
welcome to

Objectives

 V& L Awards
 Sokoban reflections
 Hands on: Space Invaders

V& L Awards

 Main criteria
 Fun/engagement - time spent on playing it
 No cheating: “press cursor up at the beginning

of game. If frog moves all the way up without
having any accident the game is bad”

reflections

Cursor control & rule order
 If you want to have responsive controls make sure

to have time check (once every) follow key check

 If you have key check in long list of rules make
sure they precede collision check rule to avoid
user cheating

 Ideal: factor out collision and keyboard check into
separate methods, e.g., “collide” “keyboard” with
collision preceding keyboard

Person, Box, Space
interaction

 How did you do it?

Agent-based programming
 ZEN: Be the agent
 ZEN: Delegate if you can

 Sokoban person: If you cannot determine if the space
next to the box that you are trying to push is free have
the box figure it out. If the box can move it can tell you
to move as well

 Avoid:
 Undo approaches, e.g, move assuming you may be

able to, if you end up on box undo, move back where
you came from

 Independent key checking: person checks for key, box
checks for key, both move if they are next to each
other: do not rely on dispatch order! Could end up
pilling up or separating

Move right, next to box, no
obstacle

:pusheruser

cursorRight
pushRight()

:box

pushRight()

[see(->, Box)?]

[see(->, floor)?]

moveRight()

move(->)

move(->)

User presses
cursor right key

There is a box to
the right

There is space to
push the box

Move pusher

Move box

End of level detector

 Need to be able to sense that all targets are
covered by boxes

 How did you do it?

Person

Target (red-box)

UML: useful or painful?

Did you make diagram before or
after making game?

patterns of agent interactions
 Collide: 1 agent : 1 agent

 Frogger: truck vs frog
 Transport: 1 agent : 1 agent

 Transporter move, make transported move
 Frogger: frog on log

 Push: 1 agent : 1 agent
 Pusher send message indicating intention to move to

pushed, pushed checks if it can move, pushed makes
pusher move, pushed moves

 Sokoban: person pushing box
 Poll: 1 agent : N agents

 Poller: init var, broadcast poll message to pollees,
pollees update var, poller checks var

 Sokoban: level finished

patterns of agent interactions cont

 Launch: 1 agent : 1 agent
 Agent creates new agent on top or next to it
 Frogger: tunnel launches cars and trucks
 Launch: missiles, lasers, electrons, bullets, …

 Absorb: 1 agent : 1 agent
 Agent erases agents on top or next to it
 Frogger: “right” tunnel absorbs cars

NEW pattern of agent interactions

 Script: 1 agent : N agents
 One agent scripts behavior (e.g, movement) of

many other agents
 Game of live: one agent broadcasts “perceive”

and “act” messages to many cell agents to
implement parallel update

 Space Invaders: mother ship scripts left - right,
and down movement of fleet spaceships

Homework # 3
Space Invaders

Space
Invaders

Space Invaders was an arcade
video game designed and
programmed by Toshihiro
Nishikado and originally
manufactured by Taito; it was
licensed for production in the
U.S. by the Midway
Manufacturing division of Bally.
Released in 1978, it ranks as one
of the most influential video
games ever created. Though
simplistic by today's standards, it
(along with other contemporary
games such as Pac-Man) was
one of the forerunners of modern
video gaming.
Flash version:

http://www.thepcmanwebsite.com/media/flash
_space_invaders/

http://en.wikipedia.org/wiki/Space_Invaders

Homework
 Due: Feb 6: 11:59pm in GORP
 100 points

 Cursor controlled defender
 Left & right sweeping, gradually descending fleet of

space ships
 Game over when all ships are gone (won) or fleet

landed (lost)
 Defender shoots up, space ships down
 Lasers, missiles will crumble bunker incrementally

 20 extra

