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Efficient Automation of Index Pairs in Computational Conley Index Theory∗
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Abstract. We present new methods of automating the construction of index pairs, essential ingredients of
discrete Conley index theory. These new algorithms are further steps in the direction of automating
computer-assisted proofs of semiconjugacies from a map on a manifold to a subshift of finite type.
We apply these new algorithms to the standard map at different values of the perturbative parameter
ε and obtain rigorous lower bounds for its topological entropy for ε ∈ [.7, 2].
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1. Introduction. The literature on computer-assisted proofs in dynamical systems
through topological methods involves, for the most part, the investigation of the mapping
properties of certain compact sets which go under different names in different settings: they
are called index pairs in Conley index theory and windows or h-sets in the theory of correctly
aligned windows or covering relations [25], which are the two leading theories applied in topo-
logical, computer-assisted proofs in dynamical systems. An index pair is not necessarily an
h-set and vice-versa, but they both satisfy the crucial property that they map across them-
selves in a way similar to the way Smale’s horseshoe maps across itself. In other words, they
agree in some sense with the expanding and contracting directions of the map, and thus they
can be thought of as slight generalizations of Markov partitions. Not surprisingly, after several
conditions are met in each setting, one is able to prove a semiconjugacy to symbolic dynamics,
giving a good description of the dynamics of a large set of the orbits of a dynamical system,
much like one can give a good description of the dynamics of Smale’s horseshoe via the easily
describable dynamics of the full 2-shift. Given an index pair, an automated procedure was
described in [5] to prove a semiconjugacy to a subshift of finite type (SFT).

The first major push toward automated validation and automated computer-assisted
proofs using topological methods can be found in [7]. By validation we mean a mechanism
which upholds the claim of a theorem in a rigorous way by means of finitely many calculations
on a computer. Built on those and other results, [5] achieved the complete automation of the
validation part of a computer-assisted proof. In this paper we address the issue of automating
the creation of index pairs in a computationally efficient way.

There are many reasons why automated proof techniques such as [5] are advantageous. For
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example, for parameter-dependent systems, automation allows for the rigorous exploration of
a system at many parameters. Such applications of [5] have already been carried out in [10].
Besides exploration at different values of parameters, automated methods may permit us
to construct index pairs where it would be otherwise impossible to do so by hand. In [5]
computer-assisted proofs were given of a semiconjugacy from the classical Hénon map to an
SFT with 247 symbols. These proofs were completely automated; that is, besides an input of
initial parameters, there was no human intervention from start to finish in the computation
which proved the semiconjugacy and bounded the topological entropy.

It should be noted that the complete automation described in the previous paragraph is
remarkable. To prove a semiconjugacy using topological methods on a computer the following
steps must be taken:

1. Locate and identify the relevant invariant objects;
2. construct a compact set K (referred to above; in our case the index pair) whose

components map onto each other in a way which is compatible with the dynamics of the
system;

3. prove that some of the dynamics of the system can be described via the mapping
properties between the components of K.
Each of these steps presents its own challenges and difficulties. In [5, section 3.2] step 3 was
completely solved in the sense that given any compact set (index pair) K which satisfies the
properties required by 2, a completely automated routine was given to prove a semiconjugacy.
Steps 1 and 2, the creation of the index pair, were also fully automated in [5, section 3.1]
(and [10]), largely due to the properties of “well-behaved” maps like the Hénon map: it has
a low-dimensional attractor and all its periodic orbits exhibit hyperbolic-like behavior from
a computational perspective. In other words, in such cases there is a dominating invariant
set, namely, the attractor whose periodic orbits all seem hyperbolic and are easily localizable.
Thus, it is of interest to consider the case where we do not have such underlying structure.
Quoting directly from [5, section 5]: “... further analysis and optimization of the procedure
described in section 3.1 for locating a region of interest should lead to even stronger results.”

This article is an effort to extend the methods and techniques presented in [5] to more
general situations with the aim of dealing with systems which do not exhibit Hénon-like
behavior. As an illustration of the approach we propose, we apply our method to the standard
map

fε : (x, y) �→
(
x+ y +

ε

2π
sin(2πx) mod 1, y +

ε

2π
sin(2πx) mod 1

)

for (x, y) ∈ S1×S1 = T
1, at different values of the perturbation parameter ε. By treating the

perturbation parameter as an interval, we are also able to give a description of the orbits of
the map in terms of symbolic dynamics for all perturbation values inside the given interval.
We chose the standard map for a couple of reasons. First, it is a very well-known system with
rich dynamics. Second, in contrast with previous results for Hénon-like systems (e.g., [5, 10]),
the standard map is a volume-preserving map which exhibits both hyperbolic and elliptic
behavior, which makes the task of automating the construction of index pairs considerably
more difficult. Finally, we generalize the methods of [5] to work on manifolds with nontrivial
topologies and not just Rn, and our application to the standard map exemplifies this.

In the present constructions, we benefit much from some a priori information of the map.



84 RAFAEL FRONGILLO AND RODRIGO TREVIÑO

The distinction between a hyperbolic and an elliptic periodic orbit, for example, is a crucial
one. Symmetries of the map and the knowledge of the precise location of any heteroclinic or
homoclinic orbits are also valuable data from which to begin. In our view, a little previous
knowledge goes a long way, as we exploit this a priori information to make the constructions
highly efficient while keeping the entire process highly automated.

We mention that besides [5] there have been other recent efforts toward the automation
of computer-assisted proofs in dynamical systems. In particular, [18] is a collection of set-
oriented algorithms for the creation of index pairs adapted for volume-preserving maps. In
addition, [2, 3] use the method of covering relations after reducing the problem of finding
suitable sets and maps between sets to a problem of global optimization theory.

In contrast to other Conley index methods [5, 18] which are top-down in that they start
with a large portion of the phase space and try to narrow down to the invariant objects, our
method is bottom-up in that we are guided by the dynamics of the system as we “grow out”
the index pairs given good numerical approximations of the invariant sets (see Algorithms 2
and 3). It is worth noting the difference between our approach and that of [14]. The algo-
rithms from [14] do “grow out” in a certain sense, and in fact one of them, restated here as
Algorithm 1, is the inspiration for Algorithm 3. However, the algorithms of [14] require one
to first compute all images of a discretized version of the map (see section 2.3) and for this
reason have been used only in top-down approaches as of yet. In contrast, our focus here is
precisely on minimizing the number of these image computations needed, as this is often the
most expensive part of computations. Algorithms 2 and 3 accomplish this, thus achieving
high efficiency in the automation of the construction of an index pair.

The present work has been motivated by the challenges brought by the standard map to
the task of automating the construction of index pairs and by what we expect will be obstacles
for construction of index pairs in future applications. The techniques of this paper along with
those of [5] and the references therein provide a solid set of tools for automating computer-
assisted proofs in the paradigm of planar maps with positive entropy through discrete Conley
index theory. These methods are technically not restricted to dimension 2 but remain mostly
untested in higher dimensional examples with higher dimensional unstable bundles. To the
best of the authors’ knowledge, there is an example in [6] with a two dimensional unstable
bundle, but there are no others in the existing computational Conley index literature. Having
focused on making the construction of index pairs highly efficient in this paper, it remains to
apply them to such higher dimensional examples, which we plan to do in future work.

To the best of the authors’ knowledge, the rigorous bounds presented here on the topolog-
ical entropy for the standard map are the only ones of their kind in the literature. We could
find only [24] for computational lower bounds of the topological entropy for the standard map
at various parameter values. The approach of [24] is via the trellis method and the braids
method, which requires the location of homoclinic tangencies. These tangencies were located
at finitely many values in the interval of parameters studied. In contrast, in this paper we
give results for entire intervals of the parameters (Theorem 4.1). Moreover, the approach in
[24] is nonautomated, is restricted to the study of two dimensional maps, and yields nonrig-
orous results, whereas the methods in this paper have none of these restrictions. Approaches
requiring the use of homoclinic tangencies such as [24] are hard to execute for low parameter
values of the standard map such as the ones studied in this paper (e.g., Theorem 4.2) since the
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stable and unstable manifolds are very close and make locating homoclinic tangencies a much
more difficult task. It would be interesting to see how other rigorous topological methods (for
example, [25, 20]) perform for the same values we have examined in this paper.

This paper is organized as follows: in section 2 we review the necessary background for
the subsequent sections. Section 3 details the data structures we use in our algorithms as well
as presents the two new algorithms which we consider as the main contribution of this work,
Algorithms 2 and 3. We apply these algorithms in section 4 to the standard map to give
lower bounds for the topological entropy at different values of the perturbative parameter.
Theorem 4.1 gives lower bounds of the topological entropy of the standard map as given by
topological entropy of SFTs for all fε with ε ∈ [0.7, 2.0]. Theorem 4.2 gives a positive lower
bound for the topological entropy for ε = 1

2 . Theorems 4.3 and 4.4 give a positive lower bound
for the topological entropy for ε = 2 by finding connecting orbits to hyperbolic periodic orbits
of higher period. We conclude with some comments and remarks on the implementation in
section 4.4.

2. Background. We review in this section the necessary facts about topological entropy,
symbolic dynamics, and the discrete Conley index which will be relevant in the later sections.
Although the exposition will not be in depth, we encourage the interested reader to consult
section 2 of [5] for a more detailed exposition. For deeper treatment of the discrete Conley
index, see [19].

2.1. Topological entropy and symbolic dynamics. Let f : X → X be a map. The
topological entropy of f is the quantity h(f) ∈ R ∪ {∞}, which is a good measure of the
complexity of f . A map with positive topological entropy usually exhibits chaotic behavior
in many of its trajectories.

Definition 2.1. Let f : X → X be a continuous map. A set W ⊂ X is called (n, ε)-
separated for f if for any two different points x, y ∈W , ‖fk(x)− fk(y)‖ > ε for some k with
0 ≤ k < n. Let s(n, ε) be the maximum cardinality of any (n, ε)-separated set. Then

h(f) = sup
ε>0

lim sup
n→∞

log s(n, ε)

n

is the topological entropy of f .
Although it is always well defined, it is usually impossible to compute the topological

entropy directly from the definition. The set of systems for which it is computable is rather
small, but it contains all one dimensional SFTs.

Let ΣN = {0, . . . , N − 1}Z be the set of all bi-infinite sequences on N symbols. It is well
known that ΣN is a complete metric space. Define the full N -shift σ : ΣN → ΣN to be the
map acting on ΣN by (σ(x))i = xi+1. Given an N ×N matrix A with Ai,j ∈ {0, 1}, we can
define an SFT defined on ΣA ⊂ ΣN , where x ∈ ΣA if and only if for x = (. . . , xi, xi+1, . . . ),
Axi,xi+1 = 1 for all i. In other words, ΣA consists of all sequences in ΣN with transitions of σ
allowed by A. Viewed as a graph with N vertices and with an edge from vertex i to vertex j
if and only if Ai,j = 1, ΣA can be identified with the set of all infinite paths in such graph.

The topological entropy of an SFT is computed through the largest eigenvalue of its
transition matrix A.
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Theorem 2.2. Let σ : ΣA → ΣA be an SFT. Then its topological entropy is

h(σ) = log sp(A),

where sp(A) denotes the spectral radius of A.
In order to study a map f of high complexity, it is sometimes possible to study a subsystem

of it through symbolic dynamics. This is done through a semiconjugacy.
Definition 2.3. Let f : X → X and g : Y → Y be continuous maps. A semiconjugacy from

f to g is a continuous surjection h : X → Y with h ◦ f = g ◦ h. We say f is semiconjugate to
g if there exists a semiconjugacy.

Note that through a semiconjugacy h : X → Y , information about g acting on Y gives
information about f acting on x. In particular, the topological entropy of g bounds from
below the topological entropy of f .

Theorem 2.4. Let f be semiconjugate to g. Then h(f) ≥ h(g).
Corollary 2.5. Let f be semiconjugate to σ : ΣA → ΣA for some N ×N matrix A. Then

h(f) ≥ sp(A).

2.2. The discrete Conley index. Let f : M → M be a continuous map, where M is a
smooth, orientable manifold.

Definition 2.6. A compact set K ⊂M is an isolating neighborhood if

Inv(K, f) ⊂ Int(K),

where Inv(K, f) denotes the maximal invariant set of K and Int(K) denotes the interior of
K. S is an isolated invariant set if S = Inv(K, f) for some isolating neighborhood K.

Definition 2.7 (see [21]). Let S be an isolated invariant set for f . Then P = (P1, P0) is an
index pair for S if the following hold:

1. P1\P0 is an isolating neighborhood for S.
2. The induced map

fP (x) =

{
f(x) if x, f(x) ∈ P1\P0,
[P0] otherwise

defined on the pointed space (P1\P0, [P0]) is continuous.
Definition 2.8 (see [23]). Let G,H be abelian groups and ϕ : G → G, ψ : H → H homo-

morphisms. Then ϕ and ψ are shift equivalent if there exist homomorphisms r : G→ H and
s : H → G and a constant k ∈ N such that

r ◦ ϕ = ψ ◦ r, s ◦ ψ = ϕ ◦ s, r ◦ s = ψk, and s ◦ r = ϕk.

Shift equivalence defines an equivalence relation, and we denote by [ϕ]s the class of all
homomorphisms which are shift equivalent to ϕ.

Definition 2.9 (see [9]). Let P = (P1, P0) be an index pair for an isolated invariant set
S = Inv(P1\P0, f), and let fP∗ : H∗(P1, P0;Z) → H∗(P1, P0;Z) be the map induced by fP on
the relative homology groups H∗(P1, P0;Z). The Conley index of S is the shift equivalence
class [fP∗]s of fP∗.
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One can think of two maps fP∗ and gP̄∗ as being in the same shift equivalence class if and
only if they have the same asymptotic behavior. Since an index pair for an isolated invariant
set is not unique; the Conley index of an isolated invariant set does not depend on the choice
of index pair. There are two elementary yet important results which link the Conley index
of an isolated invariant set with the dynamics of f . The first one is the so-called Ważewski
property.

Theorem 2.10. If [fP∗]s �= [0]s, then S �= ∅.
Since similar asymptotic behavior relates two different maps in the same shift equivalence

class, it is sufficient then to have a map fP∗ not be nilpotent in order to have a nonempty
isolated invariant set. In practice, nonnilpotency can be verified by taking iterates of a rep-
resentative of [fP∗]s until nonnilpotent behavior is detected. We also have an elementary
detection method of periodic points.

Theorem 2.11 (Lefschetz fixed point theorem). Let f∗ be a representative of [fP∗]s with
maps fk : Hk(P1, P0;Z) → Hk(P1, P0;Z), which are represented by matrices. Then if

Λ(f∗) =
∑
k≥0

(−1)k tr fk �= 0,

then f has a fixed point. Moreover, if Λ(fn∗ ) �= 0, then f has a periodic point of period n.
Since traces are preserved under shift equivalence, Λ(f∗) is independent of the represen-

tative of [fP∗]s, and we may even denote it as Λ([fP∗]s).
Corollary 2.12. Let K ⊂ M be the finite union of disjoint, compact sets K1, . . . ,Km, and

let S = Inv(K, f). Let S′ = Inv(K1, fKm ◦ · · · ◦ fK1) ⊂ S, where fKi denotes the restriction of
f to Ki. If

Λ([fKm ◦ · · · ◦ fK1 ]s) �= 0,

then fKm ◦ · · · ◦ fK1 contains a fixed point in S′ which corresponds to a periodic orbit of f
which travels through K1, . . . ,Km in such order.

This is a strong and useful tool for proving the existence of periodic orbits. However, we
may have Λ([fKm ◦ · · · ◦ fK1 ]s) = 0 while (fKm ◦ · · · ◦ fK1)∗ is not nilpotent and thus have an
invariant set which may be of interest since it behaves like a periodic orbit. So we have an
analogous result based on the Ważewski property.

Corollary 2.13. Let K ⊂ M be the finite union of disjoint, compact sets K1, . . . ,Km, and
let S = Inv(K, f). Let S′ = Inv(K1, fKm ◦ · · · ◦ fK1) ⊂ S, where fKi denotes the restriction of
f to Ki. If

[(fKm ◦ · · · ◦ fK1)∗]s �= [0]s,

then S′ is nonempty. Moreover, there is a point in S whose trajectory visits the sets Ki in
such order.

Both corollaries can be useful in different settings when used to to prove symbolic dynamics
through computer-assistance. When existence of periodic points is of primary concern, one
can use Corollary 2.12. When existence of trajectories which shadow a certain prescribed
path is given by a symbol sequence, but does not necessarily correspond to periodic orbits,
Corollary 2.13 is the better tool. This may occur when there are higher-dimensional invariant
sets to which the restriction of the dynamics is quasi-periodic. In either case, what makes
the implementation possible are the ease of computability of the traces of the induced maps
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on homology for Corollary 2.12 and a sufficient condition for nonnilpotency in the case of
Corollary 2.13. For more details on the implementation, see [5].

2.3. Combinatorial structures. All concepts from the discrete Conley index theory from
the previous section have analogous definitions in a combinatorial setting for which computer
algorithms can be written.

Definition 2.14. A multivalued map F : X ⇒ X is a map from X to its power set, that
is, F (x) ⊂ X. If for some continuous, single-valued map f we have f(x) ∈ F (x) and F is
acyclic, then F is an enclosure of f .

The reason multivalued maps and enclosures are used in our computations is that if they
are done properly, they give rigorous results. Moreover, if F is an enclosure of f and (P0, P1)
is an index pair for F (as we will define below), then it is an index pair for f . It also follows
that if we can compute the Conley index of F and process the information encoded in it, we
may obtain information about the dynamics of f .

We begin by setting up a grid G on M , which is a compact subset of the n dimensional
manifold M composed of finitely many elements Bi. Each element is a cubical complex, hence
a compact set, and it is essentially an element of a finite partition of a compact subset ofM . In
practice, all elements of the grid are rectangles represented as products of intervals (viewed in
some nice coordinate chart); that is, for Bi ∈ G, Bi =

∏n
k=1[x

i
k, y

i
k]. We refer to each element

of G as a box, and each box is defined by its center and radius; i.e., Bi = (ci, ri), where ci
and ri are n-vectors with entries corresponding to the center and radius, respectively, in each
coordinate direction. In practice we have ri the same for all boxes in G, but this is in no way
necessary, and there may be systems for which variable radii for boxes provide a significant
advantage. For a collection of boxes K ⊂ G, we denote by |K| its topological realization, that
is, its corresponding subset of M . From now on we will use calligraphy capital letters to
denote collections of boxes in G, and by regular capital letters we will denote their topological
realization, e.g., |Bi| = Bi.

The way we create a grid is as follows. We begin with with one big box B such that |B|
encloses the area we wish to study. Then we subdivide B d times in each coordinate direction
in order to increase the resolution at which the dynamics are studied. The integer d will be
referred to as the depth. Thus working at depth d gives us a maximum of 2dn (n = dimM)
boxes with which to work, each of coordinate of size 2−d relative to the original size of the
box B.

Definition 2.15. A combinatorial enclosure of f is a multivalued map F : G ⇒ G defined
by

F(B) = {B′ ∈ G : |B′| ∩ F (B) �= ∅},

where F is an enclosure of f .
In practice, combinatorial enclosures are created as follows. One begins with B ∈ G and

defines F (x), x ∈ B = |B|, as the image of B using a rigorous enclosure for the map f .
Rigorous enclosures are obtained by keeping track of the error terms in the computations of
the image of a box and making sure the true image f(B) is contained in |F(B)|. In this paper,
all rigorous enclosures will be obtained with the use of interval arithmetic using Intlab [22].
Note that |F| becomes an enclosure of f . F : G ⇒ G can also be represented as a matrix T
with entries in {0, 1} with Ti,j = 1 if and only if Bj ∈ F(Bi). Moreover, T can be viewed as
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a directed graph with vertices corresponding to individual boxes in G and edges going from
box i to box j if and only if Ti,j = 1.

Definition 2.16. A combinatorial trajectory of a combinatorial enclosure F through B ∈ G
is a bi-infinite sequence γG = (. . . ,B−1,B0,B1, . . . ) with B0 = B, Bn ∈ G, and Bn+1 ∈ F(Bn)
for all n ∈ Z.

The definitions which follow are by now standard in the computational Conley index
literature. We will state definitions and refer the reader to [5] for the algorithms which
construct the objects defined.

Definition 2.17. The combinatorial invariant set in N ⊂ G for a combinatorial enclosure
F is

Inv(N ,F) = {B ∈ G : there exists a trajectory γG ⊂ N}.

Definition 2.18. The combinatorial neighborhood or one-box neighborhood of B ⊂ G is

o(B) = {B′ ∈ G : |B′| ∩ |B| �= ∅}.

Definition 2.19. If o(Inv(N ,F)) ⊂ N , then N ⊂ G is a combinatorial isolating neighbor-
hood for F .

A procedure for creating a combinatorial isolating neighborhood is discussed in section
3 and is given by Algorithm 1. Once we have a combinatorial isolating neighborhood, it is
possible to define and create a combinatorial index pair.

Definition 2.20. A pair P = (P1,P0) ⊂ G is a combinatorial index pair for the combina-
torial enclosure F if its topological realization Pi = |Pi| is an index pair for any map f for
which F is an enclosure.

One of the main goals of this paper is a procedure to efficiently compute combinatorial
index pairs. This is the content of the next section. We now have made all definitions necessary
to define the Conley index. Computing the induced map on homology at the combinatorial
level is no trivial task. We refer the enthusiastic reader to [16] for a very thorough exposition
on computing induced maps on homology. In practice, we use the computational package
homcubes, part of the computational package CHomP [1], which computes the necessary
maps on homology to define the Conley index.

3. Automated symbolic dynamics. The results of [5] show that it is possible to create
an automated procedure to rigorously prove a semiconjugacy from a map f : M → M to a
subshift ΣA. The procedure detailed in [5] can be summarized as follows:

1. Start with a rectangle in R
n and obtain a grid of boxes of constant radius by parti-

tioning it in each coordinate direction d times for some fixed d.
2. Compute the combinatorial enclosure F of f in a neighborhood of the area of interest

given by the interval arithmetic images of boxes in the grid. For some fixed k, create a
collection Pk ⊂ G of boxes which are periodic of period n ≤ k under F by finding nonzero
entries of the diagonal of T n.

3. Using shortest path algorithms, and denoting by Dij any shortest path between Bi ∈
Pk and Bj ∈ Pk in G (if there is no such path, Dij = ∅), create a collection A ⊂ G by
A = Pk ∪

(⋃
i �=j Dij

)
. Using the appropriate algorithms, create a combinatorial isolating

neighborhood for A, a combinatorial index pair, and compute its Conley index [fP∗]s.
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4. Working with a representative of [fP∗]s as matrices (one for each level of homology)
over the integers, we filter out all the nilpotent behavior and find a smaller representative
which exhibits only recurrent behavior.

5. We study [fP∗]s by its action on the generators of H1(P1, P0;Z) grouped by disjoint
components of P1\P0, and using Corollary 2.13 we perform a finite number of calculations to
prove a semiconjugacy from f to ΣA, where A is an m×m matrix, and m is a number less
than or equal to the number of disjoint components of P1\P0.
This method was applied to the Hénon map, and a semiconjugacy to a subshift on 247 symbols
was proved, which gave a rigorous lower bound on the topological entropy.

We make a few remarks about the approach. First, although all periodic orbits of the
Hénon map exhibit hyperbolic behavior, this is not true in all systems. In Hamiltonian
systems, for example, one expects roughly half of the periodic orbits to be isolated invariant
sets. Thus looking at the diagonal of T n is not enough to capture orbits which will give us
isolated invariant sets and a nontrivial Conley index. Another issue which arises in practice is
the computational complexity of the algorithms to prove a semiconjugacy to a subshift. The
complexity increases exponentially with the dimension of the system, and if we have any hope
of getting results in systems of dimension higher than 2, we must perform the computations
as efficiently as possible.

With this in mind, we view the entire process of proving a semiconjugacy as the compo-
sition of two major steps:

1. The gathering of recurrent, isolated invariant sets. This can be done through a com-
bination of nonrigorous numerical methods, graph algorithms, set-oriented methods,
linear algebra operations, etc.

2. A proof that this behavior in fact exists through a semiconjugacy to a subshift.
We point out that the second step is solved in [5]. That is, given as input an index pair

(P0, P1) and the combinatorial enclosure F of f used to create it, proving semiconjugacy from
f to a subshift is completely automated. The first step is also largely dealt with, but the
approach is not as general as it can be, as it was devised to deal with maps like the Hénon
map where isolation is easy. We wish to consider cases where one cannot simply compute the
map on all boxes in the area of interest, either because the dimension of the attractor is too
high or because one needs a very high box resolution to achieve isolation. Whereas [5] focused
on 2, here we focus on 1 and on how to produce index pairs more efficiently. In settings where
isolation is difficult, our methods in this paper to efficiently deal with 1 and the solution in [5]
of 2 constitute a better method to prove semiconjugacies to an SFT.

We provide an efficient method of computing an index pair in step 1 when one knows
roughly what to look for. In essence, we believe that a small amount of a priori knowledge goes
a long way. In other words, we can simplify and make computations much more efficient if we
know something about the dynamics beforehand, such as the location of periodic, heteroclinic,
and homoclinic orbits and special symmetries of the system. We will illustrate this approach
with examples in section 4.

More precisely, we take as input a list of periodic points and pairs of points which might
have connecting orbits between them, and we produce an index pair containing all of the
points and connections if possible. For example, if one had numerical approximations of two
fixed points and conjectured that there was a connecting orbit between them, our algorithms
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could potentially prove the existence of the connection.
We break the task of finding an index pair into two steps. The first is to approximate

numerically the invariant objects whose existence we want to prove, and the second is to cover
such an approximation with boxes and add boxes until the index pair conditions are satisfied.
Before describing these steps, however, we introduce our underlying data structures.

3.1. Data structures. The algorithms we present rely on some basic data structures to
encode the topology of the phase space and the behavior of the map. We require two routines
to keep track of the topology: finding the box corresponding to a particular point in the phase
space (to compute the multivalued map on boxes) and determining which boxes are adjacent
(to determine isolation). We then of course need a method of storing the multivalued map
itself.

To accomplish all of this, we consider a subset S of our grid and enumerate the boxes in S,
giving each a unique integer. We then store the position information in a binary search tree,
which we simply call the tree, so that the index i for the box bi covering a given point x in the
phase space (i.e., x ∈ |bi|) may be computed efficiently. We use the GAIO implementation for
our basic tree data structure [8] only and make use of some enhancements discussed below.
To encode the topology, we store the adjacency information in a (symmetric) binary matrix
Adj, where Adj ij = Adj ji = 1 if and only if boxes bi and bj are adjacent. More precisely,
Adj ij = 1 if and only if |bi| ∩ |bj | �= ∅. We will call this matrix the adjacency matrix. This
is a crucial component when working on spaces with nontrivial topology such as the torus, as
we will see in section 4. Finally, we store the multivalued map as a transition matrix P such
that Pji = 1 if and only if bj ∈ F(bi).

Below are the operations of the tree data structure:
1. S = boxnums() – Return a list of all box numbers in the tree.
2. S = find(C) – Return the indices S of boxes covering any x ∈ C.
3. insert(C) – Insert boxes into the tree covering C (if they do not already exist).
4. delete(S) – Remove boxes with indices in S from the tree.
5. subdivide() – For each box b in the tree, divide each of its coordinate directions in

half, creating 2n smaller boxes, thus increasing the depth of the tree by 1.
Although the GAIO tree data structure is in many ways well suited to our task, it has a few

simple drawbacks which significantly restrict our computations. Specifically, the operations
insert(·) and delete(·) scramble the box numbers of the tree as a side-effect. Thus, if we
want to keep track of our current box set while inserting or deleting boxes, we have to spend
extra time computing the new box numbers. Without knowledge of how the renumbering is
done, this would take O(n log n) time, where n is the number of boxes, since for each box
we have to search the tree to find its new number. The best one could hope for would be
O(log n) with careful bookkeeping (one still needs logarithmic time to locate the place in the
tree for insertion or deletion). We managed to compute the new box numbers in O(n) time by
observing that the numbering is given by a deterministic depth-first search (DFS) traversal
of the tree from the root box and backsolving the modified numbers accordingly.

We make use of several other subroutines as well:
• P = transition matrix(tree,f [,S]) – Compute the multivalued map F using f (option-

ally only for boxes in S) and return it as a matrix.
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• Adj = adjacency matrix(tree) – Using the tree.find(. . . ) function, compute the adja-
cency matrix which describes the topology of the boxes in the tree.

• oS = tree onebox(S,Adj) – The indices of boxes in a one-box neighborhood of S in
the tree.

• tree = insert onebox(tree,S) – Using tree.insert(. . . ), add boxes to the tree that would
neighbor a box in S were they already in the tree.

• tree = insert image(tree,f ,S) – Compute the images of each box in S under f using
interval arithmetic.

• S = grow isolating(S,P ,Adj) – Compute an isolating neighborhood of S in the tree.
This procedure is called grow isolating neighborhood in [5]; for completeness we restate
it here as Algorithm 1.

• S = invariant set(N ,P ) – Compute the maximal invariant set containing N according
to the multivalued map P .

Algorithm 1 grow isolating: Growing an isolating neighborhood

Input: S,P ,Adj
loop
I = invariant set(S,P )
oI = tree onebox(I,Adj)
if oI ⊆ S return I
S = oI

end loop
Output: S

Note the difference between insert onebox(tree,S) and tree onebox(S,Adj); the former
adds all boxes to the tree that touch S, but the latter finds boxes that touch that are already
in the tree.

3.2. Numerical approximations. We assume here that one has numerical approximations
of points which are part of hyperbolic, invariant sets such as periodic points and homoclinic
points. The goal then is to find the desired connecting orbits between specified points. More
formally, given a finite set X = {(xi, yi)}i ⊂ M ×M of pairs of points in the phase space,
we want to find a small set of boxes S at depth d such that

⋃
X ⊂ |S|, and for every pair

pi, if xi ∈ |bx| and yi ∈ |by|, then there is a path from bx to by according to the multivalued
map F . In other words, we wish to find connections between each xi and yi at depth d.
Intuitively, we think of the set X as the “skeleton” of the invariant behavior of interest. For
example, if we wanted to connect a period 2 orbit a, b to a fixed point c and back, we could
have X = {(a, c), (b, c), (c, b), (c, a)}. We assume of course that the desired connections exist.

Typically the most expensive part of the calculations, especially in applications involving
rigorous enclosures, is the box image calculations. Thus we wish to find an algorithm which
computes as few images as possible but also has a reasonable running time in terms of the
other parameters.

The first algorithm one might try is to go to depth d, add all boxes in the general area of the
invariant objects, and then use shortest path algorithms to find the connections. Unfortunately
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this requires computing O(2dn) image calculations, where n = dim(M). We can improve this
bound by instead doing a breadth-first search at depth d; that is, starting at each xi we
compute images until we reach yi in a breadth-first manner. This gives roughly O(|X|b�),
where b is the average image size of a box, which will typically depend exponentially on n,
and � is the average connection length. This is no longer exponential in d, and |X| is typically
relatively small, but there are still many image calculations as b is often very large.

Fortunately we can achieve only O(d|X|�) image calculations using Algorithm 2, which
is essentially a recursive version of the first algorithm: we compute the connections at a low
depth, then subdivide to get to the next depth and grow one-box neighborhoods until the
connections are found again, and repeat until we reach the final depth.

Algorithm 2 The connection insertion algorithm

Input: f , X = {(xi, yi)}i ⊂M ×M
for depth = dstart to dend do
tree.insert(∪i{xi, yi})
loop
P = transition matrix(tree,f)
for all i do
pi = shortest path from xi to yi in P (or ∅ if no path)

end for
if ∀i pi �= ∅, break loop
tree = insert onebox(tree,tree.boxnums())

end loop
tree.delete(tree.boxnums() \ ∪i pi)
tree.subdivide()
P = transition matrix(tree,f)

end for

By a strict reading of Algorithm 2, we might end up computing many box images re-
peatedly from the transition matrix(·) call in the inner loop. To avoid this, we simply cache
box image calculations: each time a box image calculation is called for, we first check to see
whether we have computed it already; if so, we look it up, and if not, we compute it and store
it. With caching, we achieve the O(d|X|�) bound on image calculations.

Note that a box connection found at a depth d may correspond to only an ε02
−d-chain

rather than an actual orbit, where ε0 is the length of a box diagonal at depth 0. Typically we
rely on shortest path algorithms to give us the most plausible orbits, but there are cases, such
as spiralling behavior and other “roundabout” connections, where the shortest paths will not
be true orbits. For example, even the identity map has a path from any box to another ac-
cording to the transition matrix. In all of these cases it may be necessary to use other methods
for approximating or connecting orbits, such as computing the stable and unstable manifolds
of the hyperbolic invariant sets to high accuracy and computing heteroclinic intersections.

Roughly speaking, a long connection between p and q will have many of these ε02
−d-

chains from p to q to compete with, the vast majority of which do not correspond to actual
trajectories. In fact, in many cases the chains will actually be shorter than the true connection.
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For example, in a simple slow rotation about the origin (r, θ) �→ (r, θ + 2π/k), every point
is either period k or period 1 (the origin), but one would find closed chains of length much
lower than k when sufficiently close to the origin. The result of this observation is that longer
connections will require more iterations of the insert onebox(tree,tree.boxnums()) call, since
the probability of picking an ε02

−d-chain which corresponds to an actual orbit becomes quite
small as the connection length grows. Consequently, longer connections will take significantly
longer to compute than shorter ones using Algorithm 2.

One way around this issue is to make use of the duality between finding connections
between periodic orbits of low period and finding periodic orbits of higher period. On the one
hand, by finding enough connecting orbits (enough to capture horseshoe dynamics) between
periodic orbits of low period, one finds infinitely many periodic orbits of higher period. On
the other hand, it is often the case that by finding enough periodic orbits of all periods (up
to some high period) at a given depth, most of the connecting orbits which live close to them
should also be captured. Since dealing with long connections can be problematic, it is simpler
to deal with specific, high period, periodic orbits if they are easily obtainable.

A second way to compute long connections is to exploit some a priori knowledge of the
map. We apply both of these techniques in section 4.

3.3. Growing an index pair. Given a small starting set S of boxes corresponding to
numerical guesses of hyperbolic invariant sets, we now wish to create an index pair from S.
To do this, we compute an isolating neighborhood N of S. A first approach might be to
use the grow isolating algorithm, Algorithm 1, on the whole of M , but as we are concerned
with the setting where isolation is difficult, this will simply fail to find the desired structures.
Even if we manage to cover only what we are interested in, this top-down approach requires
computing many images; as with Algorithm 2, we wish to minimize the number of image
calculations while keeping a reasonable running time. Specifically, we would like an algorithm
that computes the images of N and no other images, which would be optimal in our setting.
We will see that Algorithm 3 does precisely that.

Note that the loop invariant (and thus correctness) of this algorithm is highly sensitive to
the order of the steps. As before, we cache box image computations.

We can think of Algorithm 3 as a modification of grow isolating (Algorithm 1), where
we make use of caching and lazy evaluation, meaning we add boxes to the tree and compute
box images only when we absolutely have to. This way we can start with only our initial
skeleton of points in the tree and grow both the tree and the multivalued map just enough to
accommodate the isolating neighborhood and verify its isolation.

In fact, we can see that we compute exactly the images we need in a precise sense. Consider
the returned set S which, a posteriori, must be equal to tree onebox(I,Adj) for some invariant
set I. Since we terminated, S must be the true one-box neighborhood of I; otherwise, we
would have added new boxes in the insert onebox call and failed to terminate. Similarly, the
image of S = o(I) must already be in the tree, since otherwise the insert image call would
have resulted in new boxes. Thus, S is an isolating neighborhood of I, and since we grew S
only by adding boxes to it, we have computed images only for boxes in S, which is precisely
what we need to verify its isolation.

Algorithm 3 is the cornerstone of our approach in this paper. Without it, no matter
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Algorithm 3 Growing an isolating neighborhood by inserting boxes

Input: tree,f
B = tree.boxnums()
S = B
repeat
P = transition matrix(tree,f ,S)
Adj = adjacency matrix(tree)
I = invariant set(S,P )
oI = tree onebox(I,Adj)
achieved isolation = (oI ⊆ S)
S = oI
tree = insert onebox(tree,I)
tree = insert image(tree,f ,oI)
B = tree.boxnums() \ B

until (achieved isolation and B == ∅)
Output: S

how clever our numerical approximations are, producing index pairs would essentially be just
as expensive as computing the map on all boxes. This is especially important when one is
working with a low dimensional invariant set in a high dimensional embedded space, or when
the hyperbolic, invariant sets whose existence we wish to prove are tightly squeezed between
nonhyperbolic sets or even singularities of the map.

To see this more precisely, consider the memory required to store the box images using
our bottom-up insertion approach as compared to the top-down approach of [5]; let Mins and
MDFT be the memory in each case. As above, let n be the dimension of the manifold andKd be
the number of boxes needed to cover the invariant set at depth d (which is independent of the
method used). In settings where isolation is difficult, the method of [5] would typically require
MDFT = O(2dn). Using Algorithms 2 and 3, however, we can achieve Mins = Kd. Thus, in
situations where Kd � 2dn, we get a tremendous savings using our bottom-up method, and if
the depth required for isolation is high, this savings could be the difference between infeasible
and feasible. We will see a concrete example of this in the next section when we study the
standard map, with further discussion in section 4.4.

4. Computations. We apply our methods to the standard map

(4.1) fε : (x, y) �→
(
x+ y +

ε

2π
sin(2πx) mod 1, y +

ε

2π
sin(2πx) mod 1

)
,

where ε > 0 is a perturbation parameter. This map is perhaps the best-known exact, area-
preserving symplectic twist map. For ε = 0 every circle {y = constant} is invariant, and the
dynamics of the map consist of rotations of this circle with frequency y. Figure 1 is a plot of
trajectories when ε = 3

4 .
The map fε can be recovered by its generating function h : T2 → R in the sense that, if

fε(x, y) = (X,Y ), then Y dX − ydx = dh(x,X). Moreover, we have its action A, which, for a
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Figure 1. Plot of trajectories of the standard map for ε = 3
4
.

sequence of points {xN , . . . , xM}, is

(4.2) A(xN , . . . , xM ) =
M−1∑
k=N

h(xk, xk+1),

such that trajectories of fε “minimize” the action for fixed endpoints {xN , xM}, in an analo-
gous way to classical Lagrangian mechanics (see [12, section 2.5]).

It follows from a simple symmetry argument that for all ε �= 0, the stable and unstable
manifolds of the hyperbolic fixed point intersect at x = 1

2 (see Figure 2). Denote by (12 , yε)
such a homoclinic point. It is rather easy to approximate this point numerically as one needs
only to follow an approximation of either the stable or the unstable manifold until it crosses
x = 1

2 . Moreover, we can see from Figure 2 that between the point (12 , yε) and its image
fε(

1
2 , yε) = (12 + yε, yε) there is a homoclinic point which we denote as (u, v). It is also

relatively easy to approximate this point numerically based on having a good approximation
of the stable and unstable manifolds and the point (12 , yε). Using these points, one can proceed
in two different ways in order to get index pairs for an isolated invariant set which belong to
the homoclinic tangle of the fixed point.

The first way is to find the intersection of the stable and unstable manifolds at x = 1
2 at

high accuracy and iterate this point enough times forward and backward to get close enough to
the fixed point. Considering all of these iterates and the fixed point as our invariant set, we may
grow an isolating neighborhood and index pairs associated to them using Algorithm 3. This is
perhaps the quickest way to get an index pair, as we already know where the isolated invariant
set is. The downside is that in order for this approach to be successful, we need to compute
the first homoclinic intersection with very high accuracy, as the homoclinic connection may
be lengthy, and after enough iterations the error may become large enough to not give us a
good approximation of the invariant set.
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Figure 2. Intersection of the stable and unstable manifolds at x = 1
2
.

The second approach is to compute the connections using shortest path algorithms as
in Algorithm 2. This approach requires less precision in the computation of the homoclinic
intersection but is slower than the first approach. However, it is faster than a blind shortest
path search because it takes into consideration the dynamics of fε: recalling the action (4.2) of
fε, we have A(x1, x2) = h(x1, x2), and so we can compute the averaged action Ã : G × G → R

from box Bi to box Bj as the average of A(x, y) with x ∈ |Bi| and y ∈ |Bj|. Thus we can
reweigh the graph representing the map on the boxes, from having every edge of weight 1, to
having the edge going from Bi to Bj of weight K+ Ã(Bi,Bj), where K is any positive number
satisfying

K > K∗ ≡ max
(x1,x2)∈T2

|A(x1, x2)| ,

uniform for all Bi. Different choices ofK do not necessarily give the same shortest (or cheapest)
path: higher K gives more weight to the number of edges in the path (which one might use
when working at a low depth), while lower K gives more weight to the action (which one
might use at a high depth). Thus, searching for shortest paths in the graph with the new
weights, we have a better chance of computing the right connection at the first try, as the
connections which are computed contain, on average, the least action from the beginning box
to the end box.

This second method turns out to be a better fit in our setting, as numerically iterating
the point (12 , yε) introduces an error which is multiplied upon each iteration. Thus, the error
grows exponentially fast until the iterates reach a small neighborhood of the fixed point, and
this error is further exacerbated by the fact that we will mostly treat ε as an interval. The
second method still requires some precision, but it is modest enough that we can efficiently
obtain it using the parameterization method [4]. Algorithm 4 summarizes our construction of
index pairs which contain the homoclinic tangle of the hyperbolic fixed point.

As ε decreases, both the area of the Birkhoff zone of instability and the angle of intersection
of stable and unstable manifolds of the hyperbolic fixed point (12 , yε) decrease exponentially
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fast with ε [11]. Thus, since the intersection of the invariant manifolds is barely transversal,
the index pairs associated to the homoclinic orbits have to stretch out considerably across
the unstable manifolds in order to achieve isolation (see Figure 4). This in turn implies
that Algorithm 3 takes more iterations to cover the invariant set. Moreover, the size of the
boxes is necessarily exponentially small with ε, and so the number of boxes needed to create
the index pairs increases rapidly. The bottom line is that the complete automation of the
procedure prevents us from having to create the index pairs by hand, which for low ε must
be an extremely difficult task.

KAM theory asserts that for |ε| small enough (roughly |ε| < .971 [15]), there is a positive
measure set of homotopically nontrivial invariant circles on which the dynamics of fε are
conjugate to irrational rotations. In this case the invariant circles foliate the cylinder and
serve as obstructions to orbits from wandering all over the cylinder; i.e., each orbit is confined
to an area bounded by KAM circles. In this case, the topological entropy of fε is concentrated
in the Birkhoff zone of instability associated to the homoclinic tangle of the hyperbolic fixed
point. Once ε > ε∗ ≈ .971, there remain no homotopically nontrivial KAM circles to bound
the y coordinate of the orbit of a point, and one then has hope of finding connecting orbits
between different hyperbolic periodic orbits.

We apply our methods to obtain three types of results:
• For all fε with ε ∈ [.7, 2], we give a positive lower bound for its topological entropy.

This is done by treating ε as an interval. An advantage of having the procedure
automated is that one can easily study a parameter-dependent system at different
values of the parameter. Treating the parameter as an interval allows us to detect
behavior which is common to all values of the parameter in the interval. This is done
in section 4.1.

• Not treating ε as an interval allows our method to go further and obtains positive
bounds for the much lower value of ε = 1

2 . This is done in section 4.2.
• Our examples in section 4.3 combine the new methods of this paper with the spirit of [5]

of connecting periodic orbits to find better entropy bounds, which we will illustrate
for the case ε = 2.

We remark that in [18, section 4.1] an alternate approach for the creation of index pairs for
the standard map is given. It is done through set-oriented methods which are based on follow-
ing the discretized dynamics along the discretized stable and unstable manifolds. We do not
know how this approach would perform when treating ε as an interval, although we suspect it
would perform equally well. Our bottom-up approach for constructing index pairs requires the
computation of fewer box images, but in general we may make use of slightly more a priori in-
formation such as the knowledge of where hyperbolic invariant sets are. The algorithms in [18]
(and indeed those of [5, section 3.1]) require less a priori knowledge of hyperbolic, invariant
sets but require a greater number of box-image computations (see [18] for more details).

We should point out that the bounds we provide in the following sections are close to some
of the nonrigorous bounds given in [24]. To our knowledge there are no other bounds in the
literature for the topological entropy of the standard map for small values of ε. It is expected
that the entropy is exponentially small as ε→ 0 [11], while it is known that the entropy grows
at least logarithmically in ε as ε → ∞ [17]. But for small values of ε, we have not been able
to find computational bounds besides the ones already cited.
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4.1. Parameter exploration. As remarked earlier, when ε < ε∗ there exist invariant KAM
circles which prevent the connections between many periodic orbits. This forces us to con-
centrate on the homoclinic tangle of the hyperbolic fixed point. The results from this section
are obtained using Algorithm 4 and summarized in Theorem 4.1.

Algorithm 4 Creating index pairs for fε using the homoclinic orbits of the fixed point

Input: ε̄ = [ε−, ε+], fε̄
Let yε̄ = y ε−+ε+

2

and compute
(
1
2 , yε̄

)
using [4].

H =
{(

1
2 , yε̄

)
,
(
1
2 , 1− yε̄

)
, (u, v), (1 − u, 1− v), (0, 0)

}
X =

⋃
p �=q∈H(p, q)

Find connections using Algorithm 2 and the weighted graph using the averaged action Ã.
Grow the index pairs using Algorithm 3.

By performing the computations using ε as an interval, we are proving behavior which
is common for all fε within such interval. In such a case then our guess for the homoclinic
intersection (12 , yε) is done only for one point in the interval (the midpoint). In general it is
easier to isolate an invariant set for smaller parameter intervals, since the wider the interval,
the more general the isolation must be. In our setting, it is much easier to isolate homoclinic
connections for ε > ε∗ than it is for ε < ε∗. To reflect this, using a crude approximation of
ε∗ ≈ 1.0 for ease of bookkeeping, we use intervals of size 0.005 for ε ≥ 1.0, but we shrink our
interval size to 0.001 for ε < 1.0.

As ε decreases, the size of the boxes we use decreases, and the length of the homoclinic
excursion increases, leading to another increase in the number of boxes needed and a longer
running time of Algorithm 3. At some point, it becomes computationally unrealistic to con-
tinue; we stopped somewhat before this point, when the interval computations took roughly
40 hours for ε̄ = [0.700, 0.701]. See section 4.4 for further discussion of the implementation
and efficiency.

Theorem 4.1. The topological entropy of the standard map fε for ε ∈ [.7, 2] is bounded
from below by the step function given in Figure 3. In particular, we have h(fε) > 0.2 for all
ε ∈ [.7, 2]. The precise individual values for each subinterval are given in Appendix A.

Proof. For each of the ε-intervals ε̄ = [ε−, ε+] on the table found in Appendix A, we get
an index pair for an isolated invariant set of fε̄ using Algorithm 4. Using then Algorithms 5,
6, 7, and 8 and Theorem 3.6 from [5], which essentially amounts to a finite number of checks
using Corollary 2.13, we prove a semiconjugacy to an SFT, from which we get a bound on the
entropy by bounding the spectral radius of the associated matrix.

There are three apparent scales on which our lower bounds for h(fε) change with respect
to ε: global, semilocal, and local. Clearly there is an evident global increase of the entropy
bounds as ε increases, as expected. On a semilocal level, there are a few intervals (roughly
[1.6, 2], [1.2, 1.6], [.92, 1.2], [.8, .92], [.75, .8]) on which the bounds for h(fε) seem to hover
around a fixed value per interval. This is due to using the same depth on such intervals. As
ε decreases, we need to increase the depth. Locally, the apparent irregularity of the function
of lower bounds is due to the nature of our automated approach: the accuracy of the guess(
1
2 , yε̄

)
varies per interval, as does the computation of the averaged action, etc.
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Figure 3. Lower bounds of h(fε) as a function of ε in the interval [.7, 2]. Note that all bounds in this
interval exceed 0.2.

4.2. Positive bound of h(fε) for lowest ε. In this section we show an example of an index
pair for the standard map for ε = 1

2 . This value was picked because it is small enough that we
can illustrate the strengths of our algorithms in tight places while keeping the computation
times reasonable. Using Algorithm 4 with ε = 1

2 , we get the index pair shown in Figure 4
(although it is barely visible).

Theorem 4.2. The topological entropy for the standard map fε when ε =
1
2 is bounded below

by 0.1732515918346.
The proof is the same as that of Theorem 4.1. The tree from which the index pair obtained

for Theorem 4.2 was obtained contains 568,754 boxes. Among those, 281,530 are in the index
pair. Roughly a quarter of the boxes in the index pair form the exit set (64,518). This index
pair (P1, P0) gives us an induced map which acts on H1(P1, P0;Z) = Z

1801 but is reduced to
an SFT in 73 symbols.

Figure 4 shows, on top, the plot of some trajectories for the standard map at ε = 1
2 of the

stable and unstable manifolds and an index pair for the homoclinic orbits. On the bottom is
a close-up of a component of the index pair squeezed by KAM tori and a barely transversal
intersection of the stable and unstable manifolds. The boxes making up this index pair are
of sides of size 2−15. The strength of our “growing-out” approach is that the creation of such
index pairs in tight places is achievable and can be automated.
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Figure 4. On top, a plot of the trajectories of the standard map for ε = 1
2
along with the stable and unstable

manifolds of the hyperbolic fixed point which seem to overlap. The bottom figure is a close-up of a component
of the index pair yielding Theorem 4.2 which contains the homoclinic point at x = 1

2
along with trajectories,

some of which are part of KAM circles squeezing the component. It overlays the stable and unstable manifolds,
whose angle of intersection is very small, causing the index pair to be very sheared.

4.3. Higher periods. When ε > ε∗ all homotopically nontrivial KAM circles are vanished;
thus it is possible to connect different periodic orbits. The appendix of [13] contains an
algorithm for finding periodic orbits for the standard map. We implement this method to find
the periodic orbits which we use to grow index pairs.

Algorithm 5 is essentially the main strategy employed in [5]. In that paper, good index
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Algorithm 5 Creating index pairs using homoclinic and periodic orbits

Input: ε̄ = [ε−, ε+], fε̄, P ∈ N

Let yε̄ = y ε−+ε+

2

and compute
(
1
2 , yε̄

)
using [4].

H1 =
{
(0, 0),

(
1
2 , yε̄

)
,
(
1
2 , 1− yε̄

)
, (u, v), (1 − u, 1− v)

}
H2 = hyperbolic periodic orbits of fε̄ up to period P (computed using the appendix in [13])

X =
⋃

p �=q∈(H1∪H2)
(p, q)

Find connections using Algorithm 2 and the weighted graph using averaged action Ã.
Grow the index pairs using Algorithm 3.

Figure 5. Index pair obtained through Algorithm 5 for ε = 2 and P = 2 at depth 9.

pairs were found by finding pairwise connections between periodic orbits. Such an approach
can be slightly generalized by looking for pairwise connections between hyperbolic, invariant
sets, which is what Algorithm 5 does.

We apply the algorithm to ε = 2.0, with maximum period P = 2. Figure 5 shows the
index pair for this computation. We remark that besides finding pairwise connections between
hyperbolic periodic orbits, we find connections between periodic orbits and the homoclinic
orbits (12 , yε) and (u, v) mentioned in section 4.1. This allows us to find richer dynamics
and to achieve higher entropy bounds. The result from this index pair is summarized in the
following theorem.

Theorem 4.3. The topological entropy for the standard map fε for ε = 2 is bounded below
by 0.44722970117798.

The proof is again similar to that of Theorem 4.1. The index pair (P1, P0) has a total of
8600 boxes and gives us an induced map which acts on H1(P1, P0;Z) = Z

105, which is reduced
to an SFT in 59 symbols.
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Figure 6. Index pair obtained by adding periodic orbits of periods 3 and 4 to the example in Figure 5.

This result shows that our bounds in Theorem 4.1 are probably suboptimal, since our
interval bound for [1.995, 2.000] is lower than in Theorem 4.3. It is not surprising that by
adding connections to another hyperbolic periodic orbit we may find a higher entropy bound.

Algorithm 5 can be quite effective when P is small, but as P grows, there is large increase
(quadratic at the very least, often exponential) in the number of connections to compute,
especially since the number of period-P orbits grows rapidly with P for chaotic maps. More-
over, the number of long connections increases, which, as discussed in section 3.2, makes
Algorithm 2 work even harder. As suggested in that section, we instead turn to computing
periodic orbits of higher period rather than computing connections explicitly.

For our last example, we apply this approach on top of the previous example from Theorem
4.3 to produce a very strong index pair. That is, we run Algorithm 5 with P = 2 and then
simply add all hyperbolic orbits of periods 3 and 4 (there are four of each) without adding any
further connections. The resulting index pair, shown in Figure 6, clearly benefits from these
“natural” connections.

Theorem 4.4. The topological entropy for the standard map fε for ε = 2 is bounded below
by 0.54518888942276.

The index pair (P1, P0) for Theorem 4.4 has a total of 64,185 boxes, with 5,839 in the
exit set. The induced map acts on H1(P1, P0;Z) = Z

138 and reduces to an SFT in only 41
symbols.
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4.4. Notes on efficiency and implementation. The computations in this paper were
performed in MATLAB on machines with between 1 and 2 gigabytes (GB) of memory and
with clock speeds between 1.5 and 2.5 gigahertz. Runtimes ranged from 3 or 4 minutes for
ε̄ = [1.995, 2] and ε = 2.0, to almost 2 days for ε̄ = [0.700, 0.701], and roughly 5 days for
ε = 0.5. As discussed in section 4.1 and the beginning of section 4, there was a roughly
inverse exponential relationship between ε and the runtime for the intermediate values.

The two most time-consuming subroutines for our computations were Algorithms 2 and 3;
this of course is one reason for our focus on them in this work. As ε decreased, however,
Algorithm 3 dominated the runtime, particularly in the bookkeeping step (maintaining the
correct box numbers, as discussed in section 3.1) and the insertion step, when new boxes are
inserted into the tree. While the insertions cannot be avoided, this does suggest that a better
tree implementation could enhance performance greatly.

To conclude, we would like to reiterate how difficult it would be to reproduce our results
for low ε, namely, Theorem 4.2 and the lower intervals of Theorem 4.1, using index pair algo-
rithms from [5]. As mentioned in section 3.3, our algorithms are considerably more memory
efficient in certain situations, which we now explore concretely. Consider the index pair we
obtained in Theorem 4.2 when ε = 0.5; there were 568754 boxes in the index pair, at depth
15, and the adjacency and transition matrices took up about 0.1GB of memory using our ap-
proach. Using the approach in [5], one would need to compute the map on all boxes at depth
15. Using a conservative estimate of 190 bytes per box to store the image and adjacency infor-
mation (the average for our index pair was 194.38 bytes), this would require 204GB, which is
beyond reasonable at the time of this writing. More to the point, our bottom-up approach is
clearly orders of magnitude more efficient in terms of memory. When one considers the graph
computations that would need to be carried out on the resulting 230-node graph (the tran-
sition matrix), it becomes even clearer that our computations would have been impractical
using the top-down approach of [5].

Appendix A. Precise bounds for h(fε). Below we list the actual values for the lower
bounds in Theorem 4.1. The last column indicates the number of symbols for each SFT
whose entropy bounds the entropy of fε for ε in each interval.
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ε interval h(fε) ≥ sym

[0.700, 0.701] 0.232286 51
[0.701, 0.702] 0.234189 51
[0.702, 0.703] 0.232286 51
[0.703, 0.704] 0.232286 51
[0.704, 0.705] 0.225504 53
[0.705, 0.706] 0.232286 51
[0.706, 0.707] 0.227178 51
[0.707, 0.708] 0.227178 51
[0.708, 0.709] 0.223988 53
[0.709, 0.710] 0.227178 53
[0.710, 0.711] 0.228742 53
[0.711, 0.712] 0.223988 53
[0.712, 0.713] 0.223988 53
[0.713, 0.714] 0.223988 53
[0.714, 0.715] 0.227178 53
[0.715, 0.716] 0.222542 53
[0.716, 0.717] 0.222365 53
[0.717, 0.718] 0.225679 53
[0.718, 0.719] 0.210614 39
[0.719, 0.720] 0.217650 55
[0.720, 0.721] 0.223988 53
[0.721, 0.722] 0.223988 53
[0.722, 0.723] 0.223988 53
[0.723, 0.724] 0.222542 53
[0.724, 0.725] 0.222542 53
[0.725, 0.726] 0.220813 55
[0.726, 0.727] 0.222542 53
[0.727, 0.728] 0.222542 53
[0.728, 0.729] 0.222542 55
[0.729, 0.730] 0.220813 55
[0.730, 0.731] 0.222365 55
[0.731, 0.732] 0.219153 55
[0.732, 0.733] 0.219153 55
[0.733, 0.734] 0.222542 55
[0.734, 0.735] 0.222542 55
[0.735, 0.736] 0.222542 55
[0.736, 0.737] 0.220813 55
[0.737, 0.738] 0.220813 55
[0.738, 0.739] 0.220813 55
[0.739, 0.740] 0.220813 55
[0.740, 0.741] 0.220813 55
[0.741, 0.742] 0.220813 55
[0.742, 0.743] 0.222542 55
[0.743, 0.744] 0.220813 55
[0.744, 0.745] 0.217650 55
[0.745, 0.746] 0.219153 55
[0.746, 0.747] 0.217650 55
[0.747, 0.748] 0.217650 55
[0.748, 0.749] 0.217650 55
[0.749, 0.750] 0.220813 55
[0.750, 0.751] 0.222542 55
[0.751, 0.752] 0.220813 55
[0.752, 0.753] 0.220813 55
[0.753, 0.754] 0.220813 55
[0.754, 0.755] 0.220813 55
[0.755, 0.756] 0.220813 55

ε interval h(fε) ≥ sym

[0.756, 0.757] 0.220813 55
[0.757, 0.758] 0.220813 55
[0.758, 0.759] 0.219153 55
[0.759, 0.760] 0.217650 55
[0.760, 0.761] 0.220813 55
[0.761, 0.762] 0.219153 55
[0.762, 0.763] 0.220813 55
[0.763, 0.764] 0.219153 55
[0.764, 0.765] 0.219153 55
[0.765, 0.766] 0.222542 55
[0.766, 0.767] 0.222542 55
[0.767, 0.768] 0.222542 55
[0.768, 0.769] 0.222542 55
[0.769, 0.770] 0.222542 55
[0.770, 0.771] 0.220813 55
[0.771, 0.772] 0.220813 55
[0.772, 0.773] 0.220813 55
[0.773, 0.774] 0.217650 55
[0.774, 0.775] 0.217650 55
[0.775, 0.776] 0.217650 55
[0.776, 0.777] 0.216045 55
[0.777, 0.778] 0.220813 55
[0.778, 0.779] 0.219153 55
[0.779, 0.780] 0.217650 55
[0.780, 0.781] 0.219153 55
[0.781, 0.782] 0.219153 55
[0.782, 0.783] 0.219153 55
[0.783, 0.784] 0.219153 55
[0.784, 0.785] 0.220813 55
[0.785, 0.786] 0.220813 55
[0.786, 0.787] 0.220813 55
[0.787, 0.788] 0.220813 55
[0.788, 0.789] 0.220813 55
[0.789, 0.790] 0.220813 55
[0.790, 0.791] 0.220813 55
[0.791, 0.792] 0.219153 55
[0.792, 0.793] 0.217650 55
[0.793, 0.794] 0.217650 55
[0.794, 0.795] 0.219153 55
[0.795, 0.796] 0.217650 55
[0.796, 0.797] 0.219153 55
[0.797, 0.798] 0.219153 55
[0.798, 0.799] 0.219153 55
[0.799, 0.800] 0.219153 55
[0.800, 0.801] 0.257972 43
[0.801, 0.802] 0.255740 45
[0.802, 0.803] 0.255740 43
[0.803, 0.804] 0.255740 43
[0.804, 0.805] 0.253746 45
[0.805, 0.806] 0.255740 45
[0.806, 0.807] 0.255740 45
[0.807, 0.808] 0.255740 45
[0.808, 0.809] 0.257972 43
[0.809, 0.810] 0.255740 45
[0.810, 0.811] 0.251858 45
[0.811, 0.812] 0.251858 45

ε interval h(fε) ≥ sym

[0.812, 0.813] 0.251858 45
[0.813, 0.814] 0.249549 45
[0.814, 0.815] 0.247344 47
[0.815, 0.816] 0.247344 47
[0.816, 0.817] 0.251858 47
[0.817, 0.818] 0.249549 45
[0.818, 0.819] 0.249549 47
[0.819, 0.820] 0.249549 47
[0.820, 0.821] 0.251858 45
[0.821, 0.822] 0.251858 47
[0.822, 0.823] 0.251858 45
[0.823, 0.824] 0.251858 47
[0.824, 0.825] 0.249549 47
[0.825, 0.826] 0.249549 47
[0.826, 0.827] 0.249549 47
[0.827, 0.828] 0.251858 47
[0.828, 0.829] 0.247344 47
[0.829, 0.830] 0.251858 45
[0.830, 0.831] 0.247344 47
[0.831, 0.832] 0.247344 47
[0.832, 0.833] 0.249549 47
[0.833, 0.834] 0.251858 47
[0.834, 0.835] 0.251858 47
[0.835, 0.836] 0.251858 47
[0.836, 0.837] 0.251858 47
[0.837, 0.838] 0.251858 47
[0.838, 0.839] 0.251858 47
[0.839, 0.840] 0.251858 47
[0.840, 0.841] 0.251858 47
[0.841, 0.842] 0.247610 47
[0.842, 0.843] 0.251858 47
[0.843, 0.844] 0.251858 47
[0.844, 0.845] 0.249549 47
[0.845, 0.846] 0.249549 47
[0.846, 0.847] 0.249549 47
[0.847, 0.848] 0.249549 47
[0.848, 0.849] 0.249549 47
[0.849, 0.850] 0.249549 47
[0.850, 0.851] 0.247344 47
[0.851, 0.852] 0.247344 47
[0.852, 0.853] 0.245376 47
[0.853, 0.854] 0.251858 47
[0.854, 0.855] 0.251858 47
[0.855, 0.856] 0.249549 47
[0.856, 0.857] 0.249549 47
[0.857, 0.858] 0.249549 47
[0.858, 0.859] 0.247344 47
[0.859, 0.860] 0.247344 47
[0.860, 0.861] 0.249549 47
[0.861, 0.862] 0.247344 47
[0.862, 0.863] 0.249549 47
[0.863, 0.864] 0.249549 47
[0.864, 0.865] 0.249549 47
[0.865, 0.866] 0.249549 47
[0.866, 0.867] 0.251858 47
[0.867, 0.868] 0.247344 47
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ε interval h(fε) ≥ sym

[0.868, 0.869] 0.247344 47
[0.869, 0.870] 0.247344 47
[0.870, 0.871] 0.247344 47
[0.871, 0.872] 0.247344 47
[0.872, 0.873] 0.247344 47
[0.873, 0.874] 0.245376 47
[0.874, 0.875] 0.245376 47
[0.875, 0.876] 0.251858 47
[0.876, 0.877] 0.249549 47
[0.877, 0.878] 0.247344 47
[0.878, 0.879] 0.249549 47
[0.879, 0.880] 0.249549 47
[0.880, 0.881] 0.249549 47
[0.881, 0.882] 0.249549 47
[0.882, 0.883] 0.249549 47
[0.883, 0.884] 0.249549 47
[0.884, 0.885] 0.249549 47
[0.885, 0.886] 0.249549 47
[0.886, 0.887] 0.247344 47
[0.887, 0.888] 0.247344 47
[0.888, 0.889] 0.249549 47
[0.889, 0.890] 0.251858 47
[0.890, 0.891] 0.247344 47
[0.891, 0.892] 0.249549 47
[0.892, 0.893] 0.247344 47
[0.893, 0.894] 0.247344 47
[0.894, 0.895] 0.247344 47
[0.895, 0.896] 0.247344 47
[0.896, 0.897] 0.247344 47
[0.897, 0.898] 0.247344 47
[0.898, 0.899] 0.247344 47
[0.899, 0.900] 0.247344 47
[0.900, 0.901] 0.247344 47
[0.901, 0.902] 0.247344 47
[0.902, 0.903] 0.247344 47
[0.903, 0.904] 0.249549 47
[0.904, 0.905] 0.249549 47
[0.905, 0.906] 0.249549 47
[0.906, 0.907] 0.249549 47
[0.907, 0.908] 0.251858 47
[0.908, 0.909] 0.249549 47
[0.909, 0.910] 0.249549 47
[0.910, 0.911] 0.276723 27
[0.911, 0.912] 0.249549 47
[0.912, 0.913] 0.251858 47
[0.913, 0.914] 0.249549 47
[0.914, 0.915] 0.249549 47
[0.915, 0.916] 0.247344 47
[0.916, 0.917] 0.274243 27
[0.917, 0.918] 0.249549 47
[0.918, 0.919] 0.257110 25
[0.919, 0.920] 0.307453 35
[0.920, 0.921] 0.249549 47
[0.921, 0.922] 0.276723 27
[0.922, 0.923] 0.276723 27
[0.923, 0.924] 0.274243 27

ε interval h(fε) ≥ sym

[0.924, 0.925] 0.276723 27
[0.925, 0.926] 0.288442 37
[0.926, 0.927] 0.276723 27
[0.927, 0.928] 0.276723 27
[0.928, 0.929] 0.294293 37
[0.929, 0.930] 0.288442 37
[0.930, 0.931] 0.294293 37
[0.931, 0.932] 0.291280 37
[0.932, 0.933] 0.291280 37
[0.933, 0.934] 0.294293 37
[0.934, 0.935] 0.288442 37
[0.935, 0.936] 0.288442 39
[0.936, 0.937] 0.297475 37
[0.937, 0.938] 0.297475 37
[0.938, 0.939] 0.288442 39
[0.939, 0.940] 0.285349 39
[0.940, 0.941] 0.288442 39
[0.941, 0.942] 0.276723 27
[0.942, 0.943] 0.276723 27
[0.943, 0.944] 0.294293 37
[0.944, 0.945] 0.294293 37
[0.945, 0.946] 0.297475 37
[0.946, 0.947] 0.294293 37
[0.947, 0.948] 0.291706 39
[0.948, 0.949] 0.291706 39
[0.949, 0.950] 0.288442 39
[0.950, 0.951] 0.291706 39
[0.951, 0.952] 0.291706 39
[0.952, 0.953] 0.291706 39
[0.953, 0.954] 0.294293 37
[0.954, 0.955] 0.294293 37
[0.955, 0.956] 0.291706 39
[0.956, 0.957] 0.291706 37
[0.957, 0.958] 0.285349 39
[0.958, 0.959] 0.291706 39
[0.959, 0.960] 0.291706 39
[0.960, 0.961] 0.291706 39
[0.961, 0.962] 0.291706 39
[0.962, 0.963] 0.288442 39
[0.963, 0.964] 0.288442 39
[0.964, 0.965] 0.291706 39
[0.965, 0.966] 0.291706 39
[0.966, 0.967] 0.291706 39
[0.967, 0.968] 0.288442 39
[0.968, 0.969] 0.288442 39
[0.969, 0.970] 0.285349 39
[0.970, 0.971] 0.291706 39
[0.971, 0.972] 0.285349 39
[0.972, 0.973] 0.288442 39
[0.973, 0.974] 0.288442 39
[0.974, 0.975] 0.288442 39
[0.975, 0.976] 0.288442 39
[0.976, 0.977] 0.288442 39
[0.977, 0.978] 0.288442 39
[0.978, 0.979] 0.291706 39
[0.979, 0.980] 0.285349 39

ε interval h(fε) ≥ sym

[0.980, 0.981] 0.285349 39
[0.981, 0.982] 0.285349 39
[0.982, 0.983] 0.285349 39
[0.983, 0.984] 0.285349 39
[0.984, 0.985] 0.285349 39
[0.985, 0.986] 0.288442 39
[0.986, 0.987] 0.285349 39
[0.987, 0.988] 0.291706 39
[0.988, 0.989] 0.285349 39
[0.989, 0.990] 0.285349 39
[0.990, 0.991] 0.285349 39
[0.991, 0.992] 0.288442 39
[0.992, 0.993] 0.285349 39
[0.993, 0.994] 0.291706 39
[0.994, 0.995] 0.291706 39
[0.995, 0.996] 0.291706 39
[0.996, 0.997] 0.288442 39
[0.997, 0.998] 0.291706 39
[0.998, 0.999] 0.288442 39
[0.999, 1.000] 0.288442 39
[1.000, 1.005] 0.313677 35
[1.005, 1.010] 0.300202 35
[1.010, 1.015] 0.303084 35
[1.015, 1.020] 0.276723 27
[1.020, 1.025] 0.300202 35
[1.025, 1.030] 0.297053 37
[1.030, 1.035] 0.297053 37
[1.035, 1.040] 0.300202 35
[1.040, 1.045] 0.291706 37
[1.045, 1.050] 0.274243 36
[1.050, 1.055] 0.297053 39
[1.055, 1.060] 0.300202 37
[1.060, 1.065] 0.291706 37
[1.065, 1.070] 0.267938 39
[1.070, 1.075] 0.297053 36
[1.075, 1.080] 0.294293 37
[1.080, 1.085] 0.300202 37
[1.085, 1.090] 0.294293 37
[1.090, 1.095] 0.291706 37
[1.095, 1.100] 0.294293 37
[1.100, 1.105] 0.294293 37
[1.105, 1.110] 0.272833 39
[1.110, 1.115] 0.297053 37
[1.115, 1.120] 0.297053 37
[1.120, 1.125] 0.297053 37
[1.125, 1.130] 0.291706 37
[1.130, 1.135] 0.297475 37
[1.135, 1.140] 0.291706 37
[1.140, 1.145] 0.291706 37
[1.145, 1.150] 0.297053 37
[1.150, 1.155] 0.294293 37
[1.155, 1.160] 0.297053 37
[1.160, 1.165] 0.297053 37
[1.165, 1.170] 0.297053 37
[1.170, 1.175] 0.297053 37
[1.175, 1.180] 0.294293 37
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ε interval h(fε) ≥ sym

[1.180, 1.185] 0.297475 37
[1.185, 1.190] 0.300202 37
[1.190, 1.195] 0.300202 37
[1.195, 1.200] 0.297053 37
[1.200, 1.205] 0.353423 31
[1.205, 1.210] 0.349617 29
[1.210, 1.215] 0.344595 29
[1.215, 1.220] 0.340662 31
[1.220, 1.225] 0.344595 29
[1.225, 1.230] 0.353423 29
[1.230, 1.235] 0.340662 31
[1.235, 1.240] 0.344595 29
[1.240, 1.245] 0.339892 31
[1.245, 1.250] 0.339892 29
[1.250, 1.255] 0.344595 31
[1.255, 1.260] 0.344595 31
[1.260, 1.265] 0.339892 31
[1.265, 1.270] 0.349617 31
[1.270, 1.275] 0.349617 31
[1.275, 1.280] 0.353423 31
[1.280, 1.285] 0.344595 31
[1.285, 1.290] 0.344595 31
[1.290, 1.295] 0.339892 31
[1.295, 1.300] 0.344595 31
[1.300, 1.305] 0.339892 31
[1.305, 1.310] 0.344595 31
[1.310, 1.315] 0.344595 31
[1.315, 1.320] 0.344595 31
[1.320, 1.325] 0.344595 31
[1.325, 1.330] 0.344595 31
[1.330, 1.335] 0.339892 29
[1.335, 1.340] 0.339892 31
[1.340, 1.345] 0.339892 31
[1.345, 1.350] 0.339892 31
[1.350, 1.355] 0.339892 31
[1.355, 1.360] 0.344595 31
[1.360, 1.365] 0.339892 31
[1.365, 1.370] 0.339892 31
[1.370, 1.375] 0.339892 31
[1.375, 1.380] 0.348848 31
[1.380, 1.385] 0.344595 31
[1.385, 1.390] 0.349617 31
[1.390, 1.395] 0.349617 31
[1.395, 1.400] 0.344595 31
[1.400, 1.405] 0.344595 31
[1.405, 1.410] 0.349617 31
[1.410, 1.415] 0.349617 31
[1.415, 1.420] 0.344595 31
[1.420, 1.425] 0.339892 31
[1.425, 1.430] 0.339892 31
[1.430, 1.435] 0.344595 31
[1.435, 1.440] 0.344595 31
[1.440, 1.445] 0.339892 29
[1.445, 1.450] 0.339892 31
[1.450, 1.455] 0.344595 31
[1.455, 1.460] 0.344595 31

ε interval h(fε) ≥ sym

[1.460, 1.465] 0.344595 31
[1.465, 1.470] 0.344595 31
[1.470, 1.475] 0.344595 31
[1.475, 1.480] 0.344595 31
[1.480, 1.485] 0.339892 31
[1.485, 1.490] 0.339892 31
[1.490, 1.495] 0.344595 31
[1.495, 1.500] 0.344595 31
[1.500, 1.505] 0.349617 31
[1.505, 1.510] 0.349617 31
[1.510, 1.515] 0.344595 31
[1.515, 1.520] 0.344595 31
[1.520, 1.525] 0.344595 31
[1.525, 1.530] 0.362385 29
[1.530, 1.535] 0.353822 29
[1.535, 1.540] 0.353423 31
[1.540, 1.545] 0.349617 29
[1.545, 1.550] 0.349617 29
[1.550, 1.555] 0.353423 29
[1.555, 1.560] 0.349617 29
[1.560, 1.565] 0.349617 29
[1.565, 1.570] 0.349617 29
[1.570, 1.575] 0.349617 29
[1.575, 1.580] 0.344595 29
[1.580, 1.585] 0.349617 29
[1.585, 1.590] 0.349617 31
[1.590, 1.595] 0.349617 29
[1.595, 1.600] 0.349617 29
[1.600, 1.605] 0.401206 25
[1.605, 1.610] 0.394853 25
[1.610, 1.615] 0.390054 25
[1.615, 1.620] 0.394853 27
[1.620, 1.625] 0.401206 25
[1.625, 1.630] 0.394853 25
[1.630, 1.635] 0.390054 25
[1.635, 1.640] 0.406401 23
[1.640, 1.645] 0.390054 27
[1.645, 1.650] 0.390054 25
[1.650, 1.655] 0.390054 25
[1.655, 1.660] 0.390054 27
[1.660, 1.665] 0.390054 27
[1.665, 1.670] 0.394853 25
[1.670, 1.675] 0.394853 25
[1.675, 1.680] 0.394853 25
[1.680, 1.685] 0.396415 25
[1.685, 1.690] 0.390054 27
[1.690, 1.695] 0.390054 25
[1.695, 1.700] 0.390054 25
[1.700, 1.705] 0.390054 25
[1.705, 1.710] 0.394853 25
[1.710, 1.715] 0.394853 25
[1.715, 1.720] 0.401206 25
[1.720, 1.725] 0.401206 27
[1.725, 1.730] 0.390054 25
[1.730, 1.735] 0.390054 25
[1.735, 1.740] 0.390054 27

ε interval h(fε) ≥ sym

[1.740, 1.745] 0.394853 25
[1.745, 1.750] 0.394853 25
[1.750, 1.755] 0.390054 25
[1.755, 1.760] 0.394853 25
[1.760, 1.765] 0.390054 27
[1.765, 1.770] 0.394853 25
[1.770, 1.775] 0.406401 25
[1.775, 1.780] 0.401206 25
[1.780, 1.785] 0.394853 25
[1.785, 1.790] 0.394853 25
[1.790, 1.795] 0.401206 25
[1.795, 1.800] 0.390054 25
[1.800, 1.805] 0.401206 25
[1.805, 1.810] 0.390054 25
[1.810, 1.815] 0.390054 27
[1.815, 1.820] 0.401206 25
[1.820, 1.825] 0.390054 25
[1.825, 1.830] 0.390054 25
[1.830, 1.835] 0.401206 27
[1.835, 1.840] 0.401206 25
[1.840, 1.845] 0.401206 25
[1.845, 1.850] 0.390054 27
[1.850, 1.855] 0.401206 25
[1.855, 1.860] 0.401206 25
[1.860, 1.865] 0.401206 27
[1.865, 1.870] 0.411995 25
[1.870, 1.875] 0.406401 25
[1.875, 1.880] 0.390054 25
[1.880, 1.885] 0.394853 25
[1.885, 1.890] 0.406401 25
[1.890, 1.895] 0.406401 25
[1.895, 1.900] 0.401206 25
[1.900, 1.905] 0.406401 25
[1.905, 1.910] 0.401206 25
[1.910, 1.915] 0.401206 25
[1.915, 1.920] 0.401206 25
[1.920, 1.925] 0.401206 25
[1.925, 1.930] 0.390054 25
[1.930, 1.935] 0.401206 25
[1.935, 1.940] 0.406401 25
[1.940, 1.945] 0.390054 25
[1.945, 1.950] 0.394853 25
[1.950, 1.955] 0.411995 25
[1.955, 1.960] 0.406401 25
[1.960, 1.965] 0.406401 25
[1.965, 1.970] 0.411995 25
[1.970, 1.975] 0.406401 23
[1.975, 1.980] 0.411995 23
[1.980, 1.985] 0.411995 25
[1.985, 1.990] 0.411995 23
[1.990, 1.995] 0.411995 25
[1.995, 2.000] 0.411995 25
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