be animated in parallel.

3.3. Incremental programming

To support 3D fluency, we needed a programming
language that would allow students to create behavior in
3D. Our conceptual starting point was our previous
work with the Visual AgentTalk programming language
in AgentSheets [6]. VAT had established the usability
of the rule-based approach for authoring 2D games
and simulations and computational science applications
in school settings [32]. For AgentCubes, we enhanced
the language to include the notion of Incremental
3D, leading to Visual AgentTalk 3D, which includes the
ability to author and run 2D projects and gradually add
control over 3D aspects. VAT 3D has the following
characteristics:
�

ncr
1

3D grid: Worlds in AgentCubes consist of layers
with stacks of agents. VAT 3D features conditions
and actions that orient and move agents in 3D,
providing incremental support through optional para-
meters.

�
 Camera control: Attaching cameras to agents (first-

person view) makes the agent the location of the
camera. If the agent moves, the camera will move too.
If this agent turns, the camera will turn too. This
seemingly simple extension resulted in a number of
cognitively interesting challenges, including the need
to have conditions to test if the simulation is currently
running in bird’s eye or first-person view.

�
 Lighting control: End-user support for the use of light

sources in sophisticated scene rendering.

�
 Formula language: The formula language allows users

to express equations as functions of agent attributes
using special notation to access agents via their grid
locations in relative and absolute terms similar to
spreadsheets. For instance, the expression ‘‘weight+-
weight[left]’’ adds the value of the agent’s attribute
called ‘‘weight’’ with the value of the ‘‘weight’’
attribute of the agent to the left. Unlike AgentSheets,
which features a 2D spatial structure and operators to
express computation in 2D, AgentCubes allows users to
express computation in 3D.

�
 Animation support: Optional animation parameters in

movement and orientation language constructs (i.e.
conditions and actions) enable the separation of logic
and animation in agent behavior, thus ensuring that
the logic part works without obliging the user to first
define animation.

Examples of programming in AgentCubes are given in
subsequent sections.
emental 3D end-user development, Journal of Visual
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3.4. Incremental visualization

AgentCubes includes some sophisticated 3D visualiza-
tion capability. Embedded live 3D plots are rendered as
an overlay on game and simulation worlds. For example,
Figs. 7 and 8 show visualizations of the collaborative
diffusion [33,34] algorithm used for AI path-finding in
different games. The visualization is a logarithmic 3D
surface plot of the collaborative diffusion values. Colla-
borative diffusion spreads target values trough space in a
way allowing agents to find target efficiently. The targets
manifest themselves as peeks in the surface plot. In
Pacman (Fig. 7), the user-controlled Pacman character is
the target, creating the peek in the upper left corner,
attacked by ghosts. Walls in the Pacman world stop
diffusion values and create a complex diffusion landscape
indicating where ghosts need to go to track down the
Pacman. In soccer (Fig. 8), the ball is the target of the
soccer players. The presence of other players modulates
the collaborative diffusion values in a way to allow
collaborative interactions between players from the same
team.

Our early experience with these kinds of visualizations
is that they can be essential in explaining complex
Fig. 7. Collaborative Pacman Game. The user-controlled Pacman is in the

upper left corner. The Pacman ‘‘scent’’ is diffused over the entire

worksheet. Diffusion values are plotted logarithmically. The plot is

intersected by the worksheet. Walls are obstacle agents with a zero

diffusion value.

Fig. 8. Ball diffusion in a soccer game simulation. Peak indicates the

location of the ball.

Please cite this article as: A. Ioannidou, et al., AgentCubes: I
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
mathematical relationships relevant to numerous Science,
Technology, Engineering and Mathematics (STEM) topics.
One of the unique strengths of our AgentSheets 2D
authoring tool is that it can be used for game design as
well as for computational science [5] applications, which
can provide students with IT fluency leading to scientific
careers outside CS.
4. Incremental 3D process in game design

Student progression to 3D fluency is established by
having a process that is gradual enough to keep students
in the optimal flow of learning [35]. The process of
creating a 3D game starting with a 2D game involves four
successive steps: (1) creating a 2D game; (2) creating a
first-person 2D game; (3) creating a first-person 3D
Game; and (4) constructing a 3D world. These steps are
described below:
(1)
ncre
1

Creating a 2D game: Students are guided through a
game design process we call Gamelet Design to create
an initial 2D version of a game. We typically use the
classic arcade game of Frogger (http://en.wikipe-
dia.org/wiki/Frogger) because even young children
are aware of it and it seems to be gender neutral.
The result is a simple, but completely playable version
of the first level of the Frogger game. In this version, a
cursor-controlled frog tries to cross a highway with
cars driving across. Cars get automatically generated
and absorbed at the beginning and end of the
highway, respectively. Finally, the game deals with
the car–frog collision that results in the frog perishing
and being generated again, if there are any lives left.
The 2D version of the game (Fig. 9a) does not include
custom animations or 3D models at this point.
(2)
 Creating a first-person 2D game: Using incremental
modeling, animation, and programming, the look and
basic behavior of the 2D Frogger game gets trans-
formed to 3D. We motivate the transition from 2D to
3D by attaching the camera to the user-controlled
character, namely the frog, and therefore changing
perspectives from a world-view where the user looks
at the game world from a bird’s eye view to a first-
person view where the user sees the game world
through the ‘‘eyes’’ of the frog (Fig. 9b). After the
initial ‘‘the world is flat’’ shock, students typically
want to create 3D looking objects. Inflatable Icons are
used for incremental modeling to create 3D game
objects from the 2D images that the students had
created during the previous step (Fig. 9c). Seeing the
game run and the jerky movement of the cars prompts
students to change the animation parameters for the
movement. To make the games seem more realistic,
AgentCubes supports different animation modes (con-
stant vs. accelerated). For cars, for instance, it makes
sense to have constant animation speed, whereas for
the frog it is better to have accelerated animation to
simulate jumping. Moreover, simple behavior changes
are incrementally implemented. With the camera
attached to the frog, the students see the need to
mental 3D end-user development, Journal of Visual
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Fig. 9. (a) Bird’s eye view of Frogger; (b) flat frog in first person looking at flat cars; (c) 3D frog looking at 3D cars.

Fig. 10. (a) Lobster in bird’s eye view; (b) result of using the left arrow

key: the lobster turns and faces to the left.
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rotate the character when it changes direction, so they
add rotation actions to the behavior.
(3)
Fig. 11. (a) Lobster in bird’s eye view; (b) lobster in first-person view; (c)

result of using the left arrow key: the lobster turns to its left; (d) result

viewed from birds’ eye view: lobster is actually facing up in the absolute

coordinate system.

Table 1
Perspective-dependent interpretation of user input.

Bird’s eye perspective Cursor control 1st person perspective

Move left Turn left 901

Move right Turn right 901

Move up Move forward in direction

Move down Move backward in direction
Creating a first-person 3D game: Modifying the look of
game objects is not enough to create a 3D game. The
transition from bird’s eye to first-person camera view
also means that the coordinate system changes, which
presents a conceptual perspective issue for navigation.
The ‘‘absolute’’ right, left, up, down directions that
make sense when looking at the world from a bird’s
eye view no longer make sense in first-person mode
(Figs. 10 and 11). Students expect the user-controlled
character to transition seamlessly from absolute to
relative coordinates (Table 1). Instead, they need to
implement additional navigation behavior to deal
with the relative coordinate system.
With an incremental behavior approach, students are
taught how to implement world-view vs. first-person
navigation, extending existing code with language
able to deal with different versions of character
navigation based on the camera position. This is a
fairly difficult concept that requires more than trivial
programming, but at the same time presents great
opportunities for learning about coordinate systems
and modulo arithmetic – a concept not covered in the
middle school math curriculum. Game design pro-
vides many such opportunities for learning complex
concepts on demand, rendering it an experience that
synthesizes many different STEM skills, not just
programming. Indicative of this was a quote from
the only student who indicated he knew about
modulo arithmetic in our experiment: ‘‘I knew about
modulo arithmetic, I understood it, but now I know
how to apply it.’’
(4)
 Constructing a 3D world: At this point, students have a
simple but complete 3D game. As a final step, we
ease cite this article as: A. Ioannidou, et al., AgentCubes: Incre
nguage and Computing (2009), doi:10.1016/j.jvlc.2009.04.001
introduce students to a truly 3D world. Not only are
the objects of the game 3D, but there is movement in
all three dimensions using layers in the 3D grid. This
3D environment enables students to first navigate a
ready-made 3D maze and then construct their own
mazes by directing the movement and rotation of a
spaceship drilling holes in a solid cube. Indicators of
mental 3D end-user development, Journal of Visual
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3D fluency in this activity are specific design aspects
of the mazes students create (e.g. toggling between
bird’s eye and first-person views, toggling between
visible and invisible walls to evaluate the maze
structure, rotating the world to view the possible
routes in the maze) and the use of orientation and
visualization tools to verify that the maze satisfies the
given design criteria.
5. Impact of AgentCubes on IT fluency

We formally evaluated the effectiveness of the Incre-
mental 3D approach as a way to achieve 3D and IT fluency
at the middle school level. In this section, the design of the
study, the requirements of the troubleshooting scenarios
used as a culminating activity, the context of the study
and the findings are reported.

5.1. Study design

The evaluation study was designed in collaboration
with educational researchers from the University of
Colorado’s School of Education, who have experience in
working with students in technology-intensive instruc-
tional environments, as well as expertise in conducting
classroom-based research in K-12 settings. The study was
designed to document the impact of student use of
AgentCubes on identifiable learning objectives with
respect to the development of student IT and 3D fluencies,
mainly following the Fluency with Information Technol-
ogy framework. Given the scope of the feasibility study,
we focused on a subset of FIT and 3D fluency elements
that included IT Skills such as using a graphics package to
create illustrations, IT Concepts such as algorithmic
thinking and programming, and Intellectual Capabilities
12. Faulty behavior for the car that causes the car to be stationary.

x the problem, the missing rule for actually moving the car (shown

g. 13) should be inserted in the ‘‘Advance’’ method.

Fig. 13. Missing rule for the car to be added to the behavior in Fig. 1

ease cite this article as: A. Ioannidou, et al., AgentCubes: I
nguage and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
such as managing complexity, engaging in sustained
reasoning, and managing problems in faulty situations [2].

Instruction followed the Incremental 3D steps men-
tioned above. In addition to formative evaluations during
instruction, as an activity to measure fluency during the
final session, we designed problem-solving situations in
which students were asked to troubleshoot programming
scenarios. Instead of traditional pre- and post-tests, we
opted to perform an authentic assessment [36,37] that
would require students to draw upon what they had
learned about game design and programming agent
behavior to identify and solve problems in troubleshoot-
ing scenarios that involved an intentionally defective
version of a 3D Frogger game. Within a 45-min period in
the fifth (and last) session, students had to figure out at
least five things that were wrong with the game and re-
program the agents’ behaviors to fix those problems.
These included issues with movement in world and first-
person views, missing behaviors, and defective generation
rates.

Specifically, the students had to solve the following:
(1)
2 to

ncre
1

Car movement bug: One type of car was not moving on
the highway from left to right, as it should. Its
behavior was missing the rule that specified that the
car should move to the right if there is highway; as a
result, the car remained stationary. Students had to
identify the correct method (Fig. 12) where the
movement rule (Fig. 13) was to be inserted and add it.
(2)
 Car generation bug: On one side of the highway, the
cars generated to move from left to right were
stacking up (Fig. 14a and b). The behavior of the car
generator was set up so that it was creating cars too
often and without checking whether there was an
empty piece of highway there first (Fig. 16). Detecting
these kinds of issues in 3D is much easier than in the
equivalent 2D environment. Because of the third
dimension, the piling cars are discernible immediately
(Fig. 14a) without even tilting the 3D world (Fig. 14b).
The 2D equivalent of the situation cannot be discerned
just by looking at the world. Multiple car agents can
be stacked on top of each other, but one cannot tell
just by looking at it (Fig. 14c). Situations like this can
lead to performance degradation of the system, since
one can end up with thousands of agents piled up
using up system resources without the user knowing
why, making debugging of such issues extremely
difficult, especially for novices. To fix the faulty
behavior (Fig. 15), students had to slow down the
generation rate and put a check to see if there
is an empty piece of highway before creating a new
car (Fig. 16).
make it move right, but only if there is road ahead of it.

mental 3D end-user development, Journal of Visual
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Fig. 14. Identifying the car generation issue with cars piling up: (a) looking at the 3D world top-down you can still see the piling cars; (b) looking at the 3D

world from a different perspective; and (c) in the 2D equivalent, the problem is not apparent at all.

Fig. 15. Faulty behavior for the Car Generator agent. New car creation

gets called too often and with high probability. There is no check for an

empty spot to create the car either.

Fig. 16. Fixed behavior for the piling cars issue.

Fig. 17. Faulty behavior of 2D navigation bug. When the right and left
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(3)

arrow keys are pressed the frog does not move in correct direction.

Notice in 2nd and 4th rule the opposite arrows checked in the key

condition and the arrows of movement in the move action.

Pl
La
2D navigation bug: The movement for the Frog in bird’s
eye view perspective was incorrect. The rule for
when the left and right arrow key was pressed did
not match the direction in which the frog should
move (second and fourth rule in Fig. 17). Students had
to locate the relevant method in the behavior and
change the movement direction to match the key
pressed.
(4)
 3D navigation bug: The movement for the frog in
first-person perspective was incorrect. In the move-
in-direction method (Fig. 19) called from the navigate-
first-person method (Fig. 18), there was a duplicate
condition for dealing with direction ¼ 0. That essen-
tially means that the frog could never turn left in first-
person mode. The condition of the second rule in the
move-in-direction method needed to be changed from
testing for direction ¼ 0 to direction ¼ 1. Students had
to locate the relevant method in the behavior and fix
the error (Fig. 19).
ease cite this article as: A. Ioannidou, et al., AgentCubes: I
nguage and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
(5)
ncre
1

Turtle generation bug: There were not enough turtles
being generated for the frog to make a successful
crossing of the river (shown in Fig. 14a and b). This
turned out to be an elusive problem for the students
to identify, as it was a usability issue, not a program-
ming issue, per se. To fix it, the turtle generation
should have been increased by lowering the frequency
with which the generation rule was checked (once-
every condition) and possibly increasing the percen-
tage of generation (Fig. 20).
These troubleshooting tasks were unfamiliar situations
to students and were not discussed in previous sessions.
Students were required to complete the activity on their
own and could only ask the instructors questions of
mental 3D end-user development, Journal of Visual
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Fig. 18. Method implementing first-person navigation. This part of the

behavior is correct, but calls the ‘‘Move-in-Direction’’ method (Fig. 19)

that contains the faulty behavior.

Fig. 19. Faulty behavior for first-person navigation. Notice that there is

condition to correctly handle movement to the left (direction ¼ 1), but

instead a duplicate rule for checking for direction ¼ 0. Therefore, the frog

can never turn to the left in first-person perspective.

Fig. 20. Faulty turtle generation behavior. Generation frequency and

chance are too low for the game to be winnable, as there are not enough

turtles for the frog to jump onto to cross the river.

Please cite this article as: A. Ioannidou, et al., AgentCubes: I
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
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clarification. The debugging scenarios were challenging
since students were neither told what the problems were
nor how to locate the problematic procedures within the
AgentCubes environment. They needed to identify the
problem, locate the problematic agent and its behavior,
locate the exact problematic procedure in the code, and
correct the program for the agent.

We recognized that offering students an opportunity to
engage in troubleshooting was an authentic experience
familiar to any computer programmer. It required mana-
ging problems in faulty situations in addition to sustained
engagement in reasoning and application of programming
skills. Our eagerness with presenting such tasks to students
was tempered by uncertainty regarding students’ ability to
identify the problems, students’ insight in locating the
problematic procedures for a given agent, and knowing
how to resolve the problems. However, using the trouble-
shooting assessment to gather evidence of student FITness
was rewarded by the intensity of student engagement
throughout the assessment and what students were able to
accomplish, which is discussed in the findings section.

5.2. Contexts

The evaluation study was administered in collabora-
tion with Science Discovery, the University of Colorado’s
science outreach program, and was conducted in the
context of four after-school classes in two middle schools,
one in Boulder and one in Aurora, Colorado. Forty students
attended the initial session. The race and ethnic back-
ground of students recruited for the AgentCubes course
was a close approximation to the background of students
found at the participating schools, with the majority of
participants at the Boulder school reporting a Caucasian
background and the majority of participants at the Aurora
school reporting a Hispanic background (Table 2). Parti-
cipation was voluntary. A large number of students were
recruited by researchers and teachers. School administra-
tion and teachers reduced the recruitment group down to
the 40 students we could accommodate in the experi-
ment. The requirements included having two groups of
all-female students and a participant sample that repre-
sented the school population. It is also interesting to note
Table 2
Study participants from Aurora (top) and Boulder (bottom) schools.

Male Female Total AgentCubes (%) School (%)

African-Am 4 2 6 30 17

Asian-Am 0 1 1 5 3

Caucasian 1 0 1 5 11

Hispanic 4 6 10 50 68

Multi-Eth 0 1 1 5 nr

Native-Am 1 0 1 5 1

10 10 20

African-Am 1 0 1 5 1

Asian-Am 0 0 0 0 4

Caucasian 7 8 15 75 84

Hispanic 0 1 1 5 11

Multi-Eth 1 2 3 15 nr

Native-Am 0 0 0 0 o1

9 11 20

ncremental 3D end-user development, Journal of Visual
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that the Boulder school is located in a technology hub
region whereas the Aurora school is located in a less
affluent, blue-collar area.

5.3. Findings

The findings resulting from the overall evaluation
study are grouped in three categories: technology;
curriculum; and broadening participation.

5.3.1. Technology

For the technology category, the criterion to measure
success was whether students could build a simple game
from scratch, including 3D models and behavior program-
ming in a short period of time (less than 5 h). The
technology findings (TF) were as follows:

TF1 – All students were able to create a working 3D game

in less than 5 h: All students made at least one game.
Several students went beyond what was expected in class
and created extra games. It is interesting to note that it
was mostly boys from the Aurora school who created the
extra games.

TF2 – All students were able to create sophisticated 3D

models from scratch using Inflatable Icons: The Inflatable
Icons technology turned out to be highly accessible to all
students. Inflatable Icons were able to cover the spectrum
from rough and ready abstract looking 3D model drafts all
the way to sophisticated 3D models. It is interesting to
note that, on average, girls spent more time and paid more
attention to detail in creating their 3D models than the
boys.

TF3 – All students were able to add animations to their

games incrementally and customize animation parameters:
Students managed to enable and disable animations as
well as customize them. Customization allowed students
to control the animation timing and acceleration para-
meters. The incremental nature of the animation approach
built into AgentCubes allowed students first to build a
game and then, when necessary, add the animations after
they had developed the main game mechanics.
Table 3
Percentage of students identifying and completing the five troubleshooting task

2D movement; (4) frog 3D movement; and (5) turtle generation.

Groups Troubleshooting tasks

N Cars not

moving (%)

Cars piling

up (%)

Frog mo

(2D) (%)

All students 24 67 88 79

Schools

Boulder 14 71 93 64

Aurora 10 60 80 100

Gender

Male 16 63 81 88

Female 8 75 100 63

Ethnicity

Caucasian 13 69 92 69

Hispanic 5 60 80 100

Afr-Am 3 67 100 100

Other 3 67 67 67

Please cite this article as: A. Ioannidou, et al., AgentCubes: I
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
TF4 – Most students (85%) were able to program their

own character control in 1st person and bird’s eye view

successfully: This was a very challenging task: it included
understanding and application of modulo arithmetic, a
concept unfamiliar to most middle school students. Even
so, students were able to follow instruction and 85% of
them were able to complete the implementation of the
first-person navigation. Also, 75% of them were able to fix
the intentionally defective version of first-person naviga-
tion in the unassisted troubleshooting session.
5.3.2. Curriculum

The criterion to evaluate curriculum was based on
achievements towards FITness goals. During the sessions,
an AgentCubes FITness Observation Protocol (AFOP) was
used along with a pre-assessment observation checklist to
document students’ opportunities to engage in activities
that had the potential to promote Fluency in Information
Technology. During the final session, an additional
observation checklist was used to document students’
problem solving and design of 3D mazes in AgentCubes,
and students’ ability to solve various troubleshooting
scenarios using AgentCubes.

The curriculum findings (CF) were as follows:
CF1: Most students (75%) were able to solve most issues

(60% or more) in the troubleshooting activity. Almost all
students demonstrated sustained engagement and persis-
tence in resolving these problems. All students were able
to identify at least three of the problems and attempted to
resolve the problem by reprogramming agent behavior. As
a matter of fact, 75% of students solved the majority of the
issues (3 or more).

Table 3 summarizes the percentages of students able to
troubleshoot each scenario. Out of the 40 original
participants, 24 students participated on the day the
troubleshooting activity took place. In addition to overall
results, data are disaggregated by school, gender, and
ethnicity. It is worth noting that female students and
students at the Boulder School were more successful in
resolving car movement and generation issues. Male
s discussed in Section 5.1: (1) cars not moving; (2) cars piling up; (3) frog

vement Frog movement

(3D) (%)

Turtle generation

(%)

Average

(%)

75 42 70

64 50 69

90 30 72

88 50 74

50 25 63

62 46 68

100 20 72

100 33 80

67 67 67

ncremental 3D end-user development, Journal of Visual
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Table 4
Intensity level of opportunities for student development of FITness.
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students and students at the Aurora school were more
successful in resolving the scenarios related to frog
movement.

Furthermore, 25% of the students went beyond the
scope of the activity and improved the program in other
ways, such as using the graphics tools to change or inflate
game components such as cars and turtles so they would
be easier to see in first-person view.

CF2 – Scalable Game Design is a feasible strategy to create

a FIT-oriented curriculum using AgentCubes: Data from the
AFOP were analyzed to reveal opportunities to address the
five elements of the FIT framework [2] that were
prioritized for observation and assessment:
�

P
L

Using a graphics package to create illustrations.

�
 Algorithmic thinking and programming.

�
 Managing complexity.

�
 Engaging in sustained reasoning.

�
 Managing problems in faulty situations.
A hierarchical rating scheme was developed to distin-
guish potential opportunities from observed opportunities
with and without guidance. As summarized in Table 4,
every session included opportunities to address multiple
goals, but what distinguished the latter sessions from the
earlier ones were the opportunities for students to
demonstrate their achievement of FIT goals apart from
instruction. Since the last session included several
assessment-like activities, there were several opportu-
nities for students to demonstrate their ability to engage
lease cite this article as: A. Ioannidou, et al., AgentCubes: I
anguage and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
in sustained reasoning, troubleshoot errant programming,
and manage faulty situations (which, in fact, the majority
of students demonstrated, as illustrated in the results for
the troubleshooting assessment).

As an example of how these FIT goals were addressed
within a particular session, in Session 1 students were
asked to complete a brief survey and complete a set of
10–16 visualization tasks involving blocks. Students were
then introduced to AgentCubes through a bridge design
simulation and the Sokoban game (http://en.wikipe-
dia.org/wiki/Sokoban). These computer-based assessment
activities and problem-solving challenges provided stu-
dents an opportunity to engage in sustained reasoning
through most of Session 1 (Level 5 intensity). During the
same session, students also had the opportunity to use a
graphics package as they selected agents in the bridge
design simulation and modified the design to construct a
bridge with the fewest number of bridge elements. The
creation of illustrations, therefore, was a secondary FIT
goal that students had the opportunity to explore in
Session 1 (Level 4 intensity). A few students were able to
devise an algorithm for placing blocks and solving levels
in Sokoban (Level 2 intensity). Although there were some
opportunities in Session 1 for students to manage
complexity, in terms of programming agent behavior,
students were directed to a different activity before they
had the chance to explore this feature in AgentCubes
(Level 1 intensity).

CF3 – Students have capacity for visualization and

representing 3D objects as illustrated by their ability to

navigate 3D mazes and create their own: All students were
ncremental 3D end-user development, Journal of Visual
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able to navigate existing mazes and create their own 3D
mazes with varying degrees of complexity. Students could
create a 3D maze with AgentCubes, by designing path-
ways through a large solid cube, following specific design
criteria and with the expressed goal of constructing a
maze that would offer sufficient challenge to the maze
user.

5.3.3. Broadening participation

The criterion we used to evaluate this category was
whether the technology and curriculum could be used
across ethnicity and gender, both in technology hub areas
and inner city school cultures. The broadening participa-
tion findings (BPF) are as follows:

BPF1 – The idea of Game Design is compelling to middle

school girls. We were able to easily recruit more than 50%

girls: The percentage of female students involved at both
schools was greater than 50%. Organizing the weekly
sessions by gender may have had some influence on the
ability to recruit a higher percentage of female students to
agree to participate in these sessions. This was influenced
by earlier experiences in recruiting female students in
after-school STEM courses offered by Science Discovery.
Student attendance over the five sessions experienced
some attrition, with the most significant attrition occur-
ring among the Aurora school female group. Based on
follow-up discussions with teachers and students, it
appears that there were various reasons for this attrition
such as overlapping family commitments or other after-
school commitments.

BPF2 – Students from the Aurora school did better than

the tech hub school in authentic assessment (but the

difference was not statistically significant): The trouble-
shooting performance of students at both schools was
essentially the same. The Aurora students outperformed
the Boulder students on the challenging frog movement
tasks.

BPF3 – There was no major difference between the

ethnicity groups in troubleshooting performance: From Table
3, we see that African American students on average
completed 80% of the troubleshooting tasks during the
authentic assessment activities. Hispanic students on
average completed 72% of the tasks. Caucasian students
on average completed 68% of the tasks. Other Ethnicity
students on average completed 67% of the tasks. Note that
both the African American and the Other Ethnicity groups
were small (n ¼ 3).

6. Conclusions and future work

Our preliminary experiences and findings with Scal-
able Game Design, our low-threshold/high-ceiling frame-
work supporting skills beyond programming, ranging
from theoretical design skills to concrete development
skills, lead us to believe that we can establish IT fluency
and broaden participation in computer science with game
design activities. The results from the study described
herein indicate that it is educationally effective to use
AgentCubes as a low-threshold game design environment
featuring Incremental 3D for teaching IT skills to middle
Please cite this article as: A. Ioannidou, et al., AgentCubes: I
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
school students. The AgentCubes instructional sequence
did result in opportunities to promote student fluency and
the troubleshooting scenarios designed to be used with
AgentCubes can be used to document student IT fluency.

Promoting student IT fluency: The results suggest that
10 h of instruction using AgentCubes did result in the
development of student IT fluency across several ele-
ments, in particular algorithmic thinking, programming,
and managing faulty situations. Even though students had
some prior experience with computer software, no
student had previous experience with AgentCubes and
yet by the end of five sessions they were able to
demonstrate that they could identify and remediate
problematic agent behavior. Data from the observation
protocol outline how particular activities and instruc-
tional emphases contributed to the development of
student IT fluency and the results from the troubleshoot-
ing activity confirm that students understood some key
features of AgentCubes, game design, and programming.

Promoting computational thinking: The discussion on
what computational thinking [3] is and how to promote it
is an ongoing discussion. We believe that the combination
of incremental approaches with the low-threshold end-
user programming of AgentCubes is an essential combina-
tion for building computational thinking tools. Perhaps
the most important aspect of Incremental 3D with respect
to computational thinking is the support of incremental
formalization. The ability to draw simple, abstract 2D or
3D shapes that can be manipulated without the need for
any programming can facilitate design, or more generally,
the thinking process. Similar to classic LEGO blocks, these
agents can be employed to represent just about anything.
Then, the process of adding behaviors and evolving the
simple 2D objects into more sophisticated 3D objects,
becomes an essential part of a computational thinking
process.

Using troubleshooting scenarios as authentic assessment:
Designing assessments that reveal what students have
learned through use of computer software necessarily
relies more on how students can apply what they have
learned rather than showing learning gains beyond a pre-
assessment. Given students’ lack of familiarity with the
AgentCubes interface and the relatively brief contact time
with students, it was important to design an activity that
could be motivating to students, have some instructional
value (i.e. the assessment was a learning opportunity),
and serve as an assessment of student fluency.

We would argue that the troubleshooting activity is an
authentic assessment [36,37], since it emulates the type of
work expected of game designers and computer program-
mers, requires the application and synthesis of knowledge
and skills to find a solution to a problem worth solving,
involves some degree of self-assessment on the students’
part to determine when the goals are satisfied, and leaves
room for student creativity. The results demonstrated that
students were not only quite successful in completing
most of the tasks, but they were also fully engaged in the
activity for the entire time. It is worth emphasizing that
the participants in this study were sixth and seventh
grade students who had no previous experience with
AgentCubes, and yet very few students demonstrated any
ncremental 3D end-user development, Journal of Visual
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outward signs of frustration or reluctance to improve
agent behavior. The major finding from this study rests, in
part, with the results from this authentic assessment. That
is, over the five sessions, students developed sufficient
fluency with programming agent behavior to be able to
apply their knowledge of AgentCubes procedures in new
problem scenarios. Furthermore, we would argue that the
troubleshooting activity is an appropriate authentic
assessment to use with middle school students and is
likely the ideal approach to assessing students’ under-
standing of how to use new software. Although students’
facility with these activities may be the result of the user-
friendliness of the AgentCubes’ programming interface,
we feel this type of activity is worth pursuing to assess
student fluency with other design software.

Differential commitments for female and male students:
While there may be some differential gender effects
regarding sustained attendance of female students in
AgentCubes sessions, there is no indication from survey
results or school personnel who assisted with recruitment
that the course was less attractive to female students.
Rather, anecdotal evidence suggests that other after-
school commitments (e.g. band, clubs, sports, etc.) seemed
to have had a greater impact on attendance, in general, at
the Aurora school and may have had a greater impact on
attendance of female students. The after-school sessions
can be a productive time for many students; school
administrators are also supportive of using after-school
time in this way. However, for some students other after-
school activities, transportation arrangements, and family
commitments challenge sustained attendance in an after-
school CS program. In addition, the greater the duration of
the instructional sequence, the greater the chance stu-
dents will be absent from sessions which will hinder their
opportunity to stay with the rest of the group in terms of
learning new programming and design techniques.

Although the reasons for these differential attendance
patterns are conjectures, we feel that a promising strategy
to improve the attrition rate would be to either offer the
AgentCubes sessions during the school day (i.e. as part of
an applied technology or computer applications course) or
provide a more compact session over the course of one
week (five half-day sessions) rather than organized as 2-h
sessions each week over a period of 5 weeks.

Recommendations for future studies: The five sessions of
AgentCubes provided a sufficient balance of instruction
with the user interface, essential aspects of agent
behavior, and programming needs to transition from 2D
to 3D behavior. The sufficiency of instruction was
demonstrated by what students were able to accomplish
within the context of instructional activities and assess-
ment tasks. There is, however, a sense that students were
eager to learn quite a bit more about game design and
would have continued to attend additional sessions, if
offered. To enhance middle school students’ IT fluency,
conceptions of design, or programming of agent behavior,
additional instructional time is required. We plan to
explore these learning potentials in subsequent studies.

In our future work, we intend to study the systemic
needs and impact of the implementation of this approach
to increase IT fluency among middle and high school
Please cite this article as: A. Ioannidou, et al., AgentCubes: I
Language and Computing (2009), doi:10.1016/j.jvlc.2009.04.00
students. To accomplish this we will scale up research and
development along different dimensions:
�

ncr
1

Technology: provide more scaffolding techniques
[27–29] especially for incremental programming.

�
 Content and curriculum: develop longer modules

offered as part of the curriculum for comprehensive
coverage of IT standards.

�
 Teacher training: a systematic approach to teacher

training is essential for technology adoption in schools.

�
 Social factors: explore the factors leading to the some-

what disappointing attrition rates for girls, given their
interest in game design and ability to achieve the level
of fluency required to create their own games.
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