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Abstract. The aim of this paper is to introduce a method for computing rigorous lower bounds
for topological entropy. The topological entropy of a dynamical system measures the number of
trajectories that separate in finite time and quantifies the complexity of the system. Our method
relies on extending existing computational Conley index techniques for constructing semi-conjugate
symbolic dynamical systems. Besides offering a description of the dynamics, the constructed symbol
system allows for the computation of a lower bound for the topological entropy of the original
system. Our overall goal is to construct symbolic dynamics that yield a high lower bound for
entropy. The method described in this paper is algorithmic and, although it is computational, yields
mathematically rigorous results. For illustration, we apply the method to the Hénon map, where we
compute a rigorous lower bound for topological entropy of 0.4320.
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1. Introduction. There has been a significant increase in computer-assisted
proofs in dynamical systems in the past ten years. Many of these studies use topo-
logical techniques and carry at heart ideas introduced by Conley [Con78] as well as
extensions derived from them. Conley’s ideas, which were generalizations of Morse’s
theory for gradient-like flows, have spawned two computational approaches for study-
ing complicated dynamics in discrete dynamical systems. The first is the method of
correctly aligned windows (also known as the method of covering relations), which
traces its roots to work on windows introduced by Easton in [Eas75]. In this paper,
we exploit the algorithmic nature of a second approach that relies on the more gen-
eral tools of Conley index theory. While many of the algorithms for this approach
were introduced in earlier works (see e.g. [Szy95], [DJM04], [Day03] and references
therein), it was necessary to develop additional techniques and algorithms for this
project. In particular, we describe extended techniques for locating a region of the
domain to be used for computations in Section 3.1 and present a newly developed au-
tomated procedure for taking a computed Conley index and producing an appropriate
representative symbolic dynamical system in Section 3.2.

We use the computational techniques based on Conley index theory to build a
semi-conjugacy from a map f : S → S, S ⊂ Rn, to a symbolic dynamical system and
obtain a corresponding lower bound on the topological entropy (one measure of com-
plexity) for the system. Since the symbols we use to construct the symbolic dynamics
correspond to disjoint regions of the phase space Rn, one benefit of this approach
is that the symbolic dynamics offers a description of the dynamics on S, including
information about the location of points along trajectories in S. Furthermore, the
symbolic dynamics acts as a lower bound (via the semi-conjugacy) for the dynamics
of f on S; for any trajectory in the symbolic system there is at least one corresponding
trajectory of f in S. It follows, as stated in Theorem 2.7, that the topological entropy
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of the symbolic system is a lower bound for the topological entropy of f . Since our
goal is to compute a high lower bound, our approach relies on trying to maximize the
complexity of the constructed symbolic system. We discuss our main approach for
maximizing the complexity of the constructed system in Section 3.

Topological entropy is a measurement that many have studied (see e.g. [NBGM08],
[AAC90], [ACE+87], [Col02], [Gal02]) using a variety of techniques. We see the au-
tomation of our techniques and their independence from the typical constraint that
stable and unstable manifolds are one-dimensional and restricted to the plane as the
two main strengths in our approach. Indeed, results in [DJM04] lead to entropy
bounds for the infinite dimensional Kot-Schaffer map in a similar way to the work
described here, and in future work we plan to apply the automated techniques intro-
duced in Section 3 to this map to improve the bounds. In this paper, we apply our
approach to the well studied Hénon map in order to obtain results to compare with
previous work in this area. We use our automated computational approach based
on the ideas outlined above to construct a semi-conjugacy between the dynamics on
an appropriate subset of the Hénon attractor and a constructed symbolic dynamical
system. Based on this construction, we give a rigorous lower bound of 0.4320 on
the topological entropy of the Hénon map in Theorem 4.2. Section 4 also contains a
comparison of this sample result with other work in this area.

This paper is organized in the following way: in Section 2, we review the nec-
essary background from dynamical systems and computational Conley index theory.
Section 3 contains a detailed description of our extensions of this work to produce au-
tomated procedures for constructing complicated semi-conjugate symbolic dynamics.
Finally, in Section 4 we apply these procedures to give sample results for the Hénon
system.

2. Background. In this section we review some basic definitions and ideas from
dynamical systems theory and computational Conley index theory. We will state def-
initions and theorems which are relevant to our work, and refer the reader to [Rob95],
[Con78], [MM02] and references therein for further development and details.

2.1. Symbolic Dynamics and Topological Entropy. Let f : X → X ⊂ Rn

be a continuous map. We will focus on maps that exhibit complicated dyamics on
a compact subset S ⊂ X. Because the study of such maps and sets can be very
complicated, they are often studied via a representation on a symbol space giving rise
to symbolic dynamics.

We focus on symbolic dynamics in the form of subshifts of finite type. Fix an inte-
ger m ≥ 2 and let T be an m×m matrix with entries tij ∈ {0, 1}. The corresponding
symbol space is

ΣT := {s = (s0s1 . . .)|tsksk+1 = 1 for all k}

Although the matrix T is often referred to as the adjacency matrix in graph theory
literature, we will refer to T as the symbol transition matrix since it captures the
allowed or admissible “transitions” between symbols. Finally, we define the shift map
σT : ΣT → ΣT by

σT (s) := s′ , where s′i = si+1.

In this framework, (ΣT , σT ) is called a subshift of finite type, denoting both that we
are working with only a finite list of (m) symbols and that only a subset of the set of
all sequences on these m symbols are allowed by the symbol transition matrix T .
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It is important to note that for an appropriate choice of metric on ΣT , σT is
a continuous map and σT : ΣT → ΣT is a dynamical system (see e.g. [Rob95]).
Subshifts of finite type are particularly nice in that dynamical objects of interest are
often readily identifiable. For example, if one is looking for a period n orbit, then one
checks that there is a symbol sequence s∗ = (s0, s1, . . .) ∈ ΣT such that si+n = si

for all i = 0, 1, . . .. If we view T as an adjacency matrix defining a directed graph,
then s∗ corresponds to an n-cycle, or cycle of length n, in the graph. For clarity, we
include the following definition of the terms cycle and simple cycle.

Definition 2.1. A path of length n in the directed graph G is a sequence of
vertices v0, v1, . . . , vn such that each pair (vi, vi+1) is an edge in G. If in addition,
v0 = vn, then v0, v1, . . . , vn is a cycle of length n. Finally, a cycle v0, v1, . . . , vn is a
simple cycle provided that it contains no shorter cycles, namely vi = vj with i &= j if
and only if i, j ∈ {0, n}.

While subshifts of finite type and symbolic dynamical systems in general are nice
to work with from a mathematical point of view, many interesting dynamical systems
do not come in this form. Instead, as mentioned above, we may seek to represent a
more general discrete dynamical system by symbolic dynamics. This representation
often comes in the form of a topological conjugacy or topological semi-conjugacy.

Definition 2.2. A continuous map ρ : X → Y is a topological semi-conjugacy
between f : X → X and g : Y → Y if ρ ◦ f = g ◦ ρ and ρ is surjective (onto). If, in
addition, ρ is injective (one-to-one), then ρ is a topological conjugacy.

Topological conjugacies preserve many properties of dynamical systems. One such
example is the following theorem. (For more details, see [Dev89].)

Theorem 2.3. Let ρ be a topological conjugacy between f : X → X and g : Y →
Y . Then y ∈ Y is a periodic point of period n under g (i.e. gn(y) = y) if and only if
ρ−1(y) is a periodic point of period n under f .

If f is topologically conjugate to a subshift of finite type, then we have a conve-
nient list of trajectories of f given by the subshift. Indeed, in this case, the topological
conjugacy acts as a coordinate transformation of the original system onto a decipher-
able (symbolic) system. In practice, such a complete description may be beyond our
reach and we instead construct topological semi-conjugacies to appropriate subshifts
of finite type. As illustrated by Theorem 2.7, these semi-conjugate subshift systems
offer lower bounds for the complexity of the dynamics of the original system.

One way to quantify how complicated a given dynamical system is, is to compute
its topological entropy. The following is based on Bowen’s definition of topological
entropy in [Bow71].

Definition 2.4. Let f : X → X be a continuous map. A set W ⊂ X is called
(n, ε, f)-separated if for any two different points x, y ∈ W there is an integer j with
0 ≤ j < n so that the distance between f j(x) and f j(y) is greater than ε. Let s(n, ε, f)
be the maximum cardinality of any (n, ε, f)-separated set. The topological entropy of
f is the number

htop(f) = lim
ε→0

lim sup
n→∞

log(s(n, ε, f))
n

. (2.1)

As a measurement of chaos, we say that a map f for which htop(f) > 0 is chaotic,
and, if htop(f) > htop(g), then f is ’more chaotic’ than g.

Once again, we can turn to symbolic dynamics in order to perform concrete
computations.
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Theorem 2.5 (Robinson, [Rob95]). Let T be a symbol transition matrix and let
σT : ΣT → ΣT be the associated subshift of finite type. Then

htop(σT ) = log(sp(T ))

where sp(T ) is the spectral radius of T .
In essence, (n, ε, σT )-separation is encoded in the representation of the system

and may be computed directly from the symbol transition matrix T .
Computing the topological entropy of a system not given as a subshift proves to

be more challenging. In this setting and from a computational perspective, (2.1) may
appear daunting. For one thing, sensitive dependence on initial conditions, a prop-
erty commonly associated to chaotic systems, makes careful, precise measurements of
(n, ε, f)-separation for large n and small ε difficult if not impossible. One technique
for dealing with this problem is to focus on computing periodic points up to some
cut-off period N rather than length N segments of general trajectories. The problem
of finding periodic points may be reduced to finding fixed points for a sufficiently
high iterate of the map and two different periodic orbits of period n are necessarily
(n, ε, f)-separated for sufficiently small ε. One then checks that

{
log(#{periodic points of period n})

n

}

n≤N

appears to be converging. Galias employed this approach in his study of the Hénon
map in [Gal01]. The question now becomes, “is N sufficiently large to yield a good ap-
proximation for topological entropy?” This leads us to a second fundamental obstacle
to a mathematically rigorous computational approach – the need to obtain asymptotic
measurements in both n and ε. In Theorem 2.7 we use a special construction of a
semi-conjugacy to a subshift system to overcome these difficulties and to compute a
rigorous lower bound.

This construction relies on tools from Conley index theory discussed in Section 2.2.
We use these tools to build the subshift system with the itinerary function serving as
the semi-conjugacy linking the systems.

Definition 2.6. Suppose N ⊂ X may be decomposed into m < ∞ disjoint,
closed subsets (N = ∪i=1,...mNi). Let S be the maximal invariant set in N (i.e. S is
the largest set such that S ⊂ N and f(S) = S). Then f j(S) ⊂ N for all j = 0, 1, . . ..
Finally, let T be the m×m symbol transition matrix given by

tij =
{

1 if f(S ∩Nj) ∩Ni &= ∅
0 otherwise

The itinerary function ρ : S → ΣT is given by ρ(x) = s0s1 . . ., where sj = i for f j(x) ∈ Ni.
This function is continuous under the appropriate choice of metrics. (See [Dev89],
[Rob95] for more details.)

Finally, the following theorem allows us to use this semi-conjugacy to obtain a
lower bound for the topological entropy of the system under study.

Theorem 2.7. Suppose that the itinerary function ρ is a semi-conjugacy from
f : S → S to σT : ΣT → ΣT for some S ⊂ X and subshift of finite type (σT ,ΣT ) with
symbol transition matrix T . Then

htop(f) ≥ log(sp(T )) = htop(σT ).

where sp(T ) is the spectral radius of T .
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Proof. Let d(Ni, Nj) := minx∈Ni,y∈Nj d(x, y) > 0 be the minimal distance be-
tween the two disjoint, closed sets Ni and Nj . Since there are only a finite number of
these sets, ε∗ := min1≤i (=j≤m d(Ni, Nj) > 0.

For s = (s0, s1, . . .) ∈ ΣT , call the sequence of n symbols, Bn := (s0, . . . , sn−1),
an admissible n-block under T . For each admissible n-block Bn = (s0, . . . , sn−1),
choose xBn ∈ S such that ρ(xBn) = (s0, s1, . . . , sn−1, sn, . . .) ∈ ΣT . Such a point
exists in S since ρ maps S onto ΣT . Furthermore, for ε <ε ∗, the points chosen
in S corresponding to two different admissible n-blocks must be (n, ε, f)-separated
since within n iterates, their itineraries carry them to two disjoint subsets of S ∩N ,
separated by a distance of at least ε∗.

We now have that for ε < ε∗, s(n, ε, f) ≥ #{admissible n-blocks under T}. The
asymptotic size of the set of admissible n-blocks may be computed as follows (see
Theorem 1.9(b) in [Rob95]), to obtain the desired result.

htop(f) = lim
ε→0

lim sup
n→∞

log(s(n, ε, f))
n

(2.2)

≥ lim sup
n→∞

log(#{admissible n-blocks under T})
n

= log(sp(T ))
= htop(σT ).

Thus, we may bound the topological entropy of a map f from below by finding
a semi-conjugacy from f to an appropriate subshift of finite type. The higher the
spectral radius of the symbol transition matrix T , the better the lower bound we
achieve for the topological entropy of the original system.

2.2. Conley Index Theory. We now present some of the topological tools used
to build the subshift of finite type required for Theorem 2.7. These tools are based
on Conley index theory for which we now give definitions, facts, and theorems which
are relevant to our work. A discussion of the implementation of these ideas in a
computational framework follows in Section 2.4.

Let f : Rn → Rn be a continuous map. A trajectory through x ∈ Rn is a sequence

γx := (. . . , x−1, x0, x1, . . .) (2.3)

such that x0 = x and xn+1 = f(xn) for all n ∈ Z. We now define the invariant set
relative to N ⊂ Rn as

Inv(N, f) := {x ∈ N | there exists a trajectory γx with γx ⊂ N} (2.4)

One example of a relative invariant set is the domain S = Inv(N, f) on which we
defined the itinerary function ρ in Definition 2.6.

We are now ready to present some of the basic structures in Conley index theory.
Definition 2.8. A compact set N ⊂ Rn is an isolating neighborhood if

Inv(N, f) ⊂ int(N) (2.5)

where int(N) denotes the interior of N . S is an isolated invariant set if S = Inv(N, f)
for some isolating neighborhood N .
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We use the next two definitions to encode the dynamics on an isolating neighbor-
hood.

Definition 2.9. Let P = (P1, P0) be a pair of compact sets with P0 ⊂ P1 ⊂ X.
The map induced on the pointed quotient space (P1/P0, [P0]) is

fP (x) :=
{

f(x) if x, f(x) ∈ P1 \ P0

[P0] otherwise (2.6)

Definition 2.10. ([RS88]) The pair of compact sets P = (P1, P0) with P0 ⊂
P1 ⊂ X is an index pair for f provided that

1. the induced map, fP , is continuous,
2. P1 \ P0, the closure of P1 \ P0, is an isolating neighborhood.

In this case, we say that P is an index pair for the isolated invariant set S =
Inv(P1 \ P0, f).

The following definition is required for the definition of the Conley index.
Definition 2.11. Two group homomorphisms, φ : G → G and ψ : G′ → G′

on abelian groups G and G′ are shift equivalent if there exist group homomorphisms
r : G → G′ and s : G′ → G and a constant m ∈ N (referred to as the ‘lag’) such that

r ◦ φ = ψ ◦ r, s ◦ ψ = φ ◦ s, r ◦ s = ψm, and s ◦ r = φm.

The shift equivalence class of φ, denoted [φ]s, is the set of all homomorphisms ψ such
that ψ is shift equivalent to φ.

Definition 2.12. Let P = (P1, P0) be an index pair for the isolated invariant
set S = Inv(P1 \ P0, f) and let fP∗ : H∗(P1, P0) → H∗(P1, P0) be the map induced on
the relative homology groups H∗(P1, P0) from the map fP . The Conley index of S is
the shift equivalence class of fP∗

Con(S, f) := [fP∗]s. (2.7)

The Conley index for the isolated invariant set S given in Definition 2.12 is well-
defined, namely, every isolated invariant set has an index pair, and the corresponding
shift equivalence class remains invariant under different choices for this index pair (see
e.g. [MM02]).

So far we have passed from continuous maps to induced maps on relative homol-
ogy. Our overall goal, however, is to describe the dynamics of our original map. Here
we present measurements based on the map on homology that may give us informa-
tion about the original map. The first theorem is Ważewski’s Principle in the context
of Conley index theory.

Theorem 2.13. If Con(S, f) &= [0]s, then S &= ∅.
By requiring additional structure in the isolating neighborhood N of S, we can

use a modification of Theorem 2.13 to study finer structure in S.
Corollary 2.14. Let N ⊂ X be the union of disjoint, compact sets N1, . . . , Nm

and let S := Inv(N, f) be the isolated invariant set relative to N . Let

S′ = Inv(N1, fNn ◦ · · · ◦ fN1) ⊂ S

where fNi denotes the restriction of the map f to the region Ni. If

Con(S′, fNn ◦ · · · ◦ fN1) &= [0]s, (2.8)
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then S′ &= ∅. More specifically, there exists a point in S whose trajectory under f
travels through the regions N1, . . . , Nn in the prescribed order.

We here note that given the hypotheses of Corollary 2.14, there is a nice technique
for obtaining the index of S′ given the computed index map fP∗, where P = (P1, P0)
is an index pair with N = P1 \ P0. Using an approach developed by Szymczak in
[Szy95], we set

f ij
P (x) :=

{
f(x) if x ∈ Ni and f(x) ∈ Nj

[P0] otherwise (2.9)

Then f ij
P∗ : H∗(P1, P0 ∪ (∪l (=iNl)) → H∗(P1, P0 ∪ (∪l (=jNl)). Given fPk in matrix

form representing the linear map on Hk(P1, P0), we may label the columns/rows by
location of the associated relative homology generators in the subgroups Hk(P1, P0 ∪
(∪l (=1Nl)), . . . Hk(P1, P0 ∪ (∪l (=nNl)). To simplify notation, we say that generator g

is in region Ni if g ∈ Hk(P1, P0 ∪ (∪l (=iNl)). Then f ij
Pk is the nj × ni submatrix with

ni columns corresponding to the ni generators in Ni and nj rows corresponding to
the nj generators in Nj . Furthermore, (P1, P0 ∪ (∪l (=1Nl)) is an index pair for the
isolated invariant set S′ = Inv(N1, fNn ◦ · · · ◦ fN1) with index map fn1

P∗ ◦ · · · ◦ f12
P∗ :

H∗(P1, P0 ∪ (∪l (=1Nl)) → H∗(P1, P0 ∪ (∪l (=1Nl)). Therefore,

Con(S′, fNn ◦ · · · ◦ fN1) = [fn1
P∗ ◦ · · · ◦ f12

P∗]s (2.10)

Since the more general problem of determining whether the linear map fPk :
Hk(P1, P0) → Hk(P1, P0) is not shift equivalent to 0 may be difficult, we here focus
on a computable, sufficient condition. Trace is preserved by shift equivalence, and we
adopt the notation

tr k(Con(S, f)) := tr (fPk)

where tr (fPk) denotes the trace of the linear map fPk : Hk(P1, P0) → Hk(P1, P0).
Then if tr k(Con(S, f)) &= 0 for some k, Con(S, f) &= [0]s.

Corollary 2.15. If tr k(Con(S′, fNin
◦ · · · ◦ fNi1

)) &= 0 for some k then there
exists x ∈ S′ with ρ(x) = i1i2 . . . ini1i2 . . . in . . ..

Taking this approach we are close to showing something stronger, namely that
there is a periodic orbit under f with the corresponding cyclic symbol sequence. This
stronger statement relies on computing the Lefschetz number.

Definition 2.16. Let S be an isolated invariant set. The Lefschetz number of
S is defined as

L(S, f) :=
∑

k

(−1)k tr (fPk) (2.11)

where P = (P1, P0) is an index pair for S.
The Lefschetz number is essential to the following theorem and its corollary.
Theorem 2.17. Let S be an isolated invariant set. If

L(S, f) &= 0, (2.12)

then S contains a fixed point.
For a proof, see [Szy96]. As before, a refinement of the approach allows us to

study symbolic dynamics.
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Corollary 2.18. Let N ⊂ X be the finite union of disjoint, compact sets
N1, . . . , Nm, and let S := Inv(N, f). Let S′ = Inv(N1, fNn ◦ · · · ◦ fN1) ⊂ S where fNi

denotes the map f restricted to the region Ni. If

L(S′, fNn ◦ · · · ◦ fN1) &= 0, (2.13)

then fNn ◦ · · · ◦ fN1 contains a fixed point in S′ that corresponds to a periodic point
of period n in S that under f travels through the regions N1, . . . , Nn in order.

In what follows, we will develop algorithms based on Corollary 2.15 to construct
and verify symbolic dynamics. However, in the special case where the index map
fP∗ is nontrivial on exactly one level (as occurs with the Hénon map), we may use
Corollary 2.18 to show that the constructed semi-conjugate symbolic systems has the
added stronger property that every periodic orbit in the symbolic system corresponds
to a periodic orbit in the original system of the same period.

2.3. Multivalued and Combinatorial Maps. Now that we have the rele-
vant tools from Conley index theory, we can begin applying them algorithmically to
extract information about the dynamical system f : X → X. In this section, we
describe the construction of a combinatorial representation of f . The first step is to
define a multivalued map F that will be used to incorporate bounded errors in the
representation.

Definition 2.19. The multivalued map F : X ⇒ X is a map from X to its
power set, i.e. for all x ∈ X, F (x) ⊂ X. If for a continuous, single-valued map
f : X → X, f(x) ∈ F (x) and F (x) is acyclic (i.e. has the homology of a point) for
all x ∈ X, then f is a continuous selector of F and F is an enclosure of f .

In what follows, we discuss how to construct an enclosure of the map under study.
The purpose of the enclosure is to incorporate round-off and other errors that occur
in computations. This construction requires rigorous, small error bounds in order to
create an enclosure whose images are not so large as to obscure all relevant dynamics.
Given an appropriate enclosure, the topological tools from Section 2.2 may be used to
uncover dynamics of the underlying map. Furthermore, there are algorithms for both
the construction of the enclosure and the computation of the Conley index. These
algorithms require a further step – discretizing the domain in order to store it in the
computer as a finite list of objects.

We begin by using the subdivision procedure implemented in the software package
GAIO [DFJ01] to create a grid G on a compact (rectangular) region in X. In prac-
tice, the region chosen for representation is usually determined either experimentally
through non-rigorous numerical simulations or analytically given a special structure or
symmetry for the system (e.g. a compact attracting region). We partition a specified
rectangular set W =

∏n
k=1[x

−
k , x+

k ] ⊂ Rn into a cubical grid

G(d) :=

{
n∏

k=1

[
x−k +

ikrk

2d
, x−k +

(ik + 1)rk

2d

] ∣∣∣∣∣ ik ∈
{
0, . . . , 2d − 1

}
}

where rk = x+
k −x−k is the radius of W in the kth coordinate and the depth d is a non-

negative integer. We call an element of the grid, B =
∏n

k=1

[
x−k + ikrk

2d , x−k + (ik+1)rk

2d

]
,

a box. For a collection of boxes, G ⊂ G = G(d), define the topological realization of G
as |G| := ∪B∈GB ⊂ Rn.

Constructing a useful combinatorial enclosure involves bounding all round-off and
other errors. In our study of the Hénon map in Section 4, we construct a combinatorial
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enclosure by computing images of f(|G|) using interval arithmetic software. This
produces a bounding box, f̃(|G|), for the image f(|G|), which is then intersected with
the grid G to produce the combinatorial enclosure image

F(G) := {G′ ∈ G : |G′| ∩ f̃(|G|) &= ∅}.

This combinatorial enclosure, F : G ⇒ G, yields an enclosure F = |F| of f in the
following way: define |F| : W ⇒ W , where W = ∪G∈G |G|,

|F|(x) :=
⋃

G∈G with x∈|G|

|F(G)|. (2.14)

More importantly, efficient algorithms exist for computing isolating neighborhoods,
index pairs, and Conley indices for f from an appropriate combinatorial enclosure F
of f .

2.4. Computational Conley Index Theory. Now we give algorithms for com-
puting the isolating neighborhoods, index pairs, and Conley indices first introduced
in Section 2.2 in the setting of combinatorial enclosures.

Definition 2.20. A combinatorial trajectory of a combinatorial enclosure F
through G ∈ G is a bi-infinite sequence γG = (. . . , G−1, G0, G1, . . .) with G0 = G,
Gn ∈ G, and Gn+1 ∈ F(Gn) for all n ∈ Z.

Definition 2.21. The combinatorial invariant set in N ⊂ G for a combinatorial
enclosure F is

Inv(N ,F) := {G ∈ G : there exists a trajectory γG ⊂ N}.

Definition 2.22. The combinatorial neighborhood of B ⊂ G is

o(B) := {G ∈ G : |G| ∩ |B| &= ∅}.

This set, |o(B)|, sometimes referred to as a one box neighborhood of B in G, is the
smallest representable neighborhood of |B| in the grid G.

While there are different characterizations of isolation in the setting of combina-
torial enclosures, we chose the following for this work.

Definition 2.23. If

o(Inv(N ,F)) ⊂ N

then N ⊂ G is a combinatorial isolating neighborhood under F .
Note that by construction, the topological realization |N | of a combinatorial iso-

lating neighborhood N under F is an isolating neighborhood under any continuous
selector f ∈ |F|. This definition is stronger than what is actually required to guaran-
tee isolation on the topological level. It is, however, the definition that we will use in
this work and is computable using the following approach.

Let S ⊂ G. Set N = S and let o(N ) be the combinatorial neighborhood of N in
G. If Inv(o(N ),F) = N , then N is isolated under F . If not, set N := Inv(o(N ),F)
and repeat the above procedure. In this way, we grow the set N until either the
isolation condition is met, or the set grows to intersect the boundary of G in which
case the algorithm fails to locate an isolating neighborhood in G. This procedure is
outlined in more detail in the following algorithm from [DJM04].

Algorithm 1 (Grow Isolating Neighborhood).

9



INPUT: grid G, combinatorial enclosure F on G, set S ⊂ G
OUTPUT: a combinatorial isolating neighborhood N containing S

or N = ∅ if the isolation condition is not met

N = grow isolating neighborhood(G, F, S)
G boundary:= {G ∈ G : |G| ∩ ∂|G| &= ∅};
N := S;
while Inv(o(N ),F)) &⊂ N and N ∩ G boundary= ∅,

N := Inv(o(N ),F);
end
if N ∩ G boundary= ∅, return N;
else return ∅;
end

Once we have an isolating neighborhood for f , our next goal is to compute a
corresponding index pair. The following definition of a combinatorial index pair again
emphasizes our goal of using the combinatorial enclosure to compute structures for f .

Definition 2.24. A pair P = (P1,P0) of cubical sets is a combinatorial index
pair for a combinatorial enclosure F if the corresponding topological realization P =
(P1, P0), where Pi := |Pi|, is an index pair for any continuous selector f ∈ |F|.
Namely, P1 \ P0 = |P1 \ P0| is an isolating neighborhood under f and the map fP , as
defined in Definition 2.9, is continuous.

The following algorithm produces a combinatorial index pair associated to a com-
binatorial isolating neighborhood produced via Algorithm 1. While there are other
algorithms for producing combinatorial index pairs, this algorithm works well with
later index computations. For more details, see the description of modified combina-
torial index pairs in [Day03].

Algorithm 2 (Build Index Pair).
INPUT: grid G, combinatorial enclosure F on G,

combinatorial isolating neighborhood N produced by Algorithm 1
OUTPUT: combinatorial index pair P = (P1,P0) with P1 \ P0 = N

[P1,P0] = build index pair(G, F, N)
P0 := ∅;
New := F(N ) ∩ o(N ) \ N;
while New &= ∅

P0 := P0 ∪New;
New := (F(P0) ∩ o(N )) \ P0;

end
P1 := N ∪ P0;
return [P1, P0];

We now have an isolating neighborhood |N | and corresponding index pair P :=
(|P1|, |P0|) for f . What remains in computing the Conley index for the associated
isolated invariant set, S := Inv(|N |, f), is to compute the map fP∗ : H∗(|P1|, |P0|) →
H∗(|P1|, |P0|). Once again, the combinatorial enclosure offers the appropriate compu-
tational framework and we use the software program homcubes in [Pil98] to compute
fP∗. This step is outlined in Algorithm 3.

10



Algorithm 3 (Compute Index Map).
INPUT: grid G, combinatorial enclosure F on G,

combinatorial index pair P = (P1,P0) produced by Algorithm 2
OUTPUT: relative homology groups H∗(|P1|, |P0|),

the induced index map fP∗ : H∗(|P1|, |P0|) → H∗(|P1|, |P0|),
and the induced submaps {f ij

Pk} on connected components

[fP∗ H∗(|P1|, |P0|) {f ij
Pk}] = compute index map(G, F, P1, P0)

Q1 = F(P1);
Q0 = F(P0);
[fP∗ H∗(|P1|, |P0|) {f ij

Pk}] := homcubes(P1, P0, Q1, Q0, F);
return [fP∗ H∗(|P1|, |P0|) {f ij

Pk}];

Algorithm 3 produces a sequence of matrices for the maps fP0, fP1, . . . , fPn

where n is the dimension of the phase space X. For k > n, fPk = 0. The asso-
ciated Conley index is Con∗(S) = [fP∗]s, for S := Inv(|P1 \ P0|, f). The submaps
f ij

Pk : Hk(|P1|, |P0| ∪l (=i |Nl|) → Hk(|P1|, |P0| ∪l (=j |Nl|), where |N1|, . . . |Nn| are the
connected components of |P1 \ P0|, are given as submatrices of fPk. These are the
maps required for Corollaries 2.14, 2.15, and 2.18. In the following section, we describe
an algorithmic procedure for using this index information to construct the appropriate
subshift of finite type.

3. Constructing and Verifying Complicated Symbolic Dynamics. Given
f : X → X, the general method we adopt for computing a lower bound on topological
entropy consists of the following steps:

• constructing a fixed cubical grid G on a subset of X and a combinatorial
enclosure F of f on G (Section 2.3),

• locating a region of interest S in G (Section 3.1),

• computing the associated Conley index (Section 2.4),

• constructing semi-conjugate symbolic dynamics (Section 3.2),

• using the constructed symbolic dynamical system to compute a lower bound
on the topological entropy of f (Theorem 2.7).

While many steps of this general procedure have been carried out in previous work
(e.g. [DJM04] for the first four steps, and [Gal01] for the last step), we here seek to
uncover far more complicated symbolic dynamics. This requires a more automated
approach based on setting verifiable conditions for uncovering and proving the ex-
istence of cyclic symbolic dynamics and ignoring or giving up on the verification of
dynamics that does not satisfy these conditions. Along these lines, we now give al-
gorithms for locating a region of interest (Section 3.1) and processing the resulting
index information (Section 3.2) that allow us to uncover more complicated dynamics
than previously found using related techniques. This improved procedure produces
the entropy bounds presented in Section 4.
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3.1. Locating a region of interest. We now turn to the second task in this list
– that of locating the region of the grid where we will attempt to compute interesting
symbolic dynamics. More specifically, the set that we are calling the region of interest
will serve as the input, S, for Algorithm 1. We show three different methods for
locating regions of interest for the Hénon map in Sections 4.1, 4.2, and 4.3. In this
section, we focus on the method that, of these three, is both general (i.e. is not
restricted to studies of the Hénon map) and yields high entropy bounds. This is
the method followed in Section 4.2. The first step in this approach is similar in
spirit to the work of Cvitanović and others in using periodic orbits of low periods to
approximate chaotic attractors. We begin by finding short cycles in the combinatorial
enclosure (directed graph) F . These short cycles correspond to possible periodic orbits
of low period for f . We then add a level of complexity by searching for paths in the
directed graph between these short cycles. From a dynamics point of view, these
paths represent possible mixing between the periodic regions.

We construct a list of short cycles in G by setting a computational parameter
Max Cycle Length ∈ Z+, and locating the cycles in F of length k with 1 ≤ k ≤
Max Cycle Length. These cycles are nonzero entries on the diagonal of F (when
viewed as a transition matrix) raised to the kth power. The corresponding computed
vertices in F are the regions in G that may contain period k points of f . Starting with
S = ∅, we begin adding the short cycles to S one by one, starting with the shortest.
Just before adding a cycle to S, we grow its isolating neighborhood using Algorithm 1
and then check that this neighborhood does not intersect the isolating neighborhood
of the current collection. This corresponds to a possible increase in the number of
symbols and/or the number of admissible transitions between symbols in the resulting
constructed symbolic system and may eventually lead to a higher entropy bound. If
this condition is not met, we do not add the cycle and move to the next cycle in the
list, continuing until the list is exhausted. We next use breadth first search (BFS) to
find shortest path, pairwise connections between the short cycles in S and add these
connecting paths to S. This procedure is outlined in Algorithm 4.

Algorithm 4 (Locating Region of Interest/Joining Low Cycles).
INPUT: grid G, combinatorial enclosure F on G,

computational parameter Max Cycle Length
OUTPUT: region of interest S ⊂ G

S = find and connect low cycles(G, F, Max Cycle Length)
S = ∅;
N = ∅;
for n = 1 : Max Cycle Length,

for each length n cycle c in F,
Nc = grow isolating neighborhood(G, F, c);
if Nc ∩N = ∅,

S = S ∪ c;
N = grow isolating neighborhood(G, F, N ∪ c);

end
end

end
Sc := S;
for each vertex vi ∈ Sc,
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Fig. 3.1. Symbol transition graph constructed from a 2-cycle, two 4-cycles, and pairwise con-
nections.

for each vertex vj ∈ Sc,
γ = shortest path in F from vi to vj in G\o(o(S));
S := S ∪ γ;

end
end
return S;

Here, we explicitly compute cycles with lengths up to Max Cycle Length, which
in practice is small. However, we obtain many new cycles by adding pairwise connec-
tions between the computed cycles. This allows us to uncover complicated dynamics
without having to explicitly search for the long cycles that correspond to periodic
orbits of high period. As illustration, Figure 3.1 depicts a subshift of finite type con-
structed from a region of interest consisting of a length 2 cycle, two length 4 cycles
and pairwise shortest connecting paths between these three objects. Note that the re-
sulting subshift system contains infinitely many cycles (of lengths 5, 8, 10 and higher)
and positive topological entropy.

While effective in computation of entropy bounds for the Hénon map (see Sec-
tion 4.2), this approach for the construction of the region of interest, S, could be
improved. Given a fixed combinatorial enclosure F on a grid G, one goal would be to
optimize the construction of S in order to produce a subshift of finite type with the
highest possible entropy. As a first step along these lines, the relationship between
the entropy bound and the maximal cycle length used in Algorithm 4 in a study of
the Hénon map is depicted in Figure 4.4. In addition, there is a clear trade-off be-
tween refining the grid in order to find, isolate, and connect more low period cycles
to produce a higher bound and the associated increase in computational cost. (The
effect of refining the grid on increasing the bound is illustrated for the Hénon map in
Figure 4.5.) Another improvement to these techniques related to this balance would
involve making the computation of G, and therefore S, adaptive. The goal here would
be to refine the grid in areas where new low period periodic orbits and connections
may be uncovered without having to recompute structures in the remainder of the
space.

3.2. Processing Index Information. Recall that our goal is to compute com-
plicated symbolic dynamics. If we are successful in locating an appropriate region of
interest in the domain (one approach is described in Section 3.1), the corresponding
Conley index computed by the algorithms described in Section 2.4 is given as a large
matrix representing the map induced on an index pair consisting of many disjoint
components.

From this index map, we wish to find a symbol transition matrix T such that f is
semi-conjugate to the subshift on ΣT . We first use some properties of shift equivalence
to simplify the computed index map. We then construct T from a collection of cycles,
called verified cycles, that satisfy the hypotheses of Corollary 2.15.
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3.2.1. Removing Transient Generators. We begin our processing of the in-
dex map fP∗ : H∗(P1, P0) → H∗(P1, P0) by removing generators from H∗(P1, P0) that
do not correspond to asymptotic invariant behavior. More specifically, we utilize the
fact that the Conley index, Con∗(S, f), is the shift equivalence class of fP∗ to construct
a new representative of the class obtained by removing generators α ∈ Hk(P1, P0) such
that f l

Pk(α) = 0 or α /∈ f l
Pk(Hk(|P1|, |P0|)) for some l ∈ Z.

Note that since we are considering continuous maps f on Rn, fPk : Hk(P1, P0) →
Hk(P1, P0) are linear maps on (finite) vector spaces. We therefore choose to think of
fPk as a square matrix. Suppose that fPk is similar to a matrix A, i.e. fPk = B−1AB
for some invertible matrix B. Then, by setting r = B, s = B−1, and m = 0 in
Definition 2.11, we see that [fPk]s = [A]s. In what follows, B will be an appropriate
reordering of the basis so that A takes on the block lower triangular form required for
the following theorem.

Theorem 3.1. Let

A =




A11 0 0
A21 A22 0
A31 A32 A33





be a 3× 3 block lower-triangular matrix, with square matrices Aii on the diagonal. If
Al

11 = 0 and Al
33 = 0 for some l, then A is shift equivalent to A22.

Proof. For i = 1, 2, 3, let ni × ni be the size of the square matrix Aii, and define
projection and inclusion maps respectively as follows:

π =
[
0n22×n11 In22 0n22×n33

]

and

ι = π*.

One can check that the maps R := πAl and S := Alι satisfy the conditions stated
in Definition 2.11 to give the desired shift equivalence between A and A22 with lag
constant m = 2l.

The motivation for the previous theorem was to find a simpler representative for
the shift equivalence class of fPk. This relies on finding a reordering of the basis
for fPk that yields a similar matrix A satisfying the hypotheses of Theorem 3.1. In
order to use existing efficient algorithms, we now turn to a graph interpretation of the
l × l matrix fPk. More specifically, we consider the directed graph G = (V,E) with
vertices 1, . . . , l and edges (j, i) ∈ E if and only if fPk(i, j) &= 0. Let

V3 := {v ∈ V | any path starting at v has length less than l} (3.1)

V1 := {v ∈ V \ V3| any path ending at v has length less than l}. (3.2)

and

V2 := V \ (V1 ∪ V3). (3.3)

Note that since there are l vertices, V1 is the set of vertices that are not connected
to cycles in backward time and V3 is the set of all vertices that are not connected to
cycles in forward time. The following two lemmas show that the partition {V1, V2, V3}
of the vertex set V is useful for finding zeros in the matrix fPk.
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Lemma 3.2. The submatrix fPk(V1, V2 ∪ V3) of fPk corresponding to the rows
indexed by V1 and columns indexed by V2 ∪ V3 is the zero matrix of the appropriate
size.

Proof. Suppose that fPk(w, v) &= 0 for w ∈ V1 and v ∈ V2 ∪ V3. Then (v, w) is
an edge in the associated directed graph G. Since v is not in V1, there exists a path
v1, . . . , vl, v in G. Then v1, . . . , vl, v, w is a length l + 1 path in G, contradicting our
assumption that w ∈ V1.

Lemma 3.3. The submatrix fPk(V2, V3) of fPk corresponding to the rows indexed
by V2 and columns indexed by V3 is the zero matrix of the appropriate size.

Proof. Suppose that fPk(w, v) &= 0 for w ∈ V2 and v ∈ V3. Then (v, w) is an
edge in the associated directed graph G. Since w is not in V3, there exists a path
w, v1, . . . , vl in G. Then v, w, v1, . . . , vl must also be a path in G, contradicting our
assumption that v ∈ V3.

We have now shown that if we reorder the basis by listing the basis elements in
V1, followed by those in V2, followed by those in V3, we obtain the following block
form (with rows and columns labeled by location in the specified sets):

fPk ∼ A =





V1 V2 V3

V1 A11 0 0
V2 A21 A22 0
V3 A31 A32 A33





What remains to show in order to use Theorem 3.1 is the following lemma.
Lemma 3.4. The two matrices, Al

11 and Al
33, are zero matrices of the appropriate

sizes.
Proof. We obtained the block lower triangular matrix A by a reordering of the

basis for the matrix fPk. Therefore, the associated directed graph GA for A is the
directed graph G with relabeled vertices. With a slight abuse of notation, we consider
again the subsets V1, V2, V3 in GA to be the sets satisfying (3.2), (3.3), and (3.1)
respectively. Interpreting nonzero entries of A to be weights on the corresponding
edges, we may use powers of A to study paths in GA. More specifically, Al(i, j) &= 0
implies that there exists a length l path from vertex j to vertex i in GA (see, e.g.
[Die05]). Now suppose that Al(i, j) = Al

11(i, j) &= 0 for some i, j ∈ V1. Then by the
above argument, there exists a length l path in GA that ends at a vertex in V1. This
contradicts (3.2). Therefore, Al

11 = 0. A similar argument shows that Al
33(i, j) = 0

for all i, j ∈ V3.
We now have that fPk is similar (and hence shift equivalent) to A which is shift

equivalent to f̃Pk := A22 by Lemma 3.4 and Theorem 3.1. Therefore, we may take
f̃Pk to be the new, possibly smaller representative of the Conley index

Con(S, f) = [fPk]s = [f̃Pk]s.

This procedure is outlined in Algorithm 5. Here, algorithms based on depth or breadth
first search may be used to efficiently compute the required sets V1, V2, and V3. As
we will show in Section 4 this technique may give a drastic decrease in the size of the
representative index map.

Algorithm 5 (Remove Transient Generators).
INPUT: square matrix fPk

OUTPUT: shift equivalent (square) matrix f̃Pk
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f̃Pk = remove transient generators(fPk)
G = (V,E) is the directed graph associated to fPk;
V3 = {v ∈ V | any path starting at v is finite};
V1 = {v ∈ V | any path ending at v is finite};
V2 = V \ (V1 ∪ V3);
f̃Pk = fPk(V2, V2);
return f̃Pk;

3.2.2. Cycle verification. We now automate a procedure for using Conley in-
dex computations to construct a semi-conjugate subshift of finite type. As described
in Theorem 3.6 below, we construct the subshift system from a collection of cycles
that are verified using Corollary 2.15. As will be seen in Section 4, the automation
of this procedure becomes necessary as we build increasingly complicated subshifts
of finite type. In particular, building a subshift system containing infinitely many
periodic orbits may, in principle, lead to an infinite list of computations to verify
that the hypotheses of Corollary 2.15 hold for each cycle. In the following approach,
we present an algorithm which uses a finite list of computations to verify a possibly
infinite set of cycles.

Given an index pair P = (P1, P0), we begin by labeling each of the (m) disjoint
regions of the isolating neighborhood N := P1 \ P0. Let N = ∪m

i=1Ni with Ni closed
and nonempty and Ni ∩ Nj = ∅ for all i &= j. By construction, each Ni has a
corresponding cubical representation Ni ⊂ N . Recall that the associated itinerary
function ρ is defined by ρ(x) = (s0s1 . . .) with sj = i if f j(x) ∈ Ni. Let T̃ be the matrix
of admissible transitions between the regions Ni allowed by F . More specifically, T̃
is the m×m matrix with entries

tij =
{

1 if F(Nj) ∩Ni &= ∅
0 otherwise. (3.4)

Then ρ : S̃ → ΣT̃ where S̃ := Inv(N, f) and ΣT̃ and σT̃ : ΣT̃ → ΣT̃ are the subshift
of finite type defined in Section 2. As previously discussed, ρ : S̃ → ΣT̃ may not be
surjective and, hence, σT̃ : ΣT̃ → ΣT̃ may not be semi-conjugate to f : S̃ → S̃. We
will now construct a subshift system, σT : ΣT → ΣT , with ΣT ⊂ ΣT̃ , that we prove
is semi-conjugate via ρ to f : S → S with S ⊂ S̃.

Let G = (V,E) be the directed graph associated to the symbol transition graph
T̃ (viewed as an adjacency matrix). More specifically, the vertices are named for the
regions, Ni with V = {1, 2, . . . m} and the edge set E := {(j, i) ∈ V × V |tij = 1}
represents the admissible transitions between regions. In our approach, we begin by
removing all paths in G that are not contained in cycles. These paths correspond
to dynamics that we will not check using index theory. A practical way to perform
this step is to remove edges and vertices not contained in the strongly connected
components (SCC) of G. We will now study Conley indices for periodic symbol
sequences in ΣT̃ represented by cycles in G.

As discussed in Section 2.2, we consider restricted index maps

f ij
Pk : Hk (P1, P0 ∪ (∪l (=iNl)) → Hk(P1, P0 ∪ (∪l (=jNl)).

To do this, we first group the generators of Hk(P1, P0) remaining after running Al-
gorithm 5 by region Ni. Again, thinking of fPk as a matrix with rows and columns
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corresponding to the generators of Hk(P1, P0), we have that

f ij
Pk := fPk(gNj , gNi) (3.5)

where gNi are the (row/column) indices of generators in Hk(P1, P0 ∪
⋃

l (=i Nl) ⊂
Hk(P1, P0). Here, f ij

Pk is as an nj × ni matrix where ni and nj are the number
of generators in regions Ni and Nj respectively. To simplify notation, for a path
p = (s1, s2, . . . , sn), let

fp
Pk := fsn−1sn

Pk ◦ · · · ◦ fs1s2
Pk . (3.6)

Definition 3.5. We say that a cycle, c = (s1, s2, . . . , sn, s1) in G is verified if
for some k,

tr (fc
Pk) = tr k Con(S′, fNsn

◦ · · · ◦ fNs1
) &= 0

where S′ := Inv(Ns1 , f |Nsn→Ns1
◦ · · · ◦ f |Ns1→Ns2

). Note that by Corollary 2.15,
ρ−1(s) &= ∅, where s = (s1s2 . . . sns1 . . . sn . . .) is the periodic symbol sequence corre-
sponding to the verified cycle.

Before discussing our automated approach for verifying cycles, we give the fol-
lowing theorem to serve as motivation for this work.

Theorem 3.6. Let ΣT be the space of symbol sequences with symbol transition
matrix T and let Per(ΣT ) be the set of periodic symbol sequences in ΣT under σT .
Suppose that ΣT = Per(ΣT ) and for each s = (s1 . . . sns1 . . . sn . . .) ∈ Per(ΣT ), the
corresponding cycle c = (s1, s2, . . . , sn, s1) in G has been verified according to Defini-
tion 3.5. Then the itinerary function ρ is a semi-conjugacy between f : S → S and
σT : ΣT → ΣT , where S := ρ−1(ΣT ) ⊂ S̃.

Proof. The itinerary function, ρ : S̃ → ΣT is continuous and ρ ◦ f = σT ◦ ρ (see
Section 2 and references therein). Furthermore, since each cycle in G corresponding
to a periodic symbol sequence in ΣT has been verified according to Definition 3.5, ρ
maps onto Per(ΣT ). Since ρ is continuous, S̃ := Inv(N, f) is compact, and ΣT is
Hausdorff, ρ must map onto the closure of the set of of periodic symbol sequences,
Per(ΣT ) = ΣT . Therefore, ρ : S → ΣT is a semi-conjugacy.

The list of cycles that may be verified according to Definition 3.5 relies im-
plicitly on the form of fP and, more specifically, on f ij

Pk for k = 0, 1, 2, . . . and
i, j ∈ {1, . . . ,m}. For the examples studied in Section 4, the homology maps fPk

are trivial for all k &= 1. Therefore, for these examples we fix k = 1, as any other
choice will necessarily lead to a zero trace and failure to verify all cycles. For different
systems, there may be more flexibility in the choice of k. Given a fixed k, the question
of how the list of verified cycles relies on choices of i and j is far more subtle. We
begin this discussion by fixing k and considering the case where each region contains
exactly one homology generator (ni = 1 for all i = 1, . . . ,m). We will then discuss
the more difficult case where some regions have multiple homology generators.

Note that if there is only one generator per region, then f ij
Pk is a scalar for all

admissible transitions t̃ji = 1 in T̃ . In this case, if f ij
Pk &= 0 for all admissible transi-

tions, then for any admissible periodic symbol sequence s = (s1s2 . . . sns1s2 . . . sn . . .)
with corresponding cycle c = (s1s2 . . . sns1), tr (fc

Pk) &= 0, and, therefore, all cycles in
G are verified. If, on the other hand, f ij

Pk = 0 for some admissible transition, then
any cycle c with edge (i, j) will have tr (fc

Pk) = 0 and cannot be verified using this
approach. In this case, we remove this transition from the set of admissible transi-
tions by removing the edge (i, j) from G and, correspondingly, by setting tji = 0 in
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T . In essence, cycle verification computations in the setting where there is exactly
one homology generator per component boil down to a (finite) check that entries in
fPk corresponding to admissible transitions in T are nonzero.

If there are regions that contain more than one generator of homology, then
these computations become more complicated. In what follows, we will systematically
process the cycles in G. In the first phase of the procedure, we process paths and
cycles in G in an attempt verify cycles. Alternatively, one can think about identifying
all cycles that may not be verified by our approach. Along these lines, we will label
certain cycles as unverifiable and certain paths as unconcatenable. From these, we
will identify a collection of edges that need to be removed from the graph so that
all remaining cycles are verified cycles. Note that in what follows, labeling a path
unconcatenable does not mean that cycles containing this path may not be verified
according to Definition 3.5, only that we may not verify some such cycles using our
prescribed list of finite computations. Let Max Iter be a nonnegative integer that
will serve as a computational parameter.

Definition 3.7. Define the edge set for a path p = (v0, . . . , vn) to be

E(p) := {(vi, vi+1) ∈ E(G)|i = 0, . . . , n− 1}

and the length of p to be |p| = n. Consider a cycle c = (s, v2, v3, . . . , vn−1, s) starting
and ending at vertex s. If tr (fc

Pk) = 0, then c is unverifiable. (See also Definition 3.5.)
A path p = (s, v2, v3, . . . , vn−1, t) from s to t of length |p| ≤ Max Iter, is uncon-

catenable if fp
Pk = 0.

For a path p = (s, v2, v3, . . . , vn−1, t) from s to t of length |p| = Max Iter, p
is concatenable if there exists a path p′ from s to t with |p′| < Max Iter, E(p′) ⊆
E(p), and fp

Pk = αfp′

Pk &= 0 for some α &= 0. If no such path p′ exists, then p is
unconcatenable.

Finally, an edge set E is prohibited (at computational parameter Max Iter) if at
least one of the following holds:

1. there exists an unverifiable cycle c with |c| ≤ Max Iter and E(c) ⊆ E

2. there exists an unconcatenable path p with E(p) ⊆ E

Lemma 3.8. If c is a cycle whose edge set E(c) is not prohibited then c is a
verified cycle.

Proof. Suppose that |c| ≤ Max Iter. Since E(c) is not prohibited, c must be a
verified cycle.

Next, notice that in the natural partial ordering on edge sets, if E′ is prohibited
then so is E for any E containing E′. Therefore, E(c) must not contain any prohibited
subsets. If |c| > Max Iter, then c is the concatenation of 2 paths, p1 and p2, where
|p2| = Max Iter. We will use the notation p1p2 to denote the concatenation of paths
p1 and p2. Label the start/end vertices s1, t1 and s2, t2 of p1 and p2 respectively. Note
that s1 = t2 and t1 = s2 by construction. Since E(p2) ⊆ E(c) is not prohibited, there
exists a path p′2 from s2 to t2 with E(p′2) ⊆ E(p2), |p′2| < Max Iter, and fp2

Pk = αf
p′2
Pk

for some α &= 0. Therefore,

fc
Pk = fp2

Pkfp1
Pk

= αf
p′2
Pkfp1

Pk

= αfc′

Pk
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where c′ = p1p′2 is a cycle with E(c′) = E(p1)∪E(p′2) ⊆ E(c) and length |c′| ≤ |c|−1.
Continuing this process, we obtain a cycle c̃ with |c̃| ≤ Max Iter, E(c̃) ⊆ E(c), and
fc

Pk = α̃f c̃
Pk for some α̃ &= 0. Since E(c̃) cannot be prohibited, c̃ must be verifiable

and

tr (fc
Pk) = tr (α̃f c̃

Pk) = α̃tr (f c̃
Pk) &= 0.

Therefore, c is a verified cycle.
Lemma 3.8 and Theorem 3.6 provide an outline of our approach for constructing

the semi-conjugate system. By Lemma 3.8, we know that all cycles that do not
have prohibited edge sets are verified cycles and may be used to construct the semi-
conjugate system according to Theorem 3.6. In practice, we use the prohibited edge
sets to identify a collection of edges to be removed from G, resulting in the desired
semi-conjugate system.

We now give an outline of our procedure for locating prohibited edge sets by
collecting and testing appropriate matrix products along paths in G. The algorithm
outputs a collection of minimal prohibited edge sets B, that is for any prohibited edge
set E, there is a prohibited edge set E′ ∈ B with E′ ⊆ E.

Algorithm 6 (Find Prohibited Edge Sets).
INPUT: graph G, index map fPk, computational parameter Max Iter;
OUTPUT: list of minimal prohibited edge sets B

B = find prohibited edge sets(G, {fPk}, Max Iter)
B = ∅;
for all s, t ∈ V (G), E ⊂ E(G), set all M(s, t, E, k) = ∅;
for all (s, t) ∈ E(G),
if s == t and tr (fst

Pk) == 0, B = B ∪ {(s, t)};
else M(s, t, {(s, t)}, 1) = {fst

Pk};
end

end

for k = 1.. Max Iter,
for s, t ∈ V (G), E ⊆ E(G), M ∈M(s, t, E, k),
for (t, u) ∈ E(G),

E′ = E ∪ (t, u);
M ′ = f tu

PkM;
if (M ′ == 0) or (s == u and tr (M ′) == 0),
B = B ∪ {E′};
set M(s′, t′, E′′, +) = ∅ for all s′, t′ ∈ V (G), E′ ⊆ E′′ ⊆ E(G), + ≤ k;

else if & ∃M ′′ ∈
⋃

!<k
E′′⊆E′

M(s, t, E′′, +), with M ′′ == αM ′ for some α &= 0,

M(s, t, E′, k + 1) = M(s, t, E′, k + 1) ∪ {M ′};
end

end
end

end

B = B ∪ {E ⊂ E(G) | M(s, t, E, Max Iter) &= ∅ and E minimal};
return B;
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In practice, it is more efficient to apply Algorithm 6 only to a subgraph of G that
captures the behavior of the system in the regions with multiple homology generators.
More specifically, we first study G restricted to the vertices for multiple generator
regions and the neighboring single generator regions. This allows us to take advantage
of the fact that fp

Pk is a scalar for all paths p starting and ending at vertices for
single generator regions. By removing enough edges so that there are no remaining
prohibited edge sets in the subgraph, we can reduce the check that cycles remaining
in G are verified to a check that the maps f ij

Pk between single generator regions are
nonzero. This is the approach we adopt for the results described in Section 4.

For all cycles c in G that do not contain any prohibited edge sets (listed in B), c
is a verified cycle by Lemma 3.8. What remains for the construction of a subgraph
G′ of verified cycles, is to remove enough edges so that we no longer have any cycles
with prohibited edge sets. Since our goal is to obtain a high lower bound for entropy,
we will select one edge from each prohibited edge set so that the removal of these
edges results in the semi-conjugate symbolic system with highest entropy. Again,
since the list of prohibited edge sets is finite (and each prohibited edge set is finite),
the computation of optimal edges to remove is finite. Removing the edges yields a
graph in which all cycles may be verified using Corollary 2.15. By Theorem 3.6, the
corresponding adjacency matrix, T , defines a semi-conjugate symbolic system.

The following is an outline of the procedure for breaking prohibited edge sets.

Algorithm 7 (Break Prohibited Edge Sets).
INPUT: graph G, a list of prohibited edge sets B,
OUTPUT: graph G′ in which all cycles may be verified via Corollary 2.15

G′ = break prohibited edge sets(G, B)
if B = ∅, return G′ = G;
hmax = −1;
Ec = ∅;
for each set {e1, e2, . . . , eN}, where ei is an edge on the ith cycle in B,
let G′ be the subgraph of G obtained by removing edges e1, e2, . . . , eN;
let T (G′) be the adjacency matrix for G′;
h = log(sp(T (G′)));
if h > hmax,

hmax = h;
Ec = {e1, e2, . . . , eN};

end
end
let G′ be the subgraph of G obtained by removing the edges in Ec;
return G′;

Combining Algorithms 6 and 7, Theorem 3.6 guarantees that the following algo-
rithm produces a symbol transition matrix T with σ : ΣT → ΣT semi-conjugate to
f : S → S. Noting that f ij

Pk = 0 will cause the verification procedure to fail for any
cycle containing edge (i, j), we will start with a graph G on the same vertex set with
the edge set E = {(i, j)|f ij

Pk &= 0}.

Algorithm 8 (Build Subshift).
INPUT: index map fPk : Hk(|P1|, |P0|) → Hk(|P1|, |P0|),
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computational parameter Max Iter
OUTPUT: symbol transition matrix T for semi-conjugate subshift of

finite type

T = build subshift(fPk, Hk(|P1|, |P0|), Max Iter)
fPk = remove transient generators(fPk);
set m to be the number of disjoint components of Hk(|P1|, |P0|);
V = {1, . . . ,m};
E = {(i, j) ∈ V × V |f ij

Pk &= 0};
G = G(V,E);
G = SCC(G); (removes all edges not contained in cycles)
U = find prohibited edge sets(G, fPk, Max Iter);
G′ = break prohibited edge sets (G, U);
T is the adjacency matrix for graph G′;
return T;

4. An example: the Hénon map. As illustration, we now apply our tech-
niques to the Hénon map

h(x, y) = (1 + y − ax2, bx) (4.1)

at the classical parameters a=1.4, b=0.3. Since its first appearance in [Hén76], there
has been extensive research on the Hénon map. The first result concerning a real
description of the chaotic dynamics of the Hénon map is [MS80], where the existence
of a transverse homoclinic point, and hence the existence of horseshoe dynamics, is
proved. In [Szy97], Szymczak used Conley index theory to give a computer-assisted
proof of the existence of periodic orbits of all periods except three and five. In [Gal02],
Galias employed the method of covering relations (related to Easton’s windows) to
give a computer-assisted proof of the existence of an infinite number of homoclinic
and heteroclinic trajectories. [Gal02] also contains a result which gives a rigorous
lower bound for the topological entropy of the map htop(h) ≥ 0.4300. In [NBGM08],
Newhouse et al. use the planar structure of the Henon map to compute htop(h) ≥
0.46469, the highest lower bound on the entropy for Hénon at the classical parameter
values currently reported.

For this work, we use the GAIO software package to construct grids, G(d), at
discretization depths 0 ≤ d ≤ 12, on the initial box [−1.425, 1.425] × [−0.425, 0.425]
(see Section 2.3). We then use the interval arithmetic package INTLAB [Cse99] to
compute a combinatorial enclosure, H, on G(d) as

H(I1 × I2) = {G ∈ G(d)|h̃(I1, I2) ∩G &= ∅}

where I1 × I2 is an element in G(d) in interval product notation and h̃(I1, I2) denotes
the rectangular image of h(I1, I2) computed using (outward rounding) interval arith-
metic. Finally, we use Matlab scripts encoding the algorithms outlined throughout
the paper to find and compute the required Conley index structures and subshifts of
finite type. In the following sample results, we describe three different techniques for
producing the region of interest S ⊂ Gd. Given S, the main approach is the following:

Algorithm 9 (Main).
INPUT: grid Gd, combinatorial enclosure H on G,
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Fig. 4.1. (a) A combinatorial index pair, (P1,P0), computed using Algorithms 1 and 2 for the
Hénon map at depth d = 7. (P0 is the collection of boxes shown in cyan.) (b) The corresponding
symbol transition graph produced by Algorithm 8.

region of interest S, computational parameter Max Iter
OUTPUT: lower bound on the topological entropy of h ENTROPY

ENTROPY = compute entropy lower bound(Gd, H, S, Max Iter)
ENTROPY = 0;
N = grow isolating neighborhood(S); (Algorithm 1)
[P1,P0] = build index pair(N); (Algorithm 2)
fP∗ = compute index map(P1, P0, H, Gd); (Algorithm 3)
for k = 1..dim(Gd), with fPk &= 0,

T = build subshift(fPk, Hk(|P1|, |P0|), Max Iter); (Algorithm 8)
ENTROPY := max{ENTROPY, log(sp(T ))};

end
return ENTROPY;

4.1. Joining two short cycles. For purposes of illustration, we begin with a
relatively simple example on the grid at depth d = 7. Although the resulting entropy
lower bound, 0.2406, is small, this example provides us with matrices of reasonable
sizes for depicting the results of various stages of the procedure. For this example,
we locate a region of interest, S, by searching the computed enclosure H on G(7) for
a cycle of length 2, a cycle of length 4 and shortest path connections from the 2-cycle
to the 4-cycle and from the 4-cycle to the 2-cycle. S is the union of these four objects.
Applying Algorithms 1 and 2 to S result in the index pair given in Figure 4.1.

Theorem 4.1. The topological entopy of the Hénon map (4.1) is bounded from
below by 0.2406.
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Proof. The computed index map for the index pair depicted in Figure 4.1(a) is

hP,1 =





A B B B B C D E F F

A 0 0 0 0 0 0 −1 0 0 −1
B 0 0 0 0 0 0 −1 0 0 0
B 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 1 0
B 0 0 0 0 0 0 0 0 1 0
C 1 0 0 0 0 0 0 0 0 0
D 0 1 0 1 0 0 0 0 0 0
E 0 0 0 0 0 1 0 0 0 0
F 0 0 0 0 0 0 0 −1 0 0
F 0 0 0 0 0 0 0 1 0 0





The rows and columns are labeled by location of the corresponding homology genera-
tor in the labeled regions of the isolating neighborhood (see Figure 4.1(a)). Applying
Algorithm 5 for removing transient generators to hP,1 produces the shift equivalent
matrix

A =





A B B C D E F F

A 0 0 0 0 −1 0 0 −1
B 0 0 0 0 −1 0 0 0
B 0 0 0 0 0 0 1 0
C 1 0 0 0 0 0 0 0
D 0 1 1 0 0 0 0 0
E 0 0 0 1 0 0 0 0
F 0 0 0 0 0 −1 0 0
F 0 0 0 0 0 1 0 0





This is the matrix labeled A22 in Theorem 3.1 and is obtained by an appropriate
reordering of the basis. Note that this algorithm removed two of the homology gen-
erators in region B and, therefore, reduced the size of the representative of the shift
equivalence class/Conley index.

As an example computation, using Corollary 2.15 to verify the cycle (B, D,B),
we check that

tr 1(Con(S′, f |D→B ◦ f |B→D)) = tr
(
hDB

P,1 hBD
P,1

)

= tr 1

([
−1

0

] [
1 1

])

= tr 1

([
−1 −1

0 0

])

&= 0.

Running Algorithm 8 on A to verify a collection of cycles results in the construc-
tion of a semi-conjugate subshift system with symbol transition matrix

T =





A B C D E F

A 0 0 0 1 0 1
B 0 0 0 1 0 1
C 1 0 0 0 0 0
D 0 1 0 0 0 0
E 0 0 1 0 0 0
F 0 0 0 0 1 0




.
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Fig. 4.2. The combinatorial index pair, (P1,P0), constructed starting with Algorithm 4 for
Theorem 4.2 at depth 12. (P0 is the collection of boxes shown in cyan.)

The corresponding symbol transition graph is given in Figure 4.1(b). Since the log of
the spectral radius of T is greater than 0.2406, the result follows from Theorem 2.7.

4.2. Joining low cycles (Algorithm 4). We now focus on improving the
bound by refining the grid and using Algorithm 4 to compute a more complicated
region of interest.

This approach results in the following theorem.
Theorem 4.2. The topological entopy of the Hénon map (4.1) is bounded from

below by 0.4320.
Outline of Proof. Given the enclosure H on G(12), we use Algorithm 4 with

Max Cycle Length=7 to produce the region of interest S. We then follow Algo-
rithm 9. The index pair for S appears in Figure 4.2. Algorithm 3 returns an index
map on 1521 relative homology generators. Algorithm 5 reduces this map to a shift
equivlalent map on 309 generators. Finally, Algorithm 8 produces a semi-conjugate
subshift of finite type with 247 symbols. The symbol transition matrix for the con-
structed subshift is depicted in Figure 4.3. The log of the spectral radius of T is
bounded from below by 0.4320. The result then follows from Theorem 2.7. "

For the above result computed on the grid G(12), we choose the maximal cycle
length for Algorithm 4 to be Max Cycle Length= 7. This choice is made because
choosing Max Cycle Length< 7 yields a lower bound than that given in Theorem 4.2,
and choosing Max Cycle Length> 7 yields an entropy lower bound of 0. This behavior
is depicted in Figure 4.4. The reason that choosing a large maximal cycle length leads

24



0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

Fig. 4.3. A depiction of the nonzero entries of the 247× 247 symbol transition matrix for the
subshift of finite type constructed for Theorem 4.2.

to a 0 lower bound is that the corresponding isolating neighborhood produced by
Algorithm 1 is a covering of the entire attractor, with corresponding trivial symbolic
dynamics.

In principle, improving the bound requires only extra computational cost. Fig-
ure 4.5 shows the change in the computed entropy bound with increase in resolution
of the grid (and corresponding increase in computational expense) for the Hénon
map. The dip in the graph at depth 11 is of interest because, in general, we expect
a monotonic increase in the computed entropy bound with increase in resolution of
the grid. This non-monotonic behavior indicates that our choice of region of interest,
S, in Algorithm 4 is indeed sub-optimal. In fact, choosing S to be the boxes in G(11)

contained in the isolating neighborhood N returned by Algorithm 4 and Algorithm 1
on G(10) would yield the same entropy as that computed at depth 10 and so it is
possible to compute a higher entropy bound at this resolution.

4.3. Fold preimage removal. A priori knowledge of the Hénon map sug-
gests another approach for constructing the region of interest S. We notice that
indices for cycles traveling too close to the “fold” of the attractor (at approximately
(1.2717,−0.0207)) are necessarily trivial. Here, the Hénon map loses hyperbolicity,
and the resulting induced map on homology maps the corresponding generator to
zero. Out of curiosity, we now take the opposite approach of removing boxes from
the covering of the attractor in an attempt to find an isolating neighborhood with
interesting associated symbolic dynamics. Here we start with a box covering of the
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Fig. 4.4. Entropy lower bounds computed using Algorithm 4 for the Hénon map on grid G(12)

at varying maximal cycle lengths N .

maximal invariant set (in this case, Hénon’s strange attractor) and remove a small
box neighborhood of the fold. We then remove a fixed number of preimages of this
collection of boxes from the covering of the maximal invariant set. This procedure is
outlined in Algorithm 10. From the resulting region of interest, we grow an isolating
neighborhood and construct and verify symbolic dynamics as outlined in Algorithm 9.

Algorithm 10 (Fold Preimage Removal for Constructing S).
INPUT: grid Gd, combinatorial enclosure H on Gd,

region N 0
f ⊂ Gd containing the fold point,

computational parameter Max Preimage Iter
OUTPUT: region of interest S

S = fold preimage removal(Gd, H, Max Preimage Iter)
Nf = N 0

f ;
S = Gd \ Nf;
for i = 1.. Max Preimage Iter,

Fold Iter = H−1(Nf );
S = S \ Nf;

end
return S;

Figure 4.6 depicts entropy bounds resulting from computations made starting
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Fig. 4.5. Entropy lower bounds for the Hénon map computed on regions given by Algorithm 4
on grids G(d) of varying depth d.

with Algorithm 10 and various values of Max Preimage Iter. Removing too few
preimages of the fold boxes (Max Preimage Iter small) does not yield interesting
symbolic dynamics since we are unable to isolate this set at the given resolution.
Removing too many preimages (Max Preimage Iter large) results in a subshift system
consisting of disjoint cycles with 0 entropy. At depth 12, Max Preimage Iter = 11
provides the highest entropy bound and this optimal constant increases at greater
depths.

We obtain the following theorem by applying this third approach to the Hénon
map.

Theorem 4.3. (Fold and preimage removal) The topological entopy of the Hénon
map (4.1) is bounded from below by 0.4225.

Outline of Proof. Starting with a covering of the Hénon attractor by elements in
G(12), we use Algorithm 10 to remove Max Preimage Iter = 11 preimages (under H)
of (1.2717,−0.0207) + [−0.04, 0.04] × [−0.002, 0.002], a neighborhood of the “fold”.
We then use the resulting region of interest S together with G(12), and H as the input
for Algorithm 9. The computed index pair is shown in Figure 4.7. The homology
map computed using Algorithm 3 is a map on 1281 generators of the first relative
homology group. Algorithm 5 reduces the number of required generators to 191 by
computing an appropriate shift equivalent index map. Finally, Algorithm 8 produces
a topologically conjugate subshift on 129 symbols with topological entropy bounded
from below by 0.4225. The result follows from Theorem 2.7. "
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Fig. 4.6. Entropy lower bounds computed using the fold preimage removal technique for the
Hénon map on grid G(12). The horizontal axis gives the number, Max Preimage Iter, of preimages
of the fold removed before growing the isolating neighborhood.

5. Concluding Remarks. We have described an automated, algorithmic method
for studying the dynamics of a discrete dynamical system f : X → X. The method
not only constructs a semi-conjugate subshift of finite type, but also uses this infor-
mation to compute a rigorous lower bound on the topological entropy for the system.
The essential ingredient to this approach is a computable “coarse” level of hyperbolic-
ity in the map which is required to obtain a nontrivial Conley index. As the procedure
stands, greater computational effort may be employed to improve the bounds. How-
ever, further analysis and optimization of the procedure described in Section 3.1 for
locating a region of interest should lead to even stronger results. A referee sugges-
tion to consider more general sofic shifts rather than subshifts of finite type may also
lead to the construction of semi-conjugate symbolic dynamical systems with higher
entropy.

The index processing techniques introduced in Section 3.2 will enable further
studies along these lines. As mentioned in the Introduction, even infinite dimensional
systems may be studied in this manner. For such systems, it is necessary to incor-
porate both a dimension reduction for obtaining a computable system and analysis
to overcome this reduction. These ideas are described in more detail in [DJM04] and
would not, in principle, hinder entropy measurements of the type presented here.
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work was made possible through the support of the Cornell University Summer 2006
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Fig. 4.7. The combinatorial index pair, (P1,P0), constructed starting with Algorithm 10 at
depth 12. (P0 is the collection of boxes shown in cyan.) The black rectangle shows the neighborhood
of the fold point whose preimages were removed to construct the region of interest S.

REU program.
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