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ABSTRACT
Option contracts are a type of financial derivative that allow
investors to hedge risk and speculate on the variation of an
asset’s future market price. In short, an option has a par-
ticular payout that is based on the market price for an asset
on a given date in the future. In 1973, Black and Scholes
proposed a valuation model for options that essentially esti-
mates the tail risk of the asset price under the assumption
that the price will fluctuate according to geometric Brownian
motion. A key element of their analysis is that the investor
can “hedge” the payout of the option by continuously buy-
ing and selling the asset depending on the price fluctuations.
More recently, DeMarzo et al. proposed a more robust valu-
ation scheme which does not require any assumption on the
price path; indeed, in their model the asset’s price can even
be chosen adversarially. This framework can be considered
as a sequential two-player zero-sum game between the in-
vestor and Nature. We analyze the value of this game in the
limit, where the investor can trade at smaller and smaller
time intervals. Under weak assumptions on the actions of
Nature (an adversary), we show that the minimax option
price asymptotically approaches exactly the Black-Scholes
valuation. The key piece of our analysis is showing that Na-
ture’s minimax optimal dual strategy converges to geometric
Brownian motion in the limit.
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1. INTRODUCTION
In finance, an option is a financial contract between two

parties that guarantees the purchase or sale of a given asset,
such as a stock or bond, at a specified price in the future.
Buying an option means buying the right to engage in a
particular transaction, yet the the buyer has no obligation
to do so. Options are a useful tool for controlling risk in
financial portfolios, as they can be used to hedge against
the possibility of a large unexpected price fluctuation.

Let us focus presently on a European call option, parame-
terized by an asset A, a strike price K and a future expira-
tion date T . The buyer of an (A, K, T ) call option is allowed
to purchase 1 share of asset A for a fixed price of K on date
T if she so chooses. Of course, if the market price of A on
date T is P (T ), then the owner of the call option will only
exercise the transaction if P (T ) > K. Thus, in practice, the
value of the option on date T is max(0, P (T ) − K).

What has remained a popular topic in finance is the prob-
lem of pricing options in terms of known properties of the
underlying asset and distributional properties of its price
fluctuations. The most well-known approach for pricing op-
tions is the Black-Scholes model, introduced in 1973 by Fis-
cher Black and Myron Scholes in their seminal paper “The
pricing of options and corporate liabilities” [2]. As the future
market price of an asset is an uncertain quantity, the Black-
Scholes pricing model includes a key assumption, that an as-
set’s price fluctuates with constant drift and volatility, which
leads to a geometric Brownian motion (GBM) model for the
price path. Thus, given a European call option (A, K, T ), we
can estimate the “fair value” of the option to be its expected
payoff under the assumption that the price path P (t) be-
haves according to GBM. That is, the Black-Scholes model
would set the option price to be EP∼GBM[max(0, P (T )−K)].

The Black-Scholes model has undergone a reasonable
amount of criticism, much of which is due to the GBM as-
sumption which gives a strict characterization of the price
volatility; a common complaint is that the model heavily
discounts tail risk. Extreme price changes, often due to
systemic events, are estimated to be highly improbable un-
der Black-Scholes but occur quite frequently in practice –
this valuation model does not hold for alternative stochastic
models.

There has been recent work that takes an entirely different
approach to pricing options, namely where no stochastic as-



sumptions are made about the fluctuation of the underlying
asset. This robust option pricing framework, put forward by
DeMarzo et al. [4] (with a similar model presented by Shafer
and Vovk [11]) imagines a multi-stage game between an in-
vestor and Nature. On every round, the investor chooses an
amount of money to invest in the underlying asset, and Na-
ture chooses a new value (within constraints) for the asset’s
price on the next round. The investor would like to exhibit a
trading strategy (algorithm) with the ultimate goal of earn-
ing almost as much as the payout of the option against a
worst-case price path. Let us imagine, for the moment, that
we can construct a strategy which receives a payout that
is never more than C dollars worse than the option pay-
out. DeMarzo et al. make the key observation that, since
this guarantee holds for any price path (within constraints),
then the price of the option should cost no more than C
at the start of the game. The reason for this is simple: if
the price of the option were strictly larger than C, then the
investor has an arbitrage opportunity via short selling the
option and going long on his robust trading strategy.

In the present paper, we look at this sequential game
between investor and Nature and analyze the equilibrium
strategies of each player. But we go a step further and
consider what is the limit behavior of the game when the
investor trades at greater and greater frequency. Intuitively,
this is what would happen when a firm switches from a trad-
ing strategy that trades once per day, to once per hour,
to once per minute, etc. The question we aim to answer
is: what is the value of this game, i.e. the minimax option
price, as the trading frequency approaches infinity? The an-
swer is somewhat surprising: the option value, in the limit,
is identical to the price under the Black-Scholes model. We
show this by proving that the worst case price path chosen
by Nature, under reasonable constraints, will converge to a
particular geometric Brownian motion.

Recall that the Black-Scholes option pricing model is ef-
fectively about determining a “fair price” for the derivative,
under reasonably strong distributional constraints. The ro-
bust option pricing framework of DeMarzo et al., on the
other hand, only aims to exhibit an upper bound on the
option value when Nature sets the market price of the as-
set under some constraints on the price fluctuations. But we
show that the worst-case price is identically the fair price un-
der the GBM assumption. In a certain sense this provides
reasonably strong validation for the Black-Scholes pricing
framework.

We make a few observations about the results.

1. While our running an example is a European call op-
tion, our main theorem holds for any financial deriva-
tive whose payoff is a convex function of the underly-
ing asset price on the expiration date. This is a broad
class of derivatives, including both the European put
and call options.

2. We do not provide an explicit optimal strategy for the
investor. We begin by considering a game where first
the investor commits to an algorithm and then Nature
responds with a randomized price path, but the ma-
jority of our analysis concerns the dual of this game in
which Nature must act first, and then the investor can
act with full knowledge of Nature’s randomized price
path. We leave as an open question whether such a
strategy can be efficiently constructed.

3. Our analysis requires that the investor be able to trade
arbitrarily large amounts of money to compete with
the option payout. In a sense, we are assuming that
the investor is a large institution with the capital to
go very long and very short on the asset. We believe
that our results also hold when the investor has a fixed
budget size, but we leave this as an open question.

Previous Work
The primary motivation for our results draws from DeMarzo
et al. [4]. Their work focused primarily on constructing ro-
bust trading strategies that can be used instead of purchas-
ing an option, and the authors were the first to observe that
the existence of such a strategy provides a theoretical up-
per bound on the price one should pay for an option. Their
results draw strongly from ideas developed within the the-
ory of regret minimization in online learning, and the pro-
posed algorithm has a resemblance to the well-known Mul-
tiplicative Weights algorithm, proposed in various forms by,
among others, Littlestone and Warmuth [9] and Freund and
Schapire [6]. The connection to regret minimization strate-
gies is unsurprising, since the primary goal of this area of
research is to provide guarantees that hold without requir-
ing any stochasticity assumptions on the data received from
Nature.

The work of DeMarzo et al. looks briefly at the minimax
formulation of the option pricing game, although for a fixed
trading frequency and using somewhat different assumptions
from what is used in our results. Their analysis requires us-
ing Sion’s minimax theorem [12] and they conclude that Na-
ture’s optimal price path must be a martingale; both of these
components are used herein. Finally, the authors provide a
plot (Figure 1 in Section 7 in [4]) showing the computed
minimax option price versus the Black-Scholes price as a
function of the strike price. This plot strongly foreshadows
our main result in this paper as the two curves are very close
to one another; indeed, our aim is to show that these curves
are asymptotically equal.

The other very related work is the book by Shafer and
Vovk [11] titled “Probability and Finance: It’s Only a
Game!” The authors considered a number of game-theoretic
interpretations of problems in finance. The authors look
at pricing options under a game-theoretic framework (intro-
duced originally by Vovk [14]) in which an investor must
make a sequence of trades of an underlying asset as Nature
sets the asset’s market price. They arrive at very similar
conclusions to ours, establishing that the “fair price” un-
der their model is identical to the Black-Scholes valuation.
However, the framework they put forward is more akin to
the original derivation of the Black-Scholes pricing model,
and differs from the framework of DeMarzo et al. in that
they do not aim for worst-case bounds. In particular, their
analysis requires the existence of a hypothetical derivative
which pays off according to the fluctuation of the underlying
asset.

There is a significant amount of discussion and analysis
of sequential minimax games in the book of Cesa-Bianchi
and Lugosi [3]. A full duality-based approach to analyzing
repeated games can be found in Abernethy et al. [1], who
also utilize martingale concentration arguments. There has
been more recent and very interesting work on pricing more
exotic options by Gofer and Mansour [7, 8].



2. THE MINIMAX OPTION GAME
Notation. Let R0 = [0,∞), R+ = (0,∞), and N =

{1, 2, 3, . . . }. Throughout, m, n index N and t indexes R,
so for instance, 0 ≤ m ≤ n means m ∈ {0, 1, . . . , n} and
0 ≤ t ≤ 1 means t ∈ [0, 1].

2.1 Problem setting and definitions
We shall be considering the value of options (or other

derivative contracts) providing a certain payoff that depends
on (a) the expiration date T , (b) a specified “strike price”
K, and (c) the price X(T ) of some underlying asset at time
T . We can assume that the current price X(0) is known in
advance, hence we set X(0) = 1 always. Since we consider
trading in continuous time, we assume without loss of gen-
erality that the option expires at T = 1. We shall consider,
for each n ∈ N, a sequential game where an investor trades
n times throughout the time interval [0, 1], i.e. we trade at
every 1/n-time interval.

Let us now discuss the payoff of the option, which will be
denoted by a function g : R0 → R0 whose input is the asset
price at the time of expiration. For example, in the case
of the European call option the payoff function is g(x) =
max(0, x − K) where K ≥ 0 is the strike price. We do not
restrict our attention to derivatives of this form, and instead
we require only that g be convex and L-Lipschitz; namely,
|g(y) − g(x)| ≤ L|y − x| for all x, y ∈ R0. However, for
simplicity, we use the term “option” throughout the paper.

In the option pricing game we consider, we imagine that
Nature chooses a randomized price path for the underlying
asset, with the goal of maximizing the expected difference
between the payoff of the option and the investor’s earnings.
We generally use the symbol X to denote this price path. Let
X denote the set of stochastic processes X : [0, 1] → R+ with
X(0) = 1 and continuous path almost surely, representing
the asset prices. Within our analysis, we also consider a
discrete variant of the continuous game, and imagine Nature
choosing price paths defined by a finite sequence of random
variables. For each n ∈ N, let Sn denote the set of sequences
of random variables Sn = (Sn,0, Sn,1, . . . , Sn,n) with Sn,0 =
1 and Sn,m ∈ R+ for 0 ≤ m ≤ n.

Given a process X ∈ X , we will write Sn(X) =
(X(0), X(1/n), . . . , X(n/n)) ∈ Sn to denote the discrete
points of X. Similarly, given Sn ∈ Sn, we write X(Sn)
to denote the stochastic process X ∈ X obtained by linearly
interpolating the values of Sn in the log space, i.e. for any
0 ≤ t ≤ 1 of the form t = (m + α)/n with 0 ≤ m ≤ n − 1
and 0 ≤ α ≤ 1, we define

log X(t) = (1 − α) log Sn,m + α log Sn,m+1.

Let B : [0, 1] → R denote the standard Brownian motion,
also known as a Wiener Process. More precisely, B is a
stochastic process with the properties that

1. B(0) = 0,

2. t 7→ B(t) is almost surely continuous, and

3. B(t) has independent increments with B(t) − B(s) ∼
N (0, t − s) for all 0 ≤ s ≤ t ≤ 1.

Next, let G : [0, 1] → R+ denote the geometric Brownian
motion (GBM) with drift 0 and volatility

√
c; that is,

G(t) = exp

„√
c B(t) − ct

2

«
. (1)

Throughout, we assume the variance parameter c > 0 is
fixed. Observe that G is a martingale since it has drift 0, and
furthermore, it satisfies the following multiplicative variance
property:

E
ˆ
(G(t) − G(s))2 | Fs

˜
=
“
ec(t−s) − 1

”
G(s)2, (2)

where Fs = σ(G(r) : 0 ≤ r ≤ s) is the filtration generated
by G up to time s. We consider B and G as (random) ele-
ments of C[0, 1], the space of continuous functions from [0, 1]
to R equipped with the supremum norm. When the price
path behaves according to the geometric Brownian motion
G, we can define the Black-Scholes formulation for pricing
an option defined by payoff function g:

(Black-Scholes Price) β := E[g(G(1))].

We turn our attention to setting constraints for Nature’s
choice of price path X ∈ X – it is very difficult to obtain
any reasonable results unless the adversary is constrained in
some fashion. In light of (2), its natural to require that the
logarithm of the price path not fluctuate too greatly.

Definition 1 (CVC). We say that X ∈ X satisfies the
continuous variance constraint (CVC) if

E[(X(t) − X(s))2 | Fs] ≤
“
ec(t−s) − 1

”
X(s)2 (3)

almost surely for all 0 ≤ s ≤ t ≤ 1, where Fs is the filtration
generated by X up to time s.

We observe the key fact that the process G satisfies CVC
with equality. Since we shall also consider discrete price
paths Sn = (Sn,0, Sn,1, . . . , Sn,n), we construct a similar
constraint for this case.

Definition 2 (DVC). For each n ∈ N, we say Sn ∈
Sn satisfies the discrete variance constraint (DVC) if

E[(Sn,m+1 − Sn,m)2 | Fn,m] ≤
“
ec/n − 1

”
S2

n,m (4)

almost surely for all 0 ≤ m ≤ n − 1, where now Fn,m =
σ(Sn,0, . . . , Sn,m).

It is worth noting that, while CVC and DVC apply to differ-
ent spaces, when seen as constraints on the price fluctuations
it is clear that CVC is a significantly stronger restriction
than DVC. Rather than requiring that the variance be con-
trolled for every s, t time interval, DVC only specifies that
the fluctuations between successive 1/n length time points
are bounded. This fact is used in our proofs.

We will need one more constraint on Nature’s choice
of price path. To describe this final restriction, let ζ =
(ζ1, ζ2, . . . ) be a sequence of positive real numbers with the
property that ζn → 0 and

lim inf
n→∞

nζ2
n

log n
> 16c.

For example, we can take ζn = n− 1
2
+δ for any 0 < δ < 1/2.

We will assume throughout the paper that ζ is chosen and
fixed, and satisfies the above properties.

Definition 3 (ZCn). For each n ∈ N, we say that
Sn ∈ Sn satisfies the ζn-constraint (ZCn) if

˛̨
˛̨Sn,m+1

Sn,m
− 1

˛̨
˛̨ ≤ ζn (5)



almost surely for all 0 ≤ m ≤ n − 1. Similarly, for each
n ∈ N we say that X ∈ X satisfies the ζn-constraint if Sn(X)
does.

At first glance, the ZCn constraint may appear strong
since we have a hard bound on what values the price ratios
can take, but upon closer inspection one sees that this is
asymptotically a very weak constraint. It is used in our
results because we require in various places that the price
fluctuations lie in a compact set. However, the bounds we
get are independent of the sequence ζ. And furthermore,
while the ζn must approach 0, it can do so at a very slow
rate. To illustrate this point, notice that (4) is a similar
constraint to that of (5), where the former is “soft” and the
latter “hard”, but the constraint in (4) shrinks at a rate of
Θ(1/n) whereas the rate in (5) shrinks at a much slower rate.
We will show that the addition of ZCn becomes negligible
in the limit. While GBM violates ZCn, we show in (12)
that it does so with vanishing probability. We leave as an
open question whether our main result holds without the
ZCn restriction.

Definition 4. Define the following sets:

• XC = {X ∈ X : X satisfies CVC}.
• Xn

C,ζ = {X ∈ XC : Sn(X) satisfies ZCn}.
• Sn

D = {Sn ∈ Sn : Sn satisfies DVC}.
• Sn

D,ζ = {Sn ∈ Sn
D : Sn satisfies ZCn}.

• Sn
D,ζ,mg = {Sn ∈ Sn

D,ζ : Sn is a martingale with
respect to the natural filtration (Fm,n)}.

• Sn
D∗,ζ,mg = {Sn ∈ Sn

D,ζ,mg : Sn satisfies DVC with
equality a.s. for all m}.

Note that we have the following relations:

Xn
C,ζ ⊆ XC ⊆ X

Sn
D∗,ζ,mg ⊆ Sn

D,ζ,mg ⊆ Sn
D,ζ ⊆ Sn

D ⊆ Sn

Furthermore, observe that if X ∈ XC , then Sn(X) ∈ Sn
D for

each n ∈ N.

2.2 The Option Pricing Game
We wish to analyze the zero-sum game between the in-

vestor, who buys and sells shares in an underlying asset, and
Nature (the adversary), who chooses the path of the asset’s
market price over the time period. We shall assume that
the game is parameterized by a value n which determines
the frequency of the investor’s trades. More specifically, we
allow the investor to adjust his investment after each 1/n
interval of time.

Continuous Pricing Game.

• The investor’s strategy A ∈ An is a tuple of functions
A1, . . . , An each having the form Am : X|[0,(m−1)/n] 7→
∆m, where ∆m ∈ R and X|[0,t] is the stochastic pro-
cess X ∈ X restricted to the domain [0, t]. In other
words, the investor will choose an amount of money
∆m to invest in the underlying asset after having ob-
served the price path up to time (m − 1)/n. That is,
A can be interpreted as a sequence of random vari-
ables (∆1, ∆2, . . . , ∆n) where ∆m is measurable with
respect to the filtration F(m−1)/n of the price path X
up to time (m − 1)/n.

• We imagine Nature’s strategy as selecting a price path
X ∈ X satisfying both CVC and ZCn. More simply,
we let Nature’s strategy set be Xn

C,ζ .

• Assume now that the investor has committed to a
strategy A and Nature has committed to a price path
X. At round m, the investor had invested ∆m units
of currency in the underlying asset previously, and
the price fluctuated from X((m − 1)/n) to X(m/n).
Hence, in this round the investor has earned exactly“

X(m/n)
X((m−1)/n)

− 1
”

∆m.

• Recall that the investor’s goal is to construct a strat-
egy that can compete with the payout of the option.
Imagine, for example, that the investor had a strat-
egy to buy and sell the underlying asset as he watches
the price fluctuate, and that even in the worst case
this strategy had a payout that was only D dollars
worse than the payout of the option. Then the investor
would never pay more than a price of D to purchase
the option in question, for he could simple execute his
successful strategy and never lose more than D. This
argument is one of the key ideas in DeMarzo et al. [4],
and originates from the no-arbitrage assumption in the
original derivation of Black and Scholes [2].

• With the previous observation in mind, we should de-
sign our option pricing game so as to determine the
largest deviation between the option payout and the
earnings of the investor when the investor is playing
the optimal strategy and Nature is selecting a worst
case price path. For a particular trading strategy
A ∈ An and a price path X ∈ X , we define the loss
Ln(A, X) as

EX

"
g(X(1)) −

nX

m=1

„
X(m/n)

X((m − 1)/n)
− 1

«
∆m

#
.

It will be convenient to consider what happens when

the sum
Pn

m=1

“
X(m/n)

X((m−1)/n)
− 1
”

∆m vanishes in ex-

pectation. In this case the investor’s strategy is irrel-
evant, hence we define

Ln(X) = L(X) := EX [g(X(1))].

With the previous discussion in mind, we can now precisely
define the quantity of interest. The central focus of the
present work is to study the asymptotic value of the dis-
cussed game, which is exactly:

lim
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A, X). (6)

Discrete Pricing Game.
In order to analyze this game we will also consider a dis-

crete version, in which Nature selects some random sequence
Sn ∈ Sn

D,ζ instead of a full price path in X . The set of al-
gorithms An need not be redefined for this discrete game,
as we shall assume that on some input S an algorithm A
trades according to continuous price path X(Sn) obtained
by interpolating S, as defined in the previous section. For a
given Sn ∈ Sn

D,ζ , we abuse notation somewhat by defining

Ln(A, Sn) := Ln(A, X(Sn))



and

Ln(Sn) := Ln(X(Sn)) = E[g(Sn,n)].

This is perfectly natural since, in the continuous version, the
loss function can be computed by only looking at the points
X(0), X(1/n), . . . , X(n/n).

3. THE MAIN RESULT
We now state our main result and give the skeleton of

the proof, with the more challenging lemmas and detailed
calculations saved for the appendix. The proof has a num-
ber of interesting ingredients, from an application of Sion’s
minimax theorem (Lemma 1), a version of the “maximum
principle” for maximization of convex functions with random
inputs (Lemma 3), and a lower bound that requires analyz-
ing Gaussian tails (Lemma 5). But the heaviest lifting is
done in Theorem 2, which utilizes a key application of the
Lindeberg–Feller Theorem for martingale convergence.

Theorem 1. We have

lim
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A, X) = β,

where β = E[g(G(1))] is the Black-Scholes price.

Proof. For sufficiently large n ∈ N,

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A, X)

= sup
X∈Xn

C,ζ

inf
A∈An

Ln(A, X) by Lemma 1

≤ sup
Sn∈Sn

D,ζ

inf
A∈An

Ln(A, Sn) since Sn(Xn
C,ζ ) ⊆ Sn

D,ζ

= sup
Sn∈Sn

D,ζ,mg

Ln(Sn) by Lemma 2

= Ln(S∗
n) by Lemma 3

where S∗
n is an element of Sn

D∗,ζ,mg that achieves the
supSn

D,ζ,mg
(the existence of which is proven in Lemma 3).

By letting n → ∞ and using Lemma 4 we obtain

lim sup
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A, X) ≤ lim
n→∞

Ln(S∗
n) = β.

On the other hand, by Lemma 5 we also know that

β ≤ lim inf
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A, X).

Combining the two inequalities above gives us the desired
result.

We now proceed to establish the necessary lemmas for the
above proof. The first lemma states that we have minimax
duality for our game.

Lemma 1. For every n we have

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A, X) = sup
X∈Xn

C,ζ

inf
A∈An

Ln(A, X).

This lemma is proved in Appendix A, but it follows essen-
tially from the minimax theorem of Sion [12].

The second lemma states that the optimal strategy for
Nature is a martingale, and furthermore, that the strategy
of the investor does not matter.

Lemma 2.

sup
Sn∈Sn

D,ζ

inf
A∈An

Ln(A, Sn) = sup
Sn∈Sn

D,ζ,mg

Ln(Sn),

Proof. Defining Tn,m =
Sm,n

Sn,m−1
− 1, we can “unwind”

the game round-by-round:

sup
Sn∈Sn

D,ζ

inf
A∈An

Ln(A, Sn) =

sup
Tn,1

inf
∆1

E
Sn,1

"
−Tn,1∆1 + sup

Tn,2

inf
∆2

E
Sn,2

"
−Tn,2∆2

+ · · · + sup
Tn,n

inf
∆n

E
Sn,n

"
−Tn,n∆n + g(Sn,n)

#
· · ·
##

,

(7)

where for all m, ESn,m [ · ] should be read as ESn,m [ · |
Fn,m−1]. Suppose Sn was such that ESn,m [Tn,m | Fn,m−1] =
a 6= 0 for some m; then we see that

inf
∆m∈R

E
Sn,m

[−∆mTn,m | Fn,m−1] = inf
∆m∈R

−a∆m = −∞.

From (7), it now follows that infA∈An Ln(A, Sn) = −∞ for
such an Sn. Thus, to ensure Ln(A, Sn) > −∞, the adversary
must set E[Tn,m | Fn,m−1] = 0 for each m, meaning Sn must
be a martingale sequence by definition of Tn,m. Hence,

sup
Sn∈Sn

D,ζ

inf
A∈An

Ln(A, Sn) = sup
Sn∈Sn

D,ζ,mg

inf
A∈An

Ln(A, Sn).

Furthermore, since Sn is a martingale, we see from (7) that
the investor’s actions ∆m are irrelevant. In particular, we
can write

sup
Sn∈Sn

D,ζ,mg

inf
A∈An

Ln(A, Sn) = sup
Sn∈Sn

D,ζ,mg

Ln(Sn), (8)

which concludes the proof.

The third lemma states that the supremum of the objec-
tive function is achieved by a stochastic process with maxi-
mal variance.

Lemma 3. For sufficiently large n, there exists S∗
n ∈

Sn
D∗,ζ,mg such that

Ln(S∗
n) = sup

Sn∈Sn
D,ζ,mg

Ln(Sn).

The key to this lemma is that maximization of a convex
function always occurs at the boundary. The full proof is in
Appendix B.

We now show that the optimal strategy for Nature con-
verges to the geometric Brownian motion.

Theorem 2. For any sequence (S∗
n, n ∈ N) with S∗

n ∈
Sn

D∗,ζ,mg,

X(S∗
n)

d−→ G

where G is the geometric Brownian motion defined in (1).

Proof. For each n ∈ N and 0 ≤ m ≤ n define

Wn,m = log S∗
n,m +

cm

2n
,

and let Wn,(n·) ∈ C[0, 1] denote the linear interpolation of
the values (Wn,m, 0 ≤ m ≤ n). That is, for 0 ≤ t ≤ 1 of the



form t = (m + α)/n with 0 ≤ m ≤ n − 1 and 0 ≤ α ≤ 1, we
define

Wn,(nt) = (1 − α) Wn,m + α Wn,m+1 = log X(S∗
n)(t) +

ct

2
.

It suffices to show that Wn,(n·)
d−→ √

cB where B is the
standard Brownian motion, for then we would have

log X(S∗
n) =

„
Wn,(nt) −

ct

2
: t ∈ [0, 1]

«

d−→
„√

cB(t) − ct

2
: t ∈ [0, 1]

«
, (9)

and thus X(S∗
n)

d−→ G by the continuous mapping theorem.
Throughout, let Fn,m = σ(S∗

n,0, . . . , S
∗
n,m) and Tn,m =

S∗

n,m

S∗

n,m−1

−1. Let γn,0 = 0 and γn,m ∈ Fn,m−1 be a predictable

sequence such that Mn,m = Wn,m + γn,m is a martingale
sequence with respect to (Fn,m), and let γn,(n·), Mn,(n·) ∈
C[0, 1] be the linear interpolations of (γn,m) and (Mn,m),
respectively. Our approach is to show that

Mn,(n·)
d−→ √

cB and γn,(n·)
p−→ 0 (10)

where 0 is the zero function in C[0, 1]. By Slutsky’s theo-
rem [13, Theorems 18.10 and 18.11], these would imply the

desired result Wn,(n·) = Mn,(n·) − γn,(n·)
d−→ √

cB.

To show Mn,(n·)
d−→ √

cB we appeal to the Lindeberg–
Feller theorem for martingales [5, Theorem 7.3], and to show

γn,(n·)
p−→ 0 we use Taylor approximation to bound the

value of max1≤m≤n |γn,m|. The detailed proof is in Ap-
pendix C.

Furthermore, we also have the convergence of the payoff
values.

Lemma 4. For any sequence (S∗
n, n ∈ N) with S∗

n ∈
Sn

D∗,ζ,mg,

lim
n→∞

Ln(S∗
n) = β.

Proof. From Theorem 2 we know that X(S∗
n)

d−→ G, so
in particular, by looking at the value at t = 1 we also have

S∗
n,n

d−→ G(1). Given M > 0, set gM (x) = min(g(x), M).
Since gM is a bounded continuous function, the convergence

S∗
n,n

d−→ G(1) gives us

lim
n→∞

E[gM (S∗
n,n)] = E[gM (G(1))] for each M > 0.

Moreover, since gM ↑ g pointwise, by the monotone conver-
gence theorem we also know that

lim
M→∞

E[gM (G(1))] = E[g(G(1))].

We will show in Appendix D that

lim
M→∞

E[gM (S∗
n,n)] = E[g(S∗

n,n)] uniformly in n.

We can then interchange the order of the limit operations:

lim
n→∞

E[g(S∗
n,n)] = lim

n→∞
lim

M→∞
E[gM (S∗

n,n)]

= lim
M→∞

lim
n→∞

E[gM (S∗
n,n)]

= lim
M→∞

E[gM (G(1))]

= E[g(G(1))],

as desired.

The last lemma states that we have a matching lower
bound for the limit of the game value.

Lemma 5.

β ≤ lim
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A, X).

Proof. For each n ∈ N, we say that a stochastic process
X ∈ X satisfies the continuous ζn-constraint (CZCn) if

˛̨
˛̨ X(t)

X(m/n)
− 1

˛̨
˛̨ ≤ ζn

almost surely for all 0 ≤ m ≤ n−1 and m/n ≤ t ≤ (m+1)/n.
Note that if X satisfies CZCn, then it satisfies ZCn.

Define the stopping time τn to be the smallest time 0 ≤
t ≤ 1 at which the geometric Brownian motion G violates
CZCn, and set τn = 1 if no such time t exists. Consider
the stopped martingale Gn(t) = G(min{t, τn}), which itself
is a martingale with continuous path, and satisfies ZCn by
construction. Furthermore, it is easy to see that Gn satisfies
CVC because Gn has less fluctuation than G, which satisfies
CVC with equality. Now plugging in X = Gn ∈ Xn

C,ζ to the
game and using the fact that Sn(Gn) is a martingale, by (8)
we have

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A, X) ≥ inf
A∈An

Ln(A, Gn)

= Ln(Gn) = E[g(Gn(1))].

We now show that limn→∞ E[g(Gn(1))] = E[g(G(1))] = β,
which will give us the desired result:

lim inf
n→∞

inf
A∈An

sup
X∈Xn

C,ζ

Ln(A, X) ≥ lim
n→∞

E[g(Gn(1))] = β.

We claim that for sufficiently large n,

P(G satisfies CZCn) ≥
„

1 − 1

n2

«n

. (11)

We prove this claim in Appendix E. Furthermore, note that
since (G(t), 0 ≤ t ≤ 1) is a positive martingale, (G(t)2, 0 ≤
t ≤ 1) is a submartingale with respect to the same filtration,
and 0 ≤ τn ≤ 1 is also a stopping time for G2. Then by the
optional stopping theorem,

E[Gn(1)2] = E[G(τn)2] ≤ E[G(1)2] = ec.

Therefore, using the Lipschitz property of g and the Cauchy-
Schwarz inequality, we obtain
˛̨
E
ˆ
g(G(1))

˜
− E

ˆ
g(Gn(1))

˜˛̨

=
˛̨
E
ˆ
(g(G(1)) − g(Gn(1))) · 1{G violates CZCn}

˜˛̨

≤ L E
ˆ
|G(1) − Gn(1)| · 1{G violates CZCn}

˜

≤ L E[(G(1) − Gn(1))2]1/2
P(G violates CZCn)1/2

≤ L E[G(1)2 + Gn(1)2]1/2
P(G violates CZCn)1/2

≤ L (2ec)1/2

„
1 −

„
1 − 1

n2

«n«1/2

,

and hence |E[g(G(1))] − E[g(Gn(1))]| → 0 as n → ∞.

Finally, we note that from (11) we also have

P(G satisfies ZCn) ≥
„

1 − 1

n2

«n

→ 1 as n → ∞, (12)

as we claimed in Section 2.1.



4. REFERENCES
[1] J. Abernethy, A. Agarwal, P.L. Bartlett, and

A. Rakhlin. A stochastic view of optimal regret
through minimax duality. In COLT, 2009.

[2] F. Black and M. Scholes. The pricing of options and
corporate liabilities. The Journal of Political
Economy, 81(3):637–654, 1973.

[3] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning,
and Games. Cambridge University Press, 2006.

[4] P. DeMarzo, I. Kremer, and Y. Mansour. Online
trading algorithms and robust option pricing. In
STOC, pages 477–486, 2006.

[5] R. Durrett. Probability: Theory and Examples (Third
Edition). Cambridge University Press, 2004.

[6] Y. Freund and R.E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. In EuroCOLT, volume 904 of Lecture Notes
in Computer Science, pages 23–37. Springer, 1995.

[7] E. Gofer and Y. Mansour. Pricing exotic derivatives
using regret minimization. In SAGT, volume 6982 of
Lecture Notes in Computer Science, pages 266–277.
Springer, 2011.

[8] E. Gofer and Y. Mansour. Regret minimization
algorithms for pricing lookback options. In ALT,
volume 6925 of Lecture Notes in Computer Science,
pages 234–248. Springer, 2011.

[9] N. Littlestone and M.K. Warmuth. The weighted
majority algorithm. Information and Computation,
108(2):212–261, 1994.

[10] J. Von Neumann, O. Morgenstern, H.W. Kuhn, and
A. Rubinstein. Theory of Games and Economic
Behavior. Princeton University Press, 1947.

[11] G. Shafer and V. Vovk. Probability and Finance: It’s
Only a Game! Wiley-Interscience, 2001.

[12] M. Sion. On general minimax theorems. Pacific
Journal of Mathematics, 8(1):171–176, 1958.

[13] A.W. Van der Vaart. Asymptotic Statistics.
Cambridge University Press, 2000.

[14] V. Vovk. Pricing european options without
probability. Technical report, CLRC-TR-99-4,
Computer Learning Research Centre, Royal Holloway,
University of London, 1995.

APPENDIX

A. PROOF OF LEMMA 1
Once we write out the objective Ln(A, X) explicitly, we

see that the single inf sup can be broken down into a se-
quence of nested inf sup’s as follows. For 1 ≤ m ≤ n, let

Tn,m = X(m/n)
X((m−1)/n)

− 1. Then

inf
A∈An

sup
Sn∈Sn

D,ζ

Ln(A, Sn) =

inf
∆1

sup
Tn,1

E1

"
−Tn,1∆1 + inf

∆2

sup
Tn,2

E2

"
−Tn,2∆2 + · · ·

+ inf
∆n

sup
Tn,n

En

"
−Tn,n∆n + g

 
nY

m=1

(1 + Tn,m)

! #
· · ·
##

,

(13)

where Em should be interpreted to mean the expectation

conditioned on the filtration of the random path X up to
time (m − 1)/n.

We now recall a simplified version of Sion’s minimax the-
orem [12], a generalization of Von Neumann’s minimax the-
orem [10]. Assume we are given a compact convex set Λ and
a convex set Ω, each a subset of a linear topological space,
and we have a function f : Ω × Λ → R continuous in each
input, convex in the first input and concave in the second.
Then it holds that

inf
ω∈Ω

sup
λ∈Λ

f(ω, λ) = sup
λ∈Λ

inf
ω∈Ω

f(ω, λ).

This can be applied to each of the nested inf sup’s in (13) re-
cursively, where we substitute Ω = R and Λ = ∆([−ζn, ζn]),
the set of distributions on the interval which is compact
in the weak topology.1 The objective function of the m-th
nested inf sup is clearly linear in ∆m, and it is also linear in
the distribution on Tn,m as we are simply taking an expec-
tation over this distribution. We then have

inf
A∈An

sup
Sn∈Sn

D,ζ

Ln(A, Sn) =

sup
Tn,1

inf
∆1

E1

"
−Tn,1∆1 + sup

Tn,2

inf
∆2

E2

"
−Tn,2∆2 + · · ·

+ sup
Tn,n

inf
∆n

En

"
−Tn,n∆n + g

 
nY

m=1

(1 + Tn,m)

! #
· · ·
##

.

Of course, since we are considering ∆m as a function of the
history up to time (m− 1), Nature may as well solve for the
optimal randomized price path determined by Tn,1, . . . , Tn,n

in advance and announce this to the investor. Since ∆m does
not interact with any price fluctuations beyond the m-th
one, the choice of ∆m may as well be made with knowledge
of Tn,m+1, . . . , Tn,n. In other words, the sequence of sup’s
can be gathered together, and we obtain the desired result.

B. PROOF OF LEMMA 3
We assume without loss of generality that the filtration

(Fn,m) is fixed for the set Sn
D,ζ,mg . We see that the supre-

mum of Ln(Sn) over Sn ∈ Sn
D,ζ,mg is achieved since Sn

D,ζ,mg

is compact in the weak topology. Define

M(Sn) :=
n

m : E[T 2
n,m | Fn,m−1] < ec/n − 1

o
,

where Tn,m =
Sn,m

Sn,m−1
− 1. In other words, M(Sn) is set of

steps m where the constraint DVC is slack for Sn. Now let
bSn be an element of the argsup with the smallest |M(bSn)|.
We claim that M(bSn) is empty. Assume for a contradiction

that M(bSn) 6= ∅, and choose an element m∗ ∈ M(bSn).

We wish to construct S∗
n from bSn by modifying bTn,m∗ .

Note that since the filtration (Fn,m) is fixed, for each
m 6= m∗ the DVC, ZCn, and martingale constraints on
bTn,m are independent of the values of bTn,m∗ , so to ensure
S∗

n ∈ Sn
D,ζ,mg , we need only maintain the three constraints

for the modified bTn,m∗ .

For brevity let bT = bTn,m∗ . Set v∗ = ec/n − 1 and

v = E[ bT 2 | Fn,m∗−1]. Note that v < v∗ by assumption,
and for sufficiently large n, v∗ < ζ2

n by the definition of ζ.
Henceforth we will assume n is large enough for the latter

1Notice that the use of ZCn is critical here, as we wouldn’t
have compactness otherwise.



inequality. Let A be an independent event with P(A) = α,
where α := (v∗ − v)/(ζ2

n − v), and let Z be the random
variable which is ζn and −ζn each with probability 1/2. Fi-

nally, set T = bT1Ā + Z1A and define S∗
n by T ∗

n,m = bTn,m

for m 6= m∗ and T ∗
n,m∗ = T . Note that this T satisfies ZCn

and mg trivially, and satisfies DVC with equality:

E[T 2 | Fn,m∗−1] = (1 − α)E[bT 2 | Fn,m∗−1] + αζ2
n

= v + α(ζ2
n − v) = v∗.

Hence S∗
n ∈ Sn

D,ζ,mg , and in fact |M(S∗
n)| = |M(bSn)|−1. We

will show below that E[g(bSn,n)] ≤ E[g(S∗
n,n)], which means

S∗
n is also in the argsup, thus contradicting the minimality of

|M(bSn)|. Hence, for sufficiently large n, we can select some
S∗

n in the argsup such that M(S∗
n) = ∅, which completes the

proof.

We now show E[g(bSn,n)] ≤ E[g(S∗
n,n)]. Observe that

g
`Qn

m=1(1 + tm)
´

is convex in each tm (fixing the others).

Thus, we see that conditioned on { bTn,m | m 6= m∗},

f(t) = g

 
(1 + t)

Y

m6=m∗

(1 + bTn,m)

!
− at

is convex in t, where a is chosen such that f(ζn) = f(−ζn).
Now we have

E[f(T )] − E[f( bT )] = α
“

E[f(Z)] − E[f( bT )]
”

= α
“
f(ζn) − E[f( bT )]

”

≥ 0,

since f(t) ≤ f(ζn) for all t ∈ [−ζn, ζn] by the convexity of

f . Hence, denoting {bTn,m | m 6= m∗} by bTn,−m∗ , we have

E[g(bSn,n)] = E
ˆ
E[f( bT ) | bTn,−m∗ ]

˜

≤ E
ˆ
E[f(T ) | bTn,−m∗ ]

˜

= E[g(S∗
n,n)],

where we use the fact that the linear term aT in the defini-
tion of f does not change the expectation, as E[T ] = E[ bT ] =
0.

C. PROOF OF THEOREM 2
For simplicity we will write Sn in place of S∗

n. Note that
since Sn ∈ Sn

D∗,ζ,mg we know that for each n ∈ N and 1 ≤
m ≤ n, almost surely we have

E[Tn,m | Fn,m−1] = 0,

E[T 2
n,m | Fn,m−1] = ec/n − 1, and

|Tn,m| ≤ ζn.

(14)

Showing γn,(n·)
p−→ 0.

Observe that for each n ∈ N and 1 ≤ m ≤ n,

γn,m = −E[Wn,m − Wn,m−1 | Fn,m−1] + γn,m−1

= −E

»
log

„
Sn,m

Sn,m−1

« ˛̨
˛ Fn,m−1

–
− c

2n
+ γn,m−1

= −E [log (1 + Tn,m) | Fn,m−1] − c

2n
+ γn,m−1.

Now write

γn,m =
mX

k=1

(γn,k − γn,k−1)

= −
mX

k=1

“
E[log(1 + Tn,k) | Fn,k−1] +

c

2n

”
,

so by Lemma 6, for sufficiently large n and for all 1 ≤ m ≤ n,

|γn,m| ≤
mX

k=1

˛̨
˛E[log(1 + Tn,k) | Fn,k−1] +

c

2n

˛̨
˛

≤
mX

k=1

„
2c ζn

n
+

c2

n2

«
≤ 2c ζn +

c2

n
.

Thus, since γn,(n·) is a linear interpolation of (γn,m, 0 ≤ m ≤
n), for sufficiently large n we have

max
0≤t≤1

|γn,(nt)| = max
1≤m≤n

|γn,m| ≤ 2c ζn +
c2

n
→ 0 as n → ∞.

This shows that in fact γn,(n·) → 0 a.s.

Showing Mn,(n·)
d−→ √

cB.
For 1 ≤ m ≤ n let Yn,m be the martingale differences,

Yn,m = Mn,m − Mn,m−1

= Wn,m − Wn,m−1 − E[Wn,m − Wn,m−1 | Fn,m−1]

= log(1 + Tn,m) − E[log(1 + Tn,m) | Fn,m−1].

Let Vn,0 = 0 and for 1 ≤ m ≤ n, let Vn,m be the partial sum
of the conditional variances,

Vn,m =
mX

k=1

E[Y 2
n,k | Fn,k−1] =

mX

k=1

Var(log(1 + Tn,k) | Fn,k−1).

By the Lindeberg–Feller theorem for martingales [5, Theo-

rem 7.3], to prove Mn,(n·)
d−→ √

cB it suffices to show that

1. for all ε > 0,
Pn

m=1 E[Y 2
n,m1{|Yn,m| > ε} | Fn,m−1]

p−→
0, and

2. Vn,⌊nt⌋
p−→ ct for all 0 ≤ t ≤ 1.

The first condition is easy to satisfy using Lemma 6. Indeed,
given ε > 0, from Lemma 6 we see that for sufficiently large
n and for all 1 ≤ m ≤ n,

˛̨
E[log(1 + Tn,m) | Fn,m−1]

˛̨
≤ 2c ζn

n
+

c2

n2
≤ ε

2
a.s.

Moreover, from the assumption that |Tn,m| ≤ ζn → 0, for
sufficiently large n and for all 1 ≤ m ≤ n we also have

| log(1 + Tn,m)| ≤ ζn ≤ ε

2
a.s.

Thus for sufficiently large n and for all 1 ≤ m ≤ n, we have
almost surely,

|Yn,m| ≤ | log(1 + Tn,m)| +
˛̨
E[log(1 + Tn,m) | Fn,m−1]

˛̨
≤ ε,

which implies the asymptotic negligibility condition: for suf-
ficiently large n,

nX

m=1

E[Y 2
n,m 1{|Yn,m| > ε} | Fn,m−1] = 0 a.s.



For the second condition, let 0 ≤ t ≤ 1 be given. Then by
Lemma 8, for sufficiently large n we have
˛̨
Vn,⌊nt⌋ − ct

˛̨

=

˛̨
˛̨
˛̨
⌊nt⌋X

m=1

Var(log(1 + Tn,m) | Fn,m−1) − ct

˛̨
˛̨
˛̨

≤
⌊nt⌋X

m=1

˛̨
˛Var(log(1 + Tn,m) | Fn,m−1) − c

n

˛̨
˛+
˛̨
˛̨ c⌊nt⌋

n
− ct

˛̨
˛̨

≤
⌊nt⌋X

m=1

„
4c ζn

n
+

3c2

n2

«
+
“ c

n
(nt + 1) − ct

”

≤ 4c ζn +
3c2

n
+

c

n

→ 0 as n → ∞.

Thus Vn,⌊nt⌋ → ct a.s. for each 0 ≤ t ≤ 1.
To complete the proof of Theorem 2 we establish the fol-

lowing lemmas.

Lemma 6. For sufficiently large n and for all 1 ≤ m ≤ n,

˛̨
˛E [log(1 + Tn,m) | Fn,m−1] +

c

2n

˛̨
˛ ≤ 2c ζn

n
+

c2

n2
a.s.

Proof. Observe that for sufficiently large n, say n ≥ N ,
and for all 1 ≤ m ≤ n, the following inequalities hold:

ec/n − 1 ≤ 2c

n
, ec/n − 1 − c

n
≤ 2c2

n2
, and 3(1 − ζn) ≥ 1.

Throughout the rest of this proof, all inequalities hold for
n ≥ N and uniformly for all 1 ≤ m ≤ n.

By the second-order Taylor expansion (with remainder)
of the function x 7→ log(1 + x) around the point x = 0,

log(1 + Tn,m) − Tn,m +
1

2
T 2

n,m =
1

3(1 + ξn,m)3
T 3

n,m

where ξn,m is some value between 0 and Tn,m. Then, since
|Tn,m| ≤ ζn,
˛̨
˛̨
˛ log(1 + Tn,m) − Tn,m +

1

2
T 2

n,m

˛̨
˛̨
˛

=

˛̨
˛̨ 1

3(1 + ξn,m)3
T 3

n,m

˛̨
˛̨ ≤ |Tn,m|3

3(1 − ζn)3
≤ ζn T 2

n,m,

so we have

E

"˛̨
˛ log(1 + Tn,m) − Tn,m +

1

2
T 2

n,m

˛̨
˛
˛̨
˛̨
˛ Fn,m−1

#

≤ ζn E[T 2
n,m | Fn,m−1] = ζn

`
ec/n − 1

´
≤ 2c ζn

n
.

Now write

E
ˆ
log(1 + Tn,m) | Fn,m−1

˜
+

c

2n

= E

h
log(1 + Tn,m) − Tn,m +

1

2
T 2

n,m

˛̨
˛ Fn,m−1

i

− 1

2

“
ec/n − 1 − c

n

”
,

so by applying triangle inequality and using the results

above, we obtain
˛̨
˛E
ˆ
log(1 + Tn,m) | Fn,m−1

˜
+

c

2n

˛̨
˛

≤ E

"˛̨
˛ log(1 + Tn,m) − Tn,m +

1

2
T 2

n,m

˛̨
˛
˛̨
˛̨
˛ Fn,m−1

#

+
1

2

˛̨
˛̨
˛e

c/n − 1 − c

n

˛̨
˛̨
˛

≤ 2c ζn

n
+

c2

n2
,

as desired.

Lemma 7. For sufficiently large n and for all 1 ≤ m ≤ n,
˛̨
˛E
ˆ
log2(1 + Tn,m) | Fn,m−1

˜
− c

n

˛̨
˛ ≤ 4c ζn

n
+

2c2

n2
a.s.

Proof. We follow a similar argument as in the proof of
Lemma 6. Observe that since ζn → 0, for sufficiently large
n, say n ≥ N , the following inequalities hold:

ec/n − 1 ≤ 2c

n
, ec/n − 1 − c

n
≤ 2c2

n2
,

and
3 − 2 log(1 − ζn)

3(1 − ζn)3
≤ 2.

Throughout the rest of this proof, all inequalities hold for
n ≥ N and uniformly for all 1 ≤ m ≤ n.

Recall that from the second-order Taylor expansion of the
function x 7→ log2(1 + x) around the point x = 0,

log2(1 + Tn,m) − T 2
n,m =

„−3 + 2 log(1 + ξn,m)

3(1 + ξn,m)3

«
T 3

n,m

where ξn,m is some value between 0 and Tn,m. Then, since
|Tn,m| ≤ ζn, we have

˛̨
log2(1 + Tn,m) − T 2

n,m

˛̨
=

˛̨
˛̨
„−3 + 2 log(1 + ξn,m)

3(1 + ξn,m)3

«
T 3

n,m

˛̨
˛̨

≤ 3 − 2 log(1 − |Tn,m|)
3(1 − |Tn,m|)3 |Tn,m|3

≤ 3 − 2 log(1 − ζn)

3(1 − ζn)3
ζn T 2

n,m

≤ 2ζn T 2
n,m.

Therefore,

E

h˛̨
log2(1 + Tn,m) − T 2

n,m

˛̨ ˛̨
˛ Fn,m−1

i

≤ 2ζn E[T 2
n,m | Fn,m−1] = 2ζn

`
ec/n − 1

´
≤ 4c ζn

n
.

Combining the results above gives us
˛̨
˛E
ˆ
log2(1 + Tn,m) | Fn,m−1

˜
− c

n

˛̨
˛

=
˛̨
˛E
ˆ
log2(1 + Tn,m) − T 2

n,m | Fn,m−1

˜
+
“
ec/n − 1 − c

n

”˛̨
˛

≤ E

h˛̨
log2(1 + Tn,m) − T 2

n,m

˛̨ ˛̨
˛ Fn,m−1

i
+
˛̨
˛ec/n − 1 − c

n

˛̨
˛

≤ 4c ζn

n
+

2c2

n2
,

as desired.

Lemma 8. For sufficiently large n and for all 1 ≤ m ≤ n,
˛̨
˛Var(log(1 + Tn,m) | Fn,m−1) − c

n

˛̨
˛ ≤ 4c ζn

n
+

3c2

n2
a.s.



Proof. Writing

Var(log(1 + Tn,m) | Fn,m−1)

= E[log2(1 + Tn,m) | Fn,m−1] − E[log(1 + Tn,m) | Fn,m−1]
2,

we can bound
˛̨
˛Var(log(1 + Tn,m) | Fn,m−1) − c

n

˛̨
˛

≤
˛̨
˛E[log2(1 + Tn,m) | Fn,m−1] − c

n

˛̨
˛

+ E[log(1 + Tn,m) | Fn,m−1]
2.

For sufficiently large n and for all 1 ≤ m ≤ n, by Lemma 7
the first term above is at most 4c ζn/n + 2c2/n2, while by
Lemma 6 the first term above is at most

„
c

2n
+

2c ζn

n
+

c2

n2

«2

≤ c2

n2
.

Thus for sufficiently large n and for all 1 ≤ m ≤ n,

˛̨
˛Var(log(1 + Tn,m) | Fn,m−1) − c

n

˛̨
˛ ≤ 4c ζn

n
+

2c2

n2
+

c2

n2

=
4c ζn

n
+

3c2

n2
,

as desired.

D. PROOF OF LEMMA 4
In view of the proof sketch in Section 3, it suffices to show

that

lim
M→∞

E[gM (S∗
n,n)] = E[g(S∗

n,n)] uniformly in n.

For simplicity we will write Sn in place of S∗
n. Without

loss of generality we may assume g(0) = 0, so the Lipschitz
property of g tells us that g(x) ≤ Lx for all x ≥ 0.

Recall that since Sn is a martingale we have E[Sn,n] =
E[Sn,0] = 1 for all n ∈ N. We now show that for each n ∈ N,

E[S2
n,m] = ecm/n for all 0 ≤ m ≤ n. (15)

We proceed by induction on m, for each fixed n. The base
case m = 0 follows from the assumption that Sn,0 = 1. Now
assume the claim is true for some 0 ≤ m < n. For m + 1,
since Sn satisfies DVC with equality we have

E[(Sn,m+1 − Sn,m)2 | Fn,m] =
“
ec/n − 1

”
S2

n,m,

which, upon expanding, gives us

E[S2
n,m+1 | Fn,m]

= 2Sn,m E[Sn,m+1 | Fn,m] − S2
n,m +

“
ec/n − 1

”
S2

n,m

= ec/n S2
n,m.

Taking expectation on both sides and using the inductive
hypothesis, we obtain

E[S2
n,m+1] = ec/n

E[S2
n,m] = ec(m+1)/n,

which proves (15). In particular, by plugging in m = n
to (15) we see that E[S2

n,n] = ec for all n ∈ N.

Now fix 1 ≤ n < ∞. By the Cauchy-Schwarz inequality,
for M > 0 we have

˛̨
E[g(Sn,n)] − E[gM (Sn,n)]

˛̨

= E[(g(Sn,n) − M) · 1{g(Sn,n) > M}]
≤ E[g(Sn,n) · 1{g(Sn,n) > M}]
≤ E[g(Sn,n)2]1/2

P(g(Sn,n) > M)1/2

For the first factor, since g(Sn,n) ≤ LSn,n we have that
E[g(Sn,n)2] ≤ L2

E[S2
n,n] = L2ec. Similarly, for the second

factor, by Markov inequality we have

P(g(Sn,n) > M) ≤ P(Sn,n > M/L) ≤ E[Sn,n]

M/L
=

L

M
.

Therefore,

˛̨
E[g(Sn,n)] − E[gM (Sn,n)]

˛̨
≤
„

L3 ec

M

«1/2

,

and since the bound is independent of n, this shows that
limM→∞ E[gM (Sn,n)] = E[g(Sn,n)] uniformly in n, as de-
sired.

E. PROOF OF LEMMA 5
Recall that G(t) = exp(

√
cB(t) − ct/2) where B is the

standard Brownian motion. By the stationary independent
increments property of B, for each 0 ≤ m ≤ n − 1 and
0 ≤ s ≤ 1/n,

Zm(s) :=
G(m

n
+ s)

G(m
n

)

= exp
“√

cB
“m

n
+ s
”
−√

cB
“m

n

”
− cs

2

”

d
= exp

“√
cB(s) − cs

2

”
,

and the sub-processes Z0, Z1, . . . , Zn−1 are independent.
Thus,

P(G satisfies CZCn)

= P

„
max

0≤m≤n−1
max

0≤s≤1/n
|Zm(s) − 1| ≤ ζn

«

= P

„
max

0≤s≤1/n

˛̨
˛exp

“√
cB(s) − cs

2

”
− 1
˛̨
˛ ≤ ζn

«n

= P

„
a(s) ≤ B(s) ≤ b(s) for 0 ≤ s ≤ 1

n

«n

.

(16)

where a(s) = 1
2
s
√

c + 1√
c
log(1 − ζn) and b(s) = 1

2
s
√

c +
1√
c
log(1 + ζn).

Note that from the assumptions ζn → 0 and
lim infn→∞ nζ2

n/ log n > 24c we can choose n large enough,
say n ≥ N , such that the following inequalities hold:

log(1 + ζn) ≥ ζn

2
,

r
n

c
ζn ≥

r
c

n
,

√
n ζn

4
√

c
≥
r

2

π
, and

nζ2
n

log n
≥ 16c.

Throughout the remainder of this proof we suppose n ≥ N .
Then for all 0 ≤ s ≤ 1/n we have

a(s) ≤
√

c

2n
− ζn√

c
≤ − ζn

2
√

c



and

b(s) ≥ 1√
c

log(1 + ζn) ≥ ζn

2
√

c
.

Let θ(a) denote the first passage time θ(a) = inf{t ≥
0: B(t) = a}, and let Z ∼ N (0, 1). By the reflection princi-
ple [5, p. 391] and standard Gaussian tail bound [5, Theo-
rem 1.4],

P

„
θ
“ ζn

2
√

c

”
<

1

n

«
= 2P

„
B
“ 1

n

”
≥ ζn

2
√

c

«

= 2P

„
Z ≥

√
nζn

2
√

c

«

≤ 2
1√
2π

2
√

c√
n ζn

exp

„
−nζ2

n

8c

«

≤ 1

2
exp(−2 log n)

=
1

2n2
.

Therefore,

P

„
a(s) ≤ B(s) ≤ b(s) for 0 ≤ s ≤ 1

n

«

≥ P

„
|B(s)| <

ζn

2
√

c
for 0 ≤ s ≤ 1

n

«

= P

„
θ
“ ζn

2
√

c

”
≥ 1

n
, θ
“
− ζn

2
√

c

”
≥ 1

n

«

≥ P

„
θ
“ ζn

2
√

c

”
≥ 1

n

«
+ P

„
θ
“
− ζn

2
√

c

”
≥ 1

n

«
− 1

≥ 1 − 1

n2
,

where in the last step above we have used the fact that

θ(a)
d
= θ(−a). Plugging this bound to (16) gives us the

desired result:

P(G satisfies CZCn) ≥
„

1 − 1

n2

«n

.


