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Abstract. A state amalgamation of a directed graph is a node contraction which

is only permitted under certain configurations of incident edges. In symbolic

dynamics, state amalgamation and its inverse operation, state splitting, play a

fundamental role in the the theory of subshifts of finite type (SFT): any conjugacy

between SFTs, given as vertex shifts, can be expressed as a sequence of symbol

splittings followed by a sequence of symbol amalgamations. It is not known whether

determining conjugacy between SFTs is decidable.

We focus on conjugacy via amalgamations alone, and consider the simpler

problem of deciding whether one can perform k consecutive amalgamations from

a given graph. This problem also arises when using symbolic dynamics to study

continuous maps, where one seeks to coarsen a Markov partition in order to simplify

it. We show that this state amalgamation problem is NP-complete by reduction

from the hitting set problem, thus giving further evidence that classifying SFTs up

to conjugacy may be undecidable.

1. Introduction

Subshifts of finite type (SFT) are a basic class of symbolic dynamical systems

which find applications in many fields, including mathematics, information theory,

computer science, and physics. In a formative 1970 paper, Williams [30] introduced

the concepts of shift equivalence and strong shift equivalence, showing that two SFTs

are eventually conjugate if and only if they are shift equivalent, and are topologically

conjugate if and only if they are strongly shift equivalent. Kim and Roush [22]

showed in 1988 that shift equivalence is decidable, and as strong shift equivalence

implies shift equivalence, the natural question of whether the two conditions were

equivalent arose. This question, known as the Williams Conjecture, was settled

negatively by Kim and Roush ten years later [21]. Nonetheless, the decidability of

strong shift equivalence, and hence the conjugacy of SFTs, is yet unknown.

Williams [30] further showed that any strong shift equivalence may be

decomposed into a sequence of state splittings, where a state s is replaced by a
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pair s1,s2, and amalgamations, where two states s, s′ are collapsed to a single state

[ss′]. In this paper, we study a natural simplification of this problem, where a strong

shift equivalence involves only a sequence of amalgamations.† Specifically, we define

the decision problem SAP, which is to decide, given a graph G and positive integer

k, whether one can perform k consecutive amalgamations in G. By reduction from

the hitting set problem [20], we show that this problem is NP-complete. This in

turn implies that it is NP-hard to find the graph on the smallest number of states

which can be obtained from G by amalgamation alone.

A natural application of state amalgamation arises in the study of continuous

maps using symbolic dynamics. Here one labels disjoint regions of the phase space

and considers the subshift defined by the label sequences in forward and backward

time of points in these regions. One common example is a Markov partition [1],

where the regions satisfy the Markov property, and the resulting shift space is an

SFT. When presented with such a set of regions and its corresponding shift space,

one may wish to coarsen the regions, by combining several of them together, to

simplify the partition while preserving the conjugacy to some SFT. In the case of

a Markov partition this coarsening can be done by amalgamations (§ 5).

1.1. Related Work. Finding state amalgamations to simplify the “description”

of vertex shifts is similar to the goal of minimizing states in sofic shifts [8, 17,

18, 11, 29]. However, despite the term “state” being used in both contexts, the

problems are not the same: consider the graph on two states {a, b} with two edges

(a, b),(b, a) both labeled 0. The state-minimized presentation is just a single state

with a self loop labeled 0, but this graph cannot be obtained from the first via state

amalgamation. Moreover, state minimization can be performed efficiently [17],

while as we show, optimal state amalgamation is NP-hard.

Various generalizations of one-dimensional shift spaces have been introduced,

including higher-dimensional shifts [25] as well as tree shifts of finite type [3]. In

some of these settings, generalizations of Williams’ decomposition theorem have

been established [16, 3], showing that conjugacies between shifts of finite type

can be expressed as a sequence of splittings followed by amalgamations, suitably

defined. Conjugacy of higher-dimensional SFTs has been shown to be undecidable

(in fact, Σ0
1-complete) by Berger [5] who phrased the problem in terms of tilings

(see Kari [19] for a general discussion of such problems), and recently Jeandel

and Vanier [15] have shown that the simpler problem of determining conjugacy

to any given fixed SFT is still undecidable (and Σ0
1-complete). The same authors

also give the recursion-theoretic complexity of related problems, such as deciding

factorization and embedding. For tree shifts of finite type, Aubrun and Béal [3]

show that conjugacy is decidable; as the decidability of conjugacy for two-sided

one-dimensional subshifts of finite type remains an open question, it would be

interesting to study optimal state amalgamation in the tree shift setting.

† Importantly, we consider both in- and out-amalgamations, or when thought of as matrices, both

row and column amalgamations; further restricting to columns only corresponds to conjugacy of
the one-sided subshifts, which can be decided in polynomial time [23].
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Finally, the problem of coarsening Markov partitions has been considered in

the one-dimensional case by Teramoto and Komatsuzaki [28], who show that a

particular method for refining or coarsening a partition preserves conjugacy in that

setting. We restrict to amalgamation operations, which ensure conjugacy. Zheng

et al. [32] argue that even when finding an initial Markov partition is costly or

impractical, approximating the Markov partition can still be useful.

2. Background and Definitions

We begin with the basic definitions needed to state our result. We will make use of

both graph and matrix representations of SFTs; strong shift equivalence is a linear

algebraic notion, while our main result is best viewed in graph-theoretic terms.

2.1. Subshifts of finite type and strong shift equivalence. Given a finite alphabet

A, define a symbol space Xfull = AZ to be the set of all bi-infinite sequences of

symbols in A. It is well-known that Xfull is a metric space [24]. When |A| = n, we

define full n-shift σ : Xfull → Xfull as the map acting on Xfull by (σ(x))i = xi+1.

A word is a finite sequence of symbols in A; given a set of “forbidden” words

F ⊆ ∪i≥1Ai, the shift space XF is defined as the set of all bi-infinite sequences

x ∈ Xfull such that (xi, xi+1, . . . , xj) /∈ F for all i, j ∈ Z, i < j. If a shift space can

be written as XF for some finite F , it is a subshift of finite type (SFT). (The shift

map for XF in both cases is merely σ restricted to XF .)

Given a directed graph G with vertices being the symbols V (G) = A, and edges

E(G), we can define its vertex shift as a subshift XG ⊆ Xfull, where x ∈ XG if and

only if (xi, xi+1) ∈ E(G) for all i ∈ Z. That is, XG consists of all sequences in Xfull

with transitions of σ allowed by the edges of G. Importantly, any SFT is conjugate

to some vertex shift.

Theorem 1 ([23, 24]) For every SFT XF , there is a directed graph G such that

XF is conjugate to XG.

Given a vertex shift XG for a graph G, we will ask whether there is a graph H

on fewer vertices such that XG and XH are conjugate. To this end, we recall the

notion of strong shift equivalence.

Definition 1 (Strong shift equivalence) Let A and B be nonnegative integer

matrices. An elementary shift equivalence between A and B is a pair (R,S) such

that

A = RS and B = SR. (1)

In this case, we write (R,S) : A → B. If there is a sequence of such elementary

shift equivalences (Ri, Si) : Ai−1 → Ai, 1 ≤ i ≤ k, we say that A0 and Ak are

strongly shift equivalent.

Strong shift equivalence allows us to classify SFTs up to conjugacy, as the

following result of R. F. Williams shows. The transition matrix of a graph G
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on n vertices, also called the adjacency matrix, is defined as A ∈ {0, 1}n×n such

that Aij = 1 if and only if (i, j) ∈ E(G).

Theorem 2 ([31]) For directed graphs G and H, the corresponding vertex shifts

XG and XH are conjugate if and only if the transition matrices of G and H are

strongly shift equivalent.

2.2. Amalgamation. Theorem 2 allows us to prove that two subshifts are

conjugate by a series of simple matrix computations. Finding matrices that give

a strong shift equivalence, however, can be a very challenging problem. Two

methods of finding such equivalences are given by Williams [30]: state splitting,

where a single vertex is split into two, or state amalgamation, where two vertices

are combined into one. In graph-theoretic terms, amalgamating two vertices

is equivalent to contracting them together and then removing duplicate edges

(i.e. removing edges until there is at most one edge between any pair of vertices). In

general, obtaining the smallest element (measured by number of vertices or rows)

of a strong shift equivalence class may involve both splittings and amalgamations.

We will instead focus on the simpler problem of obtaining H only by amalgamating

vertices in G.

We will denote the image (out-neighbors) and preimage (in-neighbors) of a vertex

v in G by N+(v) and N−(v), respectively. The following definition of amalgamation

is adapted from [24]; see Figure 1 for an example.

Definition 2 (Amalgamation) Let G be a directed graph on n vertices and let

u, v ∈ V (G). We say that u and v are amalgamation candidates, or that they can

amalgamate, if they satisfy either of the following conditions:

Forward Condition: N+(u) = N+(v) and N−(u) ∩N−(v) = ∅, (2)

Backward Condition: N−(u) = N−(v) and N+(u) ∩N+(v) = ∅. (3)

The amalgamation of amalgamation candidates u and v is the graph on n−1 vertices

given by contracting u and v to a single vertex w, with N+(w) = N+(u) ∪N+(v)

and N−(w) = N−(u) ∪N−(v).

In other words, vertices can amalgamate if they have the same image and disjoint

preimages, or the same preimage and disjoint images. As mentioned above, we now

show why amalgamations are useful: amalgamations satisfying either condition (2)

or condition (3) yield a strong shift equivalence between the transition matrices

of the two graphs, and hence a conjugacy between the corresponding subshifts by

Theorem 2. For completeness, we give a proof; see also [24, § 2].

Theorem 3. Let u and v satisfy the forward condition (2) or backward condition

(3) for a graph G, and let G′ be the graph after amalgamating u and v. Then there

is an elementary shift equivalence between the transition matrices of G and G′.

Proof. Let A be the n× n transition matrix of G, and let i and j be the indices of

u and v, respectively. Note that in matrix notation, the forward condition (2)
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a

b c

⇒ b ac

Figure 1. A forward amalgamation

is just Aei = Aej and (e>i A) · (e>j A) = 0, and the backward condition (3) is

e>i A = e>j A and (Aei) · (Aej) = 0. Here ei denotes the column vector with a 1

in position i and zeros elsewhere. Note that the backward condition for A is the

same as the forward condition for A>. We let

X =

 Ij−1 0

0 0

0 In−j

 , Y =

[
Ij−1 ei 0

0 0 In−j

]
, (4)

where Ik denotes the k × k identity matrix, and 0 and 0 denote zero matrices and

vectors, respectively, of the appropriate dimensions so that X is n × n − 1 and Y

is n− 1× n.

Assume the forward condition is satisfied for i and j in A, where i < j. Then

we obtain B = Y AX by amalgamating i and j, which one verifies is the transition

matrix for G′. We will show that (AX,Y ) : A→ B, meaning that AX and Y give

an elementary shift equivalence from A to B. We have (Y )(AX) = B immediately,

so it remains to show (AX)(Y ) = A. Note that

XY =

 Ij−1 ei 0

0 0 0

0 0 In−j

 , (5)

and thus AXY ek = Aek if k 6= j and AXY ej = Aei. By the forward condition (2)

we have Aej = Aei, so in fact (AX)Y = A.

Now assume instead that the backward condition is satisfied; we will show

(X>A, Y >) : A → B, where here B = X>AY >. Again, (X>A)(Y >) = B is

trivial. By the remark above, i and j satisfy the forward condition for A>, and so

by the above computation we have A>XY = A>. Thus Y >(X>A) = (A>XY )> =

(A>)> = A. 2

To keep track of the origins of amalgamated vertices, we will associate each

vertex with a set of its “ancestor” vertices in the original graph.

Definition 3 (Amalgamation Sequence) A sequence of labeled graphs G0, . . . , Gk,

with labels S0, . . . , Sk, is an amalgamation sequence for a graph G if:

1. G0 = G and S0(v) = {v} for all v, and

2. Each Gi+1 is obtained from Gi by amalgamating candidates u, v ∈ V (Gi) to

some v′ ∈ V (Gi+1) with label Si+1(v′) = Si(u) ∪ Si(v) ⊆ V (G). (We set

Si+1(·) = Si(·) otherwise.)
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6 R. Frongillo

We will write G = G0 to imply that G0 is obtained from G as above.

It is easy to see that the labels of vertices in V (Gi) form a set partition of V (G).

Our bookkeeping is now sufficient to define the concept of eventual amalgamation,

which we will use extensively in our reduction.

Definition 4 (Eventual Amalgamation) A set of vertices S ⊆ V (G) can

eventually amalgamate in G if there is some amalgamation sequence G0, . . . , Gk
of G and some v ∈ V (Gk) with S ⊆ S(v).

Thus, given a vertex shift defined by G, if a set of vertices S ⊆ A can eventually

amalgamate, then there is some 1-block conjugacy which maps S to a single symbol.

2.3. The decision problem. We can now define our decision problem, which asks

whether an amalgamation sequence of length at least k is possible in G. Note that,

by standard arguments, the complexity of this the problem is the same as that of

finding the largest value of k for which an amalgamation sequence exists.

Definition 5 (State Amalgamation Problem) Let a directed graph G and an

integer k be given. The state amalgamation problem, denoted SAP, is to decide

whether there is a valid amalgamation sequence of length k for G.

We now introduce the problem hitting set we will reduce from, which is simply

the dual of the standard set cover problem, both shown to be NP-complete

in Karp’s seminal paper [20]. (For the definition of the class NP and related

background, see e.g. Goldreich [13].) Here and in the reduction we use the notation

[m] := {1, 2, . . . ,m}.

Definition 6 (Hitting Set) Let C = {S1, . . . , Sm} be a collection of nonempty

sets with
⋃
i Si = U . Given a subset S ⊆ U we define its hit set as hit(S) = {i|S ∩

Si 6= ∅}. Given C, U , and an integer t, the hitting set problem, denoted HittingSet,

is to decide whether there is a set H of cardinality t such that hit(H) = [m].

The following fact will be useful later for our proof: if no hitting set of size t

exists, then we can upper bound how many sets are covered by any H in terms of

|H|, m, and t.

Lemma 4. Suppose for some t ≤ m there is no H with |H| ≤ t and hit(H) = [m].

Then for all H ⊆ U , |hit(H)| − |H| < m− t.

Proof. Given anyH ⊆ U , for each Si /∈ hit(H) pick si ∈ Si and let Ĥ = (
⋃{si})∪H.

Then hit(Ĥ) = [m], so Ĥ is a hitting set. Thus by assumption we have,

t−m < |Ĥ| −m = |H|+ |C \ hit(H)| −m = |H| − |hit(H)| ,

which gives the result. 2
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Figure 2. A graph satisfying the structure property.

3. Reduction

We will show that SAP is NP-complete by reduction from HittingSet. Throughout

we will use the notation v : [A∗, B∗] to denote “N−(v) = A∗ and N+(v) = B∗,”
or if the identity of the vertex is irrelevant we will simply write [A∗, B∗] to denote

an arbitrary such vertex. Additionally, when A∗ or B∗ are singleton sets, e.g.

A∗ = {a}, we will omit the braces and simply write v : [a,B∗], etc.

Our proof relies heavily on the following graph structure, which creates

a controlled environment where amalgamations are restricted. In particular,

Lemma 5 shows that any amalgamations must be among vertices in I. See Figure 2

for an illustration of the property.

Definition 7 (Structure Property) A directed graph G satisfies the structure

property if we can write V (G) = {α} ∪A ∪ I ∪B such that:

1. N−(α) = N+(α) = A ∪B
2. ∀a ∈ A, N−(a) = {a, α}, N+(a) ⊆ I ∪ {a, α}, α ∈ N+(a)

3. ∀b ∈ B, N+(b) = {b, α}, N−(b) ⊆ I ∪ {b, α}, α ∈ N−(b)

4. ∀i ∈ I, N−(i) ⊆ A, N+(i) ⊆ B.

Lemma 5. Let G satisfy the structure property with V (G) = {α}∪A∪ I ∪B. Then

no s ∈ V (G) \ I can be eventually amalgamated with any other s′ ∈ V (G).

Proof. The proof follows by induction from two claims:

Claim 1. Any amalgamation in G must be within I.

Proof. The vertex α clearly has a unique image and preimage, and thus

cannot be amalgamated. For any x ∈ A∪B, we have α ∈ N+(x)∩N−(x),

so no two nodes in A∪B can have disjoint preimages or images. Moreover,

since α /∈ N−(i) ∪N+(i) for all i ∈ I, no i and x ∈ A ∪ B can have the

same preimage or image, so vertices in A∪B cannot amalgamate either.

Claim 2. If G′ is obtained from G by amalgamation, G′ satisfies the

structure property with V (G′) = {α} ∪A ∪ I ′ ∪B for some I ′.
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8 R. Frongillo

Proof. Consider any amalgamation u, v in G, resulting in G′. By the

first claim, we have u, v ∈ I. It is now clear that amalgamating u and

v maintains the structure properties; property (1) and (4) hold trivially,

and (2) and (3) could only be violated if new edges were added from A∪B
to A ∪B, which is not possible since u, v ∈ I. Thus, G′ also satisfies the

structure property with the same α, A, and B.

Thus, as initially amalgamations must be within I, and this remains true after any

number of amalgamations, the result is shown. 2

The other main ingredient of our reduction is a “weight” widget. As we will see

in Lemma 6, these widgets act as weighted switches, producing K amalgamations

if activated, and at most 1 otherwise. This gap allows us to magnify the decisions

which have meaning with respect to the hitting set problem.

Definition 8 (Weight Widget) Let G satisfy the structure lemma with V (G) =

{α}∪A∪I∪B, and let K > 0 be a fixed even integer. Then for A∗ ⊆ A and B∗ ⊆ B,

the weight widget w = weight[A∗, B∗] is the following collection of vertices:

• Aw = {a1 . . . , aK/2} ⊂ A
• Iw = {w1, . . . , wK} ⊂ I
• Bw = {b1, . . . , bK/2} ⊂ B ,

where Aw ∩A∗ = Bw ∩B∗ = ∅, and for all i ∈ {1, . . . ,K/2} we have

• w2i−1 : [A∗ ∪ {a1, . . . , ai−1}, bi]
• w2i : [ai, B∗ ∪ {b1, . . . , bi}] .

Moreover, we require these to be the only images of Aw in I, i.e. I∩N+(a) ⊆ Iw for

all a ∈ Aw, and similarly for the preimages of Bw. See Figure 3 for an illustration.

If G = G0, . . . , Gk is an amalgamation sequence, we say that widget

weight[A∗, B∗] is activated in Gk if w1 : [A∗, b1] has amalgamated (possibly with

several vertices) to some v : [A∗, B∗ ∪ {b1}]. We call w1 the head node and the

nodes wi : i > 1 the internal nodes of the weight widget.

Lemma 6. If w = weight[A∗, B∗] is a weight widget in G, then

1. v : [A∗, B∗] and Iw can amalgamate for a total of K amalgamations.

2. If w is not activated, no internal node of w can amalgamate.

Proof. The first claim is quite straightforward. Let vk be the head node after

k amalgamations, meaning vk ∈ V (Gk) and Sk(vk) = {v, w1, . . . , wk}. By

construction, vk and wk+1 have identical images and disjoint preimages if k is

odd, and vice versa if k is even. Thus, after K amalgamations, the entire weight

widget has collapsed to vK : [A∗ ∪Aw, B∗ ∪Bw].

For the second claim, note that by construction wk cannot amalgamate if wk−1
has not amalgamated. By assumption, no nodes in I \{w2, . . . , wK} have preimages

in Aw or images in Bw, so we conclude that no internal nodes can amalgamate if
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A∗ a1 a2

B∗ b1 b2

w1 w2 w3 w4v

weight[A∗, B∗]

Figure 3. A weight widget weight[A∗, B∗] for K = 4, and a potential activator v.

the head node w1 has not amalgamated. Now consider a series of non-activation

amalgamations of the head node; since N+(w1) = {b1} is a unique image, the

resulting amalgamated node must be of the form [A∗, B′ ∪ {b1}], which will never

amalgamated with w2 : [a1, B∗ ∪ {b1}] unless B′ = B∗, which would mean w was

activated. Since no internal node can amalgamate before w2, we are done. 2

We now have the tools to prove our main result.

Theorem 7. SAP is NP-complete.

Proof. We trivially have that SAP is in NP: given a sequence of proposed

amalgamations in the form of vertex pairs, we simply check the forward and

backward conditions in O(n2) time, perform the amalgamation in O(n2) time, and

proceed for O(n) iterations, where n = |V (G)|. As HittingSet is NP-hard [20], it is

enough to show a polynomial-time many-one reduction to SAP, in which case we

will write SAP ≥m HittingSet [13].

Let collection of sets C = {S1, . . . , Sm} and size t be given from HittingSet,

and define U = ∪iSi, n = |U |, and m = |C|. Furthermore, we set the

parameter K = 6nm for the weight widgets. We now construct a graph G with

V (G) = A ∪ I ∪B ∪ {α} in polynomial time as follows.

• Start with A = [m], I = ∅, B = U ∪ {β} for a new vertex β.

• Add a vertex vis : [i, s] for each Si and s ∈ Si. That is, add a node vis to I

with i→ vis → s, where i ∈ A and s ∈ B.

• For each i ∈ [m], add viβ to I with i→ viβ → β, so that viβ : [i, β].

• Add weight widget w = weight[i, {s, β}] = (Aw, Iw, Bw) for each Si and s ∈ Si
(i.e., add Aw to A, Iw to I, and Bw to B).

• Add weight widget weight[hit(s), s] for each s ∈ U .

• Add node α with edges to and from A and B, and add loops to α, A, and B,

to satisfy the structure property.
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10 R. Frongillo

In other words, letting W be the set of all weight widgets added, we will have

A = [m] ∪⋃w∈W Aw, I = {vis : i ∈ [m], s ∈ Si} ∪ {viβ : i ∈ [m]} ∪⋃w∈W Iw, and

B = U ∪ {β} ∪⋃w∈W Bw.

We will show that there is a hitting set of the given size t if and only if there

is an amalgamation sequence for G of length N ≥ (m + n − t)K. The rough idea

behind the reduction is that each vertex vis can choose either “s ∈ H hitting Si” or

“s ∈ U \H”, and this choice is then magnified by the corresponding weight widget.

We will see that we can activate |hit(H)| + |U \ H| weight widgets, for a total of

m+ (n− t) if H is a hitting set of size t, and strictly fewer if no such H exists, by

Lemma 4. By construction, K is large enough that non-widget amalgamations are

insignificant, from which the result will follow.

First assume that H is a hitting set for C, and |H| = t. Then for each i ∈ [m]

there is some s ∈ Si ∩H, so we can amalgamate vis : [i, s] with viβ : [i, β] to a new

vertex [i, {s, β}] which by Lemma 6 we can amalgamate with weight[i, {s, β}] for

K amalgamations. We do this for all i ∈ [m], so we have mK amalgamations so

far. At this point, the vertices in I associated to each s ∈ U \H remain untouched,

so we can amalgamate {vis | i ∈ hit(s)} as they all share the same image and

have disjoint preimages. We now have a vertex [hit(s), s] for each s ∈ U \H, and

by Lemma 6 we can amalgamate each with weight[hit(s), s] for another (n − t)K
amalgamations. In total we thus have at least (m+ n− t)K amalgamations.

For the converse, assume there is no hitting set H of size t, and there is an

amalgamation sequence for G of length N . Define:

H = {s | weight[hit(s), s] is activated}
M = {i | ∃s ∈ Si weight[i, {s, β}] is activated}

and let H = U \H. Note that each vis can amalgamate with at most one weight

widget, and for each i ∈ [m] there can be at most one weight[i, {s, β}] widget

activated. Thus for all vis, either (i ∈ M and s ∈ H), (i /∈ M and s /∈ H), or

(i /∈M and s ∈ H). Thus, we have (i ∈M =⇒ s ∈ H), so

M ⊆ {i | ∃ vis s ∈ H} = hit(H). (6)

We now count how many amalgamations we could have. By Lemma 6,

each activated weight widget leads to at most K amalgamations, for a total of

(|M | + |H|)K amalgamations. Also by Lemma 6, no internal nodes of the non-

activated weight widgets have amalgamated, so the remainder of the amalgamations

are restricted to head nodes and Inon-weight = {vis : i ∈ [m], s ∈ U}∪{viβ : i ∈ [m]},
for a total of at most (n−|H|)+(nm−|M |)+ |Inon-weight| ≤ n+nm+nm+m < K

additional amalgamations. Thus, we obtain our result:

N < (|M |+ |H|+ 1)K

≤ (|hit(H)|+ n− |H|+ 1)K (7)

≤ (m+ n− t)K, (8)

where (7) follows from equation (6), and (8) is by Lemma 4. 2
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4. Extension to Edge Shifts

While we focus on vertex shifts, Theorem 7 can be extended to edge shifts, as we

now briefly describe. An edge shift is given by sequences of edges from bi-infinite

walks on a directed multi-graph, which allows multiple edges between two vertices.

Following Lind and Marcus [24], we will denote by i(e) and t(e) the initial and

terminal vertex for edge e. Given a directed multi-graph G with edges E(G) and

vertices V (G), we letA = E(G) and define the corresponding edge shift as a subshift

X̂G ⊆ Xfull, where x ∈ X̂G if and only if for all i ∈ Z we have t(xi) = i(xi+1). As

before we define N̂−(v) and N̂+(v) to be the in- and out-neighbors of v, now

multisets. (E.g., in Figure 4, N̂−(cd) = {{a, a, b}}.) As with vertex shifts, every

SFT is conjugate to some edge shift [24].

The analogous form of the amalgamation conditions (2) and (3) in this case

simplify: vertices u and v are amalgamation candidates if either N̂+(u) = N̂+(v)

(forward) or N̂−(u) = N̂−(v) (backward), as multisets. The forward amalgamation

is then given by combining u and v to a new node w, setting N̂+(w) = N̂+(v)

and N̂−(w) = N̂−(u) ∪ N̂−(v), a multiset union; similarly for the backward

amalgamation. See Figure 4 for an illustration. As before, amalgamation produces

a conjugacy [24, Theorem 2.4.10] and all conjugacies between edge shifts can be

represented as a sequence of amalgamations and of their mirror operation, state

splittings [24, Theorem 7.1.2].

c

a

b

d

e ⇒ cd

a

b

e

Figure 4. A forward edge amalgamation

The construction of Theorem 7 already suffices for edge shifts, as we now argue.

First, observe that vertices A ∪ B ∪ {α} all have unique N̂+ and N̂− multisets

(indeed, sets); this follows from the proof of Lemma 5, and the observation that

a ∈ N−(a) and b ∈ N−(b) for all a ∈ A, b ∈ B. Hence, even with the relaxed

amalgamation condition, these vertices cannot be eventually amalgamated, by the

same argument. Similarly, in Lemma 6, the vertices w2, . . . , wK have unique N̂+

and N̂− multisets (from inspection of Definition 8), and thus cannot amalgamate

immediately with each other. Moreover, the proofs of the two claims of Lemma 6

go through without change: the weight widget can still be activated for K total

amalgations, as we have only weakened the amalgamation condition; by uniqueness

of N̂+ and N̂−, we still conclude that wk cannot amalgamate before wk−1; and

finally, the argument that w2 cannot amalgamate unless the widget is activated did

not rely on disjointness of preimages, and thus continues to hold. We conclude that

SAP is NP-complete over the class of edge shifts as well.

Prepared using etds.cls



12 R. Frongillo

5. Markov Partitions and Future Work

This state amalgamation problem arises naturally when studying symbolic

dynamics derived from itinerary functions. Following Lind and Marcus [24],

consider a continuous invertible f : M →M on some metric space M , and disjoint

open sets Ra ⊆ M for each a ∈ A such that M = ∪a∈ARa, where Ra denotes the

closure of Ra. Letting U = ∪a∈ARa, we define S = ∩n∈Zfn(U) to be the set of

points which stay within U in forward and backward time. On such points we may

then define the itinerary function ρ : S → AZ by ρ(z)n = a where fn(z) ∈ Ra;

that is, for all n ∈ Z and z ∈ S we have fn(z) ∈ Rρ(z)n . The closure of the range

of ρ thus forms a subshift X = ρ(S) ⊆ AZ. By construction, X carries geometric

meaning, in that each symbol corresponds to a specific region in M : for all a ∈ A
we have ρ−1({x ∈ X : x0 = a}) ⊆ Ra.

A particular case of interest is when {Ra}a∈A is a Markov partition, meaning that

ρ is injective, and the resulting shift X is a vertex shift (1-step SFT), which satisfies

the usual Markov property that the set of possible next symbols depends only on

the current symbol: for all a, b ∈ A, either f(Ra)∩Rb = ∅ or f(Ra) ⊇ Rb. Markov

partitions were introduced independently by Berg [4], Adler [2], and Sinai [26, 27],

and later studied by Bowen [6] and others as a means of studying continuous maps

via symbolic dynamics: under the above conditions, the map ρ : S → X is a

conjugacy [1, Prop. 5.12].

If the number of regions |A| is too large, one may wish to simplify its

representation while preserving this geometric meaning, as well as the Markov

property. For example, automated proof systems routinely produce shifts on

hundreds of symbols [10, 12]. A natural way to simplify these shifts is by

coarsening the partition, i.e. combining various regions together and labeling them

with the corresponding set of symbols, in such a way that the resulting partition

is still Markov. The resulting subshift X ′ is thus related to X by a 1-block

code, whose alphabet A′ corresponds to a partition of A. Naturally, each symbol

a′ = {a1, . . . , ak} corresponds to the region Ra′ = Ra1 ∪ · · · ∪ Rak , so we define

ρ′ : S → (A′)Z analogously, and we still retain the geometric property that

(ρ′)−1({x ∈ X ′ : x0 = a′}) ⊆ Ra′ . For the resulting partition to retain the Markov

property, however, the resulting subshift X ′ should be conjugate to X and again

be a vertex shift, and one way to ensure this is to express the 1-block code as a

sequence of state amalgamations.†
Given the above motivation, we mention a potentially easier problem which

would still be relevant for studying Markov partitions. Consider a situation where

a particular Markov partition P and vertex shift X is conjectured for a continuous

map, and in an effort to validate this conjecture, one proves the existence of a

different Markov partition P ′ and vertex shift X ′, with many more regions/symbols.

In this case, the original conjecture can be proved if we can find a 1-block conjugacy

from X ′ to X. In contrast to SAP, however, here one can specify exactly which

regions of P ′ lie in which regions of P , and thus one can construct the block

† Note that preserving conjugacy and retaining the Markov property of the shift is also desirable
even when the map ρ is only a semi-conjugacy, as in [10, 12].
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map explicitly, and simply ask whether the corresponding sliding block code is

a conjugacy. This approach is precisely what we use in previous work [12] to verify

that a Markov partition conjectured by Davis, MacKay, and Sannami [9] is semi-

conjugate to the Hénon map at parameter values (a = 5.4, b = −1). (Other sources

of such conjectures include pruning theory [14].) The above discussion motivates

the state partition problem (SPP), whose complexity is unknown: given a graph G

and a partition of the vertices P = {P1, P2, . . . , Pk}, decide whether there exists a

sequence of amalgamations in which each Pi is eventually amalgamated.

Successfully coarsening Markov partitions more generally involves finding 1-block

conjugacies, which may be a harder problem, in the sense that it may be higher

in the polynomial hierarchy or even undecidable. In particular, the complexity of

the problems analogous to SAP and SPP would both be of interest: given a vertex

shift, find the 1-block conjugacy to the smallest possible vertex shift (measured by

number of vertices), and if additionally given an explicit partition of the vertices,

decide whether the induced 1-block code is a conjugacy. The complexity of these

problems would shed light on the complexity of conjugacy between vertex shifts

more generally, which remains open [7]. Intuitively, the construction behind

Theorem 7 could lead to techniques for encoding undecidable problems in vertex

shifts, showing the undecidability of general conjugacy. Finally, as mentioned in

the introduction, as conjugacy is decidable for tree shifts of finite type, it would be

interesting to study all four of these problems in that setting.
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