
Repenning, A. and T. Sumner, "Programming as Problem Solving: A Participatory Theater Approach," Workshop on
Advanced Visual Interfaces ‘94, Bari, Italy, 1994, pp. 182-191.

Reprint:

Programming as Problem Solving:
A Participatory Theater Approach

Alex Repenning
Tamara Sumner

Department of Computer Science and Institute of Cognitive Science
Campus Box 430

University of Colorado, Boulder CO 80309
492-1349, ralex@cs.colorado.edu, sumner@cs.colorado.edu

Fax: (303) 492-2844

Abstract.. 182

1. Introduction.. 182

2. Programming as Problem Solving ... 183

3. HCI as Participatory Theater: The Art of Program Invocation ... 184

4. Architecture of Agentsheets.. 185

4.1. Agents and Agentsheets..185

4.2. Using Agentsheets ..186

5. Three Agentsheet Applications.. 186

5.1. The Voice Dialog Design Environment..187

5.2. EcoWorlds...188

5.3. Kitchen Planner...188

5.4. A Comparison of these Applications..189

6. Conclusions.. 190

Acknowledgments .. 190

References.. 191

Keywords:

Delegation interfaces, direct manipulation, participatory theater, problem solving, visual programming, opportunistic design,
spatial metaphors, temporal metaphors, agents, agentsheets, construction kits, human-computer interaction, object-oriented
programming

Acknowledgments

We thank the HCC group at the University of Colorado and Clayton Lewis, who contributed to the conceptual framework and
the systems discussed in this paper. We wish to particularly thank Jim Sullivan, the creator of the EcoWorlds applications.
We also wish to thank Jonathan Ostwald, Kumiyo Nakakoji, and Gerry Stahl for their comments on early drafts of this paper.
This research was supported by: the National Science Foundation under grant No. MDR-9253425, Apple Computer Inc., and
US West Advanced Technologies.

Programming as Problem Solving:
A Participatory Theater Approach

Alex Repenning
Tamara Sumner

Department of Computer Science and Institute of Cognitive Science
Campus Box 430

University of Colorado, Boulder CO 80309
492-1218, ralex@cs.colorado.edu, sumner@cs.colorado.edu

Fax: (303) 492-2844

Abstract 1. Introduction

Spatial and temporal metaphors can play an important role
in making the task of programming serve problem-solving
processes. Visual programming research hopes to capitalize
on innate human perceptual skills to make the programming
task easier by using visualization to simplify program
construction at the syntactic level. Instead, we advocate that
the role of visualizations, and the consequent use of spatial
metaphors, is not to simplify programming per se but
instead to support the problem-solving process. To that end,
environments endorsing spatial metaphors should support:
creating and changing external representations of the
problem, and opportunistic design strategies necessary for
exploring problem spaces. We discuss problems with
human-computer interaction schemes arising from the use
of temporal metaphors. Direct-manipulation, on the one
hand, can be too direct for controlling a number of
autonomous processes such as cooperating agents. The
complete delegation of tasks to agents, on the other hand,
can leave users entirely in the role of passive observers. We
propose a new approach, called the participatory theater
metaphor, which combines the advantages of human
computer interaction schemes based on direction
manipulation and delegation and provides users with a
continuous spectrum of control over their program
behaviors.

The initial perception of visual programming was that the
visualization of syntactic structures would capitalize on
innate human perceptual skills to make the programming
task easier. Early visual languages such as BLOX Pascal [5]
focused on providing visual representations of general
purpose programming languages (Figure 1). In BLOX
Pascal, the shapes of the building blocks help users make
correct syntactic constructions but users still need to
understand the Pascal language in order to write meaningful
programs.

Figure 1. The shapes of the blocks facilitate making correct syntactic

constructions.

Other researchers have long advocated that the role of
visualization is to aid problem-solving. Simon states that
solving a problem means representing it so as to make the
solution transparent [20]. In this paper, we advocate that the
role of visualization is not to serve programming per se, but
to support problem-solving (i.e., problem representation)
activities.

KEYWORDS: Delegation interfaces, direct
manipulation, participatory theater, problem solving, visual
programming, opportunistic design, spatial metaphors,
temporal metaphors, agents, human-computer interaction

However, simply providing visual representations is
insufficient to adequately support the problem-solving
process. Schön has studied the complex problem-solving
process of design [19]. He concludes that problems can
only be understood through repeated attempts to solve
them. Fischer [3] has described this aspect of design as “a
dialectic between problem framing and problem solving.”
Green also adopts the stance that “design is redesign” and

 Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permissions.
AVI 94- 6/94 Bari Italy
© 1994 ACM 0-89791-733-2/94/0010..$3.50

182

concludes that representations need to be easily modifiable
to support opportunistic planning and redesign processes
[6]. Thus, being able to modify representations is an
essential property of a good visual problem-solving
environment. However, many visual programming
languages provide a single built-in representation of their
underlying programming environment which users cannot
change.

3) Support users in modifying both of these
metaphors.

4) Provide users with a wide spectrum of control over
the dynamic behaviors in their solution representation.

5) Provide symmetric communication facilities for
both users and dynamic objects.

First we will discuss the theoretical background underlying
the two notions of “programming as problem-solving” and
“human-computer interaction as participatory theater” and
we will derive the five principles. Next, the Agentsheets
system will be described. The core of this paper will
illustrate each of the five principles using three problem-
solving environments built using the Agentsheets system –
the Voice Dialog Design Environment, Eco Worlds, and
Kitchen Planner.

Instead of creating visual programming languages, we
advocate the creation of visual problem-solving
environments. Such environments combine the accepted
wisdom of visual representations to support problem-
solving with the added potential benefits of a programming
language. Programming can aid problem-solving by
transcending the limits of static visual representations and
supporting users to explore different aspects of their
problem. Many problem domains have dynamic aspects that
cannot be represented statically since their importance is in
understanding how these aspects change over time.

2. Programming as Problem Solving

The more traditional view of programming environments as
implementation facilitating devices assumes that a problem
is sufficiently well understood such that the process of
programming is a mapping of this problem understanding
onto a programming mechanism [7]. However, adopting the
“programming as problem solving” perception leads to a
programming substrate of a different nature that focuses on
facilitating the problem solving process rather than an
“implementation as mapping” process.

One challenge for these environments is to provide users
with new human-computer interaction schemes that allow
users to interact with and control the behaviors of these
dynamic problem representations. Interacting with
programs can be considered along a spectrum of control
where one extreme provides the user with maximal control
over behavior in the form of direct manipulation interfaces;
the other end provides users with the least control in the
form of complete delegation interfaces.

The process of problem solving includes creating and
changing representations until the solution becomes visible
[20]. Several studies [11] show the important role visually
inspectable models play in problem-solving processes. In
these studies, problem-solving proceeded by creating an
external representation of the solution, visually inspecting
this solution and noticing problematic aspects, and repairing
the problematic areas by altering the proposed solution. In
many cases, representations become transparent when they
express information in ways analogous to familiar
situations. In other words, representations can serve as
physical manifestations of metaphors. Metaphors help us to
learn about things we do not yet understand by creating
analogies to things we do understand [9].

We explore this spectrum in terms of a theater metaphor. In
this metaphor, direct manipulation interfaces correspond to
providing users with hand puppets. Users have complete
control over the actions of these puppets but are required to
do everything for themselves. Users interacting with
delegation interfaces correspond to audiences passively
watching a staged production where they have no control
over the course of events. Neither of these extreme views of
human-computer interaction are sufficient for the visual
problem-solving environments advocated in this paper. We
suggest a new human-computer interaction metaphor called
“participatory theater” where users interact with the actors
in the production; i.e. the dynamic objects in the visual
representation.

Principle 1: Problem-solving environments should
incorporate spatial metaphors to support the creation
of inspectable external representations.The two notions of programming as problem-solving and

human-computer interaction as participatory theater are
manifested in the Agentsheets system and visual problem-
solving environments built using this system. In this paper,
we enumerate five principles systems should embody to
support this view of programming as problem-solving.
Systems should:

However, many aspects of a problem cannot be represented
in a static visual representation. In some domains, such as
ecosystem simulation, the important aspects of the problem
are how the system changes over time. Expressing such
problems requires temporal metaphors in addition to spatial
metaphors. Computers and programming languages enable
the creation of temporal metaphors. We define a program to
be a collection of actions or behaviors arranged in a
temporal metaphor. Programming can enable users to

1) Support the creation of spatial metaphors.

2) Support the creation of temporal metaphors that
are intrinsically integrated with a spatial metaphor.

183

express aspects of the problem that cannot be represented in
static visual representations.

User

Principle 2: To fully support problem-solving and
take advantage of human visual perceptual skills,
temporal metaphors should be intrinsically tied to a
corresponding spatial metaphors. Such a binding
transforms dead paper representations into active
media supporting problem-solving.

Opportunistic design processes are important for problem-
solving [6] and can be viewed as a design strategy
supporting a dialectic between problem framing and
problem solving. The evolving solution serves as an
inspectable model of the partial solution and guides the
designers in the problem-solving process. In Nardi’s study
of spreadsheet users [11], she observed that the strength of
the spreadsheet as a problems-solving environment was
how it supported both the incremental evolution and radical
restructuring of an inspectable model of the emerging
solution.

Figure 2. Direct Manipulation: Puppets are controlled by the user.

The extreme level of control provided by direct
manipulation can be inappropriate for applications
modeling large numbers of autonomous or cooperating
entities [12]. Negroponte suggests the theatrical metaphor
of actors in a production. In this approach, tasks are
completely delegated to actors. This approach illustrates the
opposite end of the control spectrum since once the actors’
scripts have been created and the play has started, the
audience is left with no control over the course of the
production (Figure 3). However, the actors in the play can
do more sophisticated tasks than the hand puppets since
their activity is not bounded by the inherent sequentiality of
single user actions found in direct manipulation schemes.

Principle 3: Problem solving systems should support
opportunistic design practices by providing
metaphors that can be both incrementally modified
and radically restructured.

3. HCI as Participatory Theater: The Art of
Program Invocation

User

Programming as problem solving involves not only the
problem of creating a program, but also the problem of
knowing when and how to invoke the program. Program
invocation takes on a new importance because in our
model, programs are no longer monolithic entities but
instead are collections of cooperating behaviors arranged in
spatial and temporal metaphors.

Human-computer interaction, from a technical point of
view, can be understood as the art of invoking the right
program fragment at the right time in order to give users
appropriate levels of control over their program behaviors.
We will use a theatrical metaphor to illustrate the possible
spectrum of user control and to compare several human-
computer interaction schemes

Figure 3. Complete Delegation: Passive audiences observe actors

following a script.

Traditional simulation environments rely on the “actors in a
play” model of interaction. The definition of simulation
attributes is similar to writing the script for an actor. After
the simulation environment has been prepared and the
simulation has been started, the user of the system becomes
a passive observer watching the progress of the simulation.

Direct manipulation and delegation illustrate two extreme
end points on the continuous spectrum of control. Control
can be understood in terms of who takes the initiative – the
user or the system. With direct manipulation, users have
maximal control over the individual components of their
system. In terms of the theatrical metaphor, direct
manipulation interfaces are like hand puppets in the sense
that users are completely in charge of the staged production
(Figure 2).

We suggest that the virtues of both approaches be combined
in a participatory theater metaphor (Figure 4) by
perceiving control as a spectrum rather than the discrete
dichotomy of direct manipulation versus delegation. Actors
in a participatory theater will act according to their script
unless the audience tells them to do something differently.

184

Depending on the level of participation, the interaction can
assume any point in the control spectrum. If the users
choose not to participate, then they have no control over the
production and become passive observers. Excessive
participation will result in the user taking over the
production completely to the point of direct manipulation.

4. Architecture of Agentsheets

Agentsheets is a substrate for constructing domain-oriented,
dynamic, visual problem-solving environments. It supports
the creation and animation of a variety of graphical
representations. The environments created consist of
cooperating agents organized in a grid. The grid structure is
used to clarify spatial relationships between agents such as
adjacency, relative and absolute position, distance, and
orientation. Together, the notion of agents and grids can be
used to create temporal and spatial metaphors. A
comparison of Agentsheets to other systems can be found in
[15]. Agentsheets is built on top of an object-oriented
system and is written in Common Lisp.

Temporal metaphors provide a framework for organizing
collections of cooperating actors into behavioral
representations. Problem-solving with behavioral
representations means “experiencing” behavior, interacting
with it, and directing it to explore possibilities and what-if
scenarios.

ok

User

do
this!!

In a typical application of Agentsheets, a system designer
defines the look and behavior of domain-specific agents.
These agents constitute the elements of a high-level visual
programming language which can be used readily by end
users. End users arrange these agents in a worksheet. The
worksheet has an underlying grid structure analogous to the
rows and columns in a spreadsheet. Relationships between
agents can be explicitly specified by connecting them with
links or implicitly specified simply by position within the
grid structure. Each agent has an associated behavioral
component which allows the agent to perform an action in
response to some stimulus. The stimulus can come from the
user or from another agent.

Figure 4. Participatory Theater: Both users and actors influence the

course of the production. 4.1. Agents and Agentsheets

The basic components of Agentsheets are agents [4, 10]. An
agent is a computational unit either passively reacting to its
environment, or, more typically, actively initiating actions
based on its perception. These actions, in turn, may impact
the environment.

Principle 4: Participatory theater interaction requires
that users have a wide spectrum of control over their
program behaviors. User should be able to interact
with each individual actor in the collection
(production) as well as the collection as a whole.

The Agentsheet is a grid-structured worksheet. Every agent
has a graphical depiction that is visible in the Agentsheet.
Figure 5 shows an Agentsheet depicting a simple electrical
system. In this system, the look as well as the behavior of
the system components like voltage sources, switches, bulbs
and even individual wire segments are captured by agents.

Actors in the production correspond to objects whose
behavior is choreographed by a script representing the
temporal metaphor. The user is just another participant in
the production. Any participant in the production can guide
or influence the course of action. As such, users and actors
(objects) must be provided with the same communication
facilities so that they can interchangeably communicate
with each other.

The depictions in Figure 5 show the graphical
representation of an Agentsheet as it is seen by a user.
Depictions can represent the class or the current state of an
agent. For instance, the symbol of an electrical switch
denotes a switch agent. Furthermore, different states of the
switch are mapped to different variations of depictions, e.g.,
an open switch versus a closed switch. The look of the
depictions plus rules guiding their arrangement in the
agentsheet grid define the spatial metaphor.

Principle 5: Symmetrical communication allows
actors to respond to sensory input the same way
regardless of whether it originated from another actor
or the user.

This symmetry allows users to interject an action into a
production or shift the script’s direction without having to
stop the overall process. Thus in the participatory theater
approach, there need not be an explicit run-interact-stop
cycle of program execution.

Depictions of agents are stored in the gallery and defined by
using the provided bitmap editor or by modifying and
combining existing depictions. When depictions are placed

185

in the agentsheet, each depiction gets bound to an agent. In
the theater metaphor, agents correspond to actors in the
production. These agents consist of:

paths will be enabled simply by virtue of the agent’s
placement within the grid structure. For instance in the
electric world (Figure 5), the spatial and temporal
metaphors are integrated around the concept of "flow."
Flow has a spatial manifestation based on adjacency in the
worksheet. Adjacency, in turn, defines the temporal
sequence guiding the flow of electricity through the circuit.

• Sensors . Sensors invoke methods or procedural actions
of the agent. They are triggered by the user (e.g.,
clicking at an agent) or by another agent.

• Effectors . Effectors are mechanisms to communicate
with other agents by sending messages. The messages,
in turn, activate sensors of the agents being effected.
Effectors can also be used to modify the agent’s
depiction or to play sounds.

4.2. Using Agentsheets

Agentsheets anticipates two types of users: a system
designer and an end user. End users build programs with the
resulting system by selecting familiar objects (i.e., agents)
from a gallery and placing them into a worksheet. The
layout of objects in the worksheet defines the program’s
collective meaning.

• Behavior: The built-in agent classes provide default
behaviors defining reactions to all sensors. In order to
refine this behavior, methods associated with sensors
can be shadowed or extended making use of object-
oriented mechanisms.

In a typical application scenario, a system designer uses
Agentsheets to create a high-level visual problem-solving
environment. These environments are essentially
construction kits tailored to the user’s specific domain. The
system designer maps the application domain semantics to a
set of graphical building blocks and defines the meaning of
spatial relationships between these blocks. Together, the
building blocks and the spatial relationships between blocks
comprise a graphic representation for the domain. Each
building block is an agent. A graphical depiction and a class
must be defined for each type of agent. Defining the class
includes the design of a data structure for managing the
agent’s internal states and a set of methods determining the
agent’s behavior. This class definition is implemented in
AgenTalk, which is an extension of Common Lisp. The
behavior of an agent does not have to be defined from
scratch; it can be constructed incrementally by refining
existing agent classes. For instance, a comprehensive
selection of fundamental sensors; i.e., user interactions such
a selection, dragging and other mouse events, is inherited
when refining built-in agent classes.

Agents

Agent Structure

Depictions

Behavior
(Methods)

Sensors Effectors

State

5. Three Agentsheet Applications

In this section, we will present three applications that have
been constructed using the Agentsheets substrate – the
VDDE system (a design environment supporting the design
and construction of phone-based interfaces), EcoWorlds (a
family of ecosystem simulation applications), and Kitchen
Planner (a kitchen floor plan construction system). For each
system, we will: 1) briefly describe the domain and the
problem the system is designed to address, 2) provide an
overview of the specific system; and, 3) discuss how the
application and the Agentsheets substrate fulfill our five
principles. These three applications were chosen to
illustrate the diversity of environments that can be
constructed using the Agentsheets substrate. The first
application, the VDDE system, shows how Agentsheets can
be used to create active or behaving design representations.
The second application, EcoWorlds, illustrates the

Figure 5. The Structure of an Agentsheet.

The sensors, effectors, and behavior of an agent determine
how a particular agent reacts to its environment. The
temporal metaphor is created by specifying how classes of
agents communicate via sensors and effectors. The
temporal metaphor should be closely tied to the spatial
metaphor such that when depictions are arranged according
to the spatial metaphor, the defined agent communication

186

participatory theater approach. The third application,
Kitchen Planner, shows how taking the participatory theater
approach to its extreme can turn design into a tactile
experience.

Figure 6. The Voice Dialog Design Environment

5.1. The Voice Dialog Design Environment

Voice dialog applications are phone-based systems;
prototypical applications are voice mail systems and voice
information systems. These systems consists of a series of
voice prompts requesting the user to perform certain
actions; e.g. “to listen to your messages, press 1.”
Traditionally, the interfaces of such systems have relied on
audio recordings and the sounds emitted by the touch-tone
buttons on a common telephone. The design shown is an interface for a delivery service in a pizza parlor. If

customers call outside of the restaurant's open business hours, they hear a
standard message. If customers call during business hours, they can navigate
through a series of voice menus to specify their pizza order. The design shown
consists of two programs.

Designing in this domain means specifying the interface for
a voice dialog application at a detailed level. Voice dialog
interfaces consist of a cascading series of voice prompted
menus which the user must navigate through. Objects such
as voice menus and audio prompts are arranged in special
visual representations similar to flow charts that convey the
flow of control and range of allowable user actions within a
particular phone-based interface. The design process of
voice dialog applications is complicated by the "medium
gap" between the visual design representations and the
audio end product. In phone-based interfaces, information is
presented to the user auditorally as spoken messages and
signals. It is difficult for the designer working with a
visually-oriented design representation to mentally bridge
this medium gap and envision the auditory end product.

At any time, the behavior of the visual design
representation can be simulated. Design simulation consists
of a visual trace of the execution path combined with an
audio presentation of all prompts and messages
encountered. This simulation helps the designer to bridge
the medium gap between the visual representation and the
audio artifact. In the voice dialog design environment,
every design unit has an associated behavioral component
that executes an action during design simulation. Some of
these actions result in audio output, some collect user
touch-tone input, and others perform internal system actions
such as managing data or evaluating conditions. The spatial
relationships between design units describes the order of
execution flow when simulating the design representation.
The temporal metaphor, as well as the spatial metaphor, is
defined by the three placement rules. These rules integrate
the spatial and the temporal metaphors common to voice
dialog application design. The temporal metaphor is
realized at the agent level by a small set of sensors and
effectors specifically defined to support simulation
requirements in this domain.

The voice dialog design environment (VDDE) [16]
provides an on-screen gallery of voice dialog design units,
such as menus and prompts, and a worksheet for design
construction and simulation. The design of a small
restaurant pizza-ordering system constructed in this
environment is illustrated in Figure 6. Using the voice
dialog design environment, designers work with meaningful
domain abstractions such as prompts and menu design
units. “Designing” involves placing design units into the
worksheet in accordance with three design unit placement
rules. Together, the look of the domain-oriented depictions
and the three placement rules define a spatial metaphor
based on traditional voice dialog design representations.
The three placement rules are:

In [21], we describe how we successfully applied iterative
prototyping and participatory design in the creation of the
VDDE system. In less than four months, a mixed team of
professional voice dialog designers and academic
researchers were able to design and build a substantial core
design environment. During the course of this collaboration,
the design representation employed by the VDDE system
has undergone many evolution cycles in response to user
evaluations [17]. This evolutionary design approach was
facilitated by Agentsheets support for the incremental
refinement of both spatial and temporal metaphors.

• The Horizontal Rule: Design units placed
physically adjacent to each other within a row are
executed from left-to-right.

• The Vertical Rule: Design units placed physically
adjacent to each other within a column describe the set
of options or choices at that point in time in the
execution sequence.

The VDDE system provides the user with both end points
in the spectrum of control. Users interact with individual
design units using direct manipulation techniques to
instantiate, rearrange, and modify design units. However,
users interact with the collection of design units using

• The Arrow Rule: Arrows override all previous rules
and define an execution ordering.

187

delegation techniques. The user can initiate the simulation
process by double-clicking on a “start” design unit (see
Figure 6). Once initiated, the design simulation progresses
as long as the necessary touch-tone button inputs are
provided. In the VDDE system, symmetrical
communication means that some of the sensors used for
supporting direct manipulation by the user (e.g., sensors to
detect mouse and keyboard input) are also used by the
simulation process and thus support delegation techniques.
The VDDE system illustrates how symmetrical
communication allows a system to support both end points
in the control spectrum: the remaining two applications will
show how symmetrical communication can support the full
range of participatory interaction.

Microworlds such as the EcoWorld simulations are problem
solving devices in the sense that they can help users to
experience how the seemingly simple behavior of
individuals can have complex, sometimes hard to predict
consequences for the collective system.

Programming is used to define the behaviors of individual
creatures such as the alligators or frogs. These programmed
behaviors represent hypotheses concerning how creatures
operate in their world. Users determine what perceptions
will lead to what reactions. Hypotheses are then tested by
arranging the creatures in the microworld and observing
their behavior. Typically, the behavior exhibited is much
more complex than the anticipated behavior because the
heterogeneity of the assembled creatures can lead to
unexpected situations.5.2. EcoWorlds

A different type of Agentsheets applications are
microworlds [13] in which agents are the inhabitants of
simplified worlds. Microworlds are specially designed to
highlight particular concepts and ways to think about these
concepts [18]. The microworlds created in Agentsheets are
similar in nature to SimCity-like applications excepts that
radically new characters can be introduced by users and
their behavior can be defined by the user rather than the
creator of the microworld. New behaviors can either be
defined by programming or by modifying parameters
associated with generic characters.

The EcoWorlds provide users with access to the simulation
along the full spectrum of user control. Direct manipulation
methods are used to create, configure, and arrange creatures
in the microworlds. Delegation is used to initiate the
simulation. The user can engage in participatory theater by
adding new creatures or modifying existing creatures while
the simulation is an progress. For instance, if the user
notices that all the frogs in a certain area are dying out due
to lack of food, instead of waiting for them to die and
restarting the simulation, the user can add more food
(insects) into the area in real time. This level of
participation is facilitated by symmetrical communication.
When a new insect appears, it is indistinguishable whether
the user just added it or whether it is the product of two
existing insects mating. In both cases, the same sensors and
effectors are used.

Several ecosystem microworlds have been created using
Agentsheets including EcoOcean, EcoSwamp, and
EcoAlaska. Using these ecosystem simulations, the
complex relationships between heterogeneous collections of
creatures and their environment can be studied. The
EcoSwamp application (Figure 8) is tailored to the
microworld of swamps and swamp inhabitants. The dialog
box shown provides a simple way to change the behavior of
creatures by modifying parameters such as age, types of
prey, size, and information about mating and sleeping.

5.3. Kitchen Planner

In the domain of kitchen design, appliances such as stoves,
sinks, and refrigerators are arranged in a floor plan
representation according to the owner’s requirements and
the principles of good kitchen design. In this domain,
principles of good design can be expressed as desirable
spatial relationships between the various kitchen
components. For instance, an important heuristic
concerning an efficient “work triangle” states that the total
distance between the stove, the refrigerator and the sink
should be less than 23 feet. The goal of the Kitchen Planner
(Figure 9) is to find new approaches for conveying such
spatial design knowledge.

One approach for capturing design principles is to represent
them as explicit rules in a computational critiquing system
[2]. Critiquing systems observe and evaluate user actions
and notify users when potentially problematic situations are
detected. In the Janus system [1], a designer creates a
kitchen floor plan by dragging appliances from a palette
into a work area. A critic checking the work triangle rule

Figure 8. Parameter Modifying Dialog in EcoSwamp

188

would notify the designer if the components involved in the
work triangle are too far apart. As such, critic rules only
explicitly represent evaluative knowledge; they notify
designers that something is wrong but provide no
constructive knowledge about how to remedy the situation.
Other knowledge-based components in the Janus system
provide designers with this constructive knowledge.

multiple hill climbing agents at the same time. Since most
agents define their happiness in terms of the location of
other agents, “happiness” literally becomes a moving target.
The participatory theater approach allows users to
participate in the hill climbing process and overcome some
of these algorithmic limitations:

• The hill climbing process has an intrinsic spatial
manifestation. The hill climbing agents are visible in the
worksheet. Hence, the situation the agents are in can be
inspected by the user.

In contrast, the Kitchen Planner conveys constructive
knowledge through the use of a spatio-temporal hill
climbing metaphor. In Janus, kitchen appliances are passive
objects and the designer and the critiquing mechanism are
the active agents in the design process. In the Kitchen
Planner, these passive appliances are replaced with active
appliances that make use of hill climbing agents. Hill
climbing agents try to improve their situation by climbing
up a conceptual hill representing their “happiness.” Each
agent will probe all of its immediate neighbor locations,
determine the potential happiness at each location, and
compare this with its current happiness. If any of the
neighboring locations promise an increase in happiness,
then the agent will move there.

• Dynamic properties can be observed. Sometimes there is
no static solution and the agents never settle down, but
instead keep moving. Dynamic properties of the
solution, such as the participation of agents in cyclic
behaviors, may be directly observable.

• Participatory theater can turn the exploration of the
problem space into a tactile experience. Hill climbing is
the implicit script handed out to the actors in the
production. Users can be a passive audience or they can
take the initiative and steer the hill climbing process. For
instance, users can: 1) help agents to move out of local
maxima, 2) change the environment of agents to remove
a local maxima, or 3) modify parameters so that agents
measure their happiness differently. Participatory theater
can become a tactile experience. The synergistic
combination of the forces of direct manipulation and hill
climbing result in a tactile experience where the
landscape of the problem space is perceived by touching
its dynamic components. In the Kitchen Planner, the
work triangle is not visibly represented in the worksheet.
However, it can be indirectly experienced by trying to
move the sink too far away from the refrigerator and
oven and observing how these appliances rearrange
themselves in response to the user’s action.

Tactile interaction makes use of principles intrinsic to the
participatory theater metaphor. On the one hand, user’s can
express design intentions through direct manipulation by
simply moving components. On the other hand, components
are autonomous in trying to optimize their happiness
according to the guidelines attached to them. This can lead
to conflicts between the intentions of the user and the
attached design guidelines. Users can address these
conflicts by modifying the strengths of individual
guidelines or by freezing the positions of components.

Figure 9. A kitchen floor plan.

Constructive knowledge can drive hill climbing. Evaluative
knowledge typically consists of predicates returning a true
or false value based on the current situation. For instance,
the work triangle critic returns the same notification
message to the designer regardless of whether the total
distance is 24 feet or 2400 feet. However, hill-climbing
agents provide a different knowledge representation of this
same work triangle situation that returns a degree of fit.
This result is used to constructively drive the hill climbing
process.

5.4. A Comparison of these Applications

Table 1 summarizes the discussions of the three
applications. All three applications relied extensively on
Agentsheets facilities for creating spatial and temporal
metaphors. In the VDDE system, the ability to modify these
metaphors supported system designers to engage in an
iterative, participatory design process with professional
voice dialog application designers. In the EcoWorlds and
Kitchen Planner systems, the ability to change
representations allows users to substantially modify the

The hill climbing process is complex because the landscape
of the problem space implicitly defined by the evaluation
function may lead the agent into local maxima leaving the
agent unaware of even better places to be. Furthermore,
typical Agentsheets hill climbing applications employ

189

Table 1. Summary of the Three Applications

VDDE EcoWorlds Kitchen Planner

1) Spatial
Metaphor

Sequential control flow defined
by adjacency

Relationships between creatures
and their environment

Spatial relationships between
appliances in the floor plan

2) Temporal
Metaphor

Sequential control flow defined
by adjacency

Creatures satisfy their life cycle
demands; i.e., birth, eating, death

Appliances satisfy their urge for
happiness; i.e., hill climbing

3) Change of
Representation

Incremental evolution of
metaphors supported iterative
participatory design process

New creatures can be added
dynamically

New appliances can be added
dynamically

Spatial design guidelines can be
added dynamically

4) Control Both end points in the
spectrum: direct manipulation
and full delegation

Full spectrum of control: direct-
manipulation to full delegation

Full spectrum of control: direct-
manipulation to full delegation

Tactile experience: implicit
design space experienced by
“touching” components

5) Symmetry of
Communication

In all three applications, behavior can be invoked by both users and agents.

simulation microworlds. The VDDE system provides users
with interaction schemes at both ends of the control
spectrum. EcoWorlds and Kitchen Planner support the full
spectrum of user control by allowing users to dynamically
interact with and modify simulations as they are in
progress.

children’s storybook tool, a front-end to a power station’s
expert system [14], and a computer network design
environment.

A substrate providing flexible representation mechanisms
allows users to explore radically different approaches to
solving the same kinds of problem. For instance, the
Kitchen Planner uses hill-climbing to implicitly represent
principles of good design whereas the VDDE system uses a
critiquing approach [8]. The advantage of a substrate such
as Agentsheets is that it lets us experiment with different
types of representations including the notions of space,
time, communication, and interaction.

6. Conclusions

In summary, the two notions of programming as problem-
solving and human-computer interaction as participatory
theater dictate five principles that systems should embody:

1) Systems should support the creation of spatial
metaphors.

2) Systems should support the creation of temporal
metaphors that are intrinsically integrated with the
spatial metaphor.

3) It is essential that both of these metaphors can
undergo continual modification. Acknowledgments

4) Users must be provided with a wide spectrum of
control over the dynamic behaviors in their solution
representation.

We thank the HCC group at the University of Colorado and
Clayton Lewis, who contributed to the conceptual
framework and the systems discussed in this paper. We
wish to particularly thank Jim Sullivan, the creator of the
EcoWorlds applications. We also wish to thank Jonathan
Ostwald, Kumiyo Nakakoji, and Gerry Stahl for their
comments on early drafts of this paper. This research was
supported by: the National Science Foundation under grant
No. RED-9253425, Apple Computer Inc., and US West
Advanced Technologies.

5) Systems should provide symmetric communication
facilities for both users and dynamic objects.

We have illustrated these principles with three problem-
solving environments created using the Agentsheets
substrate. In the last 4 years, the Agentsheets substrate has
been used to create over 40 applications in a variety of
domains such as a river basin management system, a

190

References 13. Papert, S., The Children’s Machine, Basic Books,
New York, 1993.1. Fischer, G., A. Lemke, T. Mastaglio and A. Morch,

“Using Critics to Empower Users,” CHI ‘90 , Seattle,
WA, 1990, pp. 337-347.

14. Repenning, A., “Creating User Interfaces with
Agentsheets,” 1991 Symposium on Applied
Computing, Kansas City, MO, 1991, pp. 190-196.2. Fischer, G., A. C. Lemke, T. Mastaglio and A. Morch,

“The Role of Critiquing in Cooperative Problem
Solving,” ACM Transactions on Information Systems,
Vol. 9, pp. 123-151, 1991.

15. Repenning, A., “Agentsheets: A Tool for Building
Domain-Oriented Dynamic, Visual Environments,”
University of Colorado at Boulder, Ph.D. dissertation,
Dept. of Computer Science, 171 Pages, 1993.3. Fischer, G. and K. Nakakoji, “Empowering Designers

with Integrated Design Environments,” First
International Conference on AI in Design, Edinburgh,
UK, 1991, pp. 191-209.

16. Repenning, A. and T. Sumner, “Using Agentsheets to
Create a Voice Dialog Design Environment,”
Proceedings of the 1992 ACM/SIGAPP Symposium on
Applied Computing, Kansas City, 1992, pp. 1199-
1207.

4. Genesereth, M. R. and N. J. Nilson, Logical
Foundations of Artificial Intelligence, Morgan
Kaufman Publishers, Inc., Los Altos, 1987.

17. Repenning, A. and T. Sumner, “Creating Domain-
Oriented Visual Languages: A Real-Time
Collaborative Approach,” Submitted to: IEEE
Computer (Special Issue on Visual Programming), ,
pp. 1994.

5. Glinert, E. P., “Towards “Second Generation”
Interactive, Graphical Programming Environments,”
IEEE Computer Society, Workshop on Visual
Languages, Dallas, 1986, pp. 61-70.

18. Resnik, M., “Beyond the Centralized Mindset:
Explorations in Massively-Parallel Microworld,”
Massachusetts Institute of Technology, Ph.D.
dissertation, Dept. of Computer Science, 176 Pages,
1992.

6. Green, T. R. G., “Cognitive Dimensions of
Notations,” Proceedings of the Fifth Conference of
the British Computer Society, Nottingham, 1989, pp.
443-460.

7. Green, T. R. G., “Programming Languages as
Information Structures,” in Psychology of
Programming, J. M. Hoc, T. R. G. Green, R.
Samurcay and D. J. Gilmore, Ed., Academic Press,
San Diego, 1990, pp. 117-137.

19. Schön, D. A., The Reflective Practitioner: How
Professionals Think in Action, Basic Books, New
York, 1983.

20. Simon, H. A., The Sciences of the Artificial, The MIT
Press, Cambridge, MA, 1981.8. Harstad, B., “New Approaches for Critiquing

Systems: Pluralistic Critiquing, Consistency
Critiquing, and Multiple Intervention Strategies,”
University of Colorado at Boulder, M.S.. thesis, Dept.
of Computer Science, 93 Pages, 1993.

21. Sumner, T., S. Davies, A. C. Lemke and P. G. Polson,
“Iterative Design of a Voice Dialog Design
Environment,” Technical Report, CU-CS-546-91,
Department of Computer Science, Campus Box 430,
University of Colorado at Boulder, Boulder, Colorado
80309-0430, 1991.

9. Lakeoff, G. and M. Johnson, Metaphors We Live By,
The University of Chicago Press, Chicago and
London, 1980.

10. Minsky, M., The Society of Minds, Simon & Schuster,
Inc., New York, 1985.

11. Nardi, B. and C. Zarmer, “Beyond Models and
Metaphors: Visual Formalisms in User Interface
Design,” Journal of Visual Languages and
Computing, ,pp. 5-33, 1993.

12. Negroponte, N., “Beyond the Desktop Metaphor,” in
Research Directions in Computer Science: An MIT
Perspective, A. Meyer, J. Guttag, R. L. Rivest and P.
Szolovits, Ed., MIT Press, Cambridge, MA, 1991, pp.
183-190.

191

