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Abstract

Combining two existing rigorous computational methods, for verifying
hyperbolicity (Arai [1]) and for computing topological entropy bounds
(Day et al. [4]), we prove lower bounds on topological entropy for 43
hyperbolic plateaus of the Hénon map. We also examine the 16 area-
preserving plateaus studied by Arai and compare our results with related
work. Along the way, we augment the entropy algorithms of Day et al.
with routines to optimize the algorithmic parameters and simplify the
resulting semi-conjugate subshift.

1 Introduction

Dynamical systems theory has seen the emergence of many rigorous computa-
tional methods in recent years. Such tools often extend the realm of provable
theorems well beyond what is possible with chalk and blackboard. This is par-
ticularly true of the recent automated tools to compute topological entropy
bounds [17, 4] and to prove hyperbolicity [1, 13, 16].

Let us briefly recall the relevant characteristics of these methods. Both
techniques for proving entropy bounds first construct a subshift of finite type
(SFT), whose topological entropy is easily computed and is a lower bound of
that of the original system. Newhouse et al. compute rigorous approximations of
stable and unstable manifolds of periodic orbits, and then construct a SFT using
pieces of these manifolds; in this regard, their technique could be considered a
rigorous version of the trellis method. Day, Frongillo, and Treviño (DFT) [4]
construct a discrete multivalued map from a discretization of the phase space,
and then apply discrete Conley index theory to prove a semi-conjugacy to a
particular SFT. In certain settings, such as the one we study here, the DFT
method is completely automated, meaning that after a simple initialization, no
further manual input is required. It is unclear whether the method of Newhouse
et al. shares this automation property.
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Hruska [13] developed one of the first automated methods for rigorously veri-
fying hyperbolicity, based on the computation of cone fields. In contrast, Arai [1]
employs a more indirect technique using the notion of quasi-hyperbolicity. His
approach allows for more efficient computations than Hruska, but does not guar-
antee that the nonwandering set is not just a finite collection of periodic orbits,
or even that it is nonempty.

In [1], Arai identifies several hyperbolic regions of the Hénon map:

fa,b(x, y) = (a− x2 + by, x) (1)

These regions are dubbed hyperbolic plateaus because topological entropy is
constant across any such region. Arai’s technique does not reveal anything
about these topological entropy values, however, and it is therefore natural to
combine his computations with an automated method for proving topological
entropy bounds.

In this paper we use the DFT method [4] to compute lower bounds for topo-
logical entropy of the hyperbolic plateaus of Hénon computed by Arai in [1].
The constant entropy on each plateau enables us to extend a lower bound com-
putation from a single setting of parameter values to an entire region of the
parameter space. Additionally, the full automation of the DFT method enables
us to study a total of 58 parameter values with essentially the same manual effort
as studying one. See Section 4 for details on the DFT method, as well as new
techniques for improving the robustness of the algorithms and for simplifying
the resulting SFT.

Theorems 5.1 and 5.3 summarize our results. To the author’s knowledge,
all of these rigorous lower bounds are the largest known for their corresponding
parameters. We selected the parameter regions so that the bounds obtained
might give a global picture of the entropy of the Hénon map as a function of
the parameters; see Figure 1 for such a picture.

We also study several of the area-preserving Hénon maps in Section 5.1,
which have been well-studied in the Physics community [12, 22, 5]. Recently,
some precise rigorous results emerged as well [2]. We find that our rigorous
lower bounds match or are very close to estimates given in previous work, and
match the rigorous results exactly when applicable.

2 Background

We first review basic definitions related to symbolic dynamics, topological en-
tropy, and hyperbolicity, in Sections 2.1 and 2.2. The DFT approach relies
heavily on a combinatorial version of the discrete Conley index; we discuss the
index in Section 2.3 and the combinatorial structures that relate it to our com-
putational setting in 2.4.
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Figure 1: Rigorous lower bounds for topological entropy for the hyperbolic
plateaus in Figure 4. The height of each plateau in the visualization is propor-
tional to the entropy bound computed. See Theorem 5.1 or Figure 5 for the
actual bounds.

2.1 Symbolic dynamics and topological entropy

Define a symbol space Xn = {0, . . . , n − 1}Z to be the set of all bi-infinite
sequences on n symbols. It is well-known that Xn is a complete metric space.
Let the full n-shift σ : Xn → Xn be the map acting on Xn by (σ(x))i = xi+1.
Given a directed graph G on n nodes with n × n transition matrix A with
Ai,j ∈ {0, 1}, we can define an induced symbol space XG ⊂ Xn, where x ∈ XG

if and only if for x = (. . . , xi, xi+1, . . . ), Axi,xi+1
= 1 for all i. That is, XG

consists of all sequences in Xn with transitions of σ allowed by the edges of G.
Equipped with the corresponding shift map σG : XG → XG, we call (XG, σG)
a subshift of finite type.

We use topological entropy to measure the relative complexity of different
dynamical systems. If the topological entropy of a dynamical system f , denoted
h(f), is positive, we say that f is chaotic.
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Definition 2.1 (Topological entropy [15]). Let f : X → X be a continuous map
with respect to a metric d. We say that a set W ⊆ X is (n, ε)-separated under
f if for any distinct x, y ∈W we have d

(
f j(x), f j(y)

)
> ε for some 0 ≤ j < n.

The topological entropy of f is

h(f) := lim
ε→∞

lim sup
n→∞

log(sf (n, ε))

n
, (2)

where sf (n, ε) denotes the maximum cardinality of an (n, ε)-separated set under
f .

While topological entropy can be difficult to calculate in general, there is a
simple formula for subshifts of finite type which is given in the following theorem.
For a proof, see [15] or [20].

Theorem 2.2. Let G be a directed graph with transition matrix A, and let
(XG, σG) be the corresponding subshift of finite type. Then the topological en-
tropy of σG is h(σG) = log(sp(A)), where sp(A) denotes the spectral radius
(maximum magnitude of an eigenvalue) of A.

When studying a complex map f , it is sometimes useful to study a subsystem
of f which can be precisely related to f via a semi-conjugacy.

Definition 2.3. Let f : X → X and g : Y → Y be continuous maps. A semi-
conjugacy from f to g is a continuous surjection φ : X → Y with φ ◦ f = g ◦ φ.
We say that f is semi-conjugate to g if there exists a semi-conjugacy from f to
g. If additionally φ is a homeomorphism, then f and g are conjugate.

Particularly relevant to our setting is the following result.

Theorem 2.4 ([20]). Let f and g be continuous maps, and let φ be a semi-
conjugacy from f to g. Then h(f) ≥ h(g).

Note that if f and g are conjugate, Theorem 2.4 gives us h(f) = h(g). In
other words, topological entropy is invariant under conjugacy.

2.2 Hyperbolicity

To begin we define uniform hyperbolicity. Throughout the paper, we will refer
to this property simply as hyperbolicity.

Definition 2.5 ([11]). A map f : X → X is said to be (uniformly) hyperbolic
if for every x ∈ X the tangent space TxX for f is a direct sum of stable and
unstable subspaces. More precisely, we have TxX = Es(x)⊕Eu(x), where Es(x)
and Eu(x) satisfy the following inequalities for some C > 0 and 0 < λ < 1, and
for all n ∈ N:

1. ‖Dfn(v)‖ ≤ Cλn‖v‖ for all v ∈ Es(x).

2. ‖Df−n(v)‖ ≤ Cλn‖v‖ for all v ∈ Eu(x).
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This structure can be thought of as a generalization of the structure of the
Smale horseshoe, namely that there are invariant directions, and there is uniform
contraction and expansion in the stable and unstable directions, respectively.
Some useful properties of hyperbolic systems are discussed below, but for more
details see [20] and [11].

An important property of hyperbolic maps is that they are structurally sta-
ble [20], which implies that all maps in the same hyperbolic region are conjugate.
Thus, by Theorem 2.4, the topological entropy is constant within such a region.
For this reason, we will henceforth call these regions hyperbolic plateaus.

Hyperbolicity often makes it easier to identify interesting dynamics, but it
is important to note that sometimes a system can be “vacuously” hyperbolic,
in the sense that it is hyperbolic but there is no recurrent behavior. A helpful
concept in this context is the nonwandering set.

Definition 2.6 ([20]). The nonwandering set of a map f is the set of points x
for which every neighborhood U of x has fn(U) ∩ U 6= ∅ for some n ≥ 1.

2.3 The discrete Conley index

Conley index theory is a topological tool which is a refinement of Morse theory
for gradient-like flows. We introduce here a version of the Conley index which
has been developed for discrete-time systems. Let f : M →M be a continuous
map, where M is a smooth, orientable manifold.

Definition 2.7. A compact set K ⊂M is an isolating neighborhood if

Inv(K, f) ⊂ Int(K),

where Inv(K, f) denotes the maximal invariant set of K and Int(K) denotes the
interior of K. A set S is an isolated invariant set if S = Inv(K, f) for some
isolating neighborhood K.

Definition 2.8 ( [19]). Let S be an isolated invariant set for f . Then P =
(P1, P0) is an index pair for S if

1. P1\P0 is an isolating neighborhood for S.

2. The induced map

fP (x) =

{
f(x) if x, f(x) ∈ P1\P0 ,
[P0] otherwise.

defined on the pointed space (P1\P0, [P0]) is continuous.

Definition 2.9 ( [23]). Let G,H be abelian groups and ϕ : G→ G, ψ : H → H
homomorphisms. Then ϕ and ψ are shift equivalent if there exist homomor-
phisms r : G→ H and s : H → G and some constant k ∈ N such that

r ◦ ϕ = ψ ◦ r, s ◦ ψ = ϕ ◦ s, r ◦ s = ψk, and s ◦ r = ϕk.
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Shift equivalence defines an equivalence relation; we denote by [ϕ]s the equiv-
alence class of homomorphisms which are shift equivalent to ϕ.

Definition 2.10 ( [7]). Let P = (P1, P0) be an index pair for an isolated invari-
ant set S = Inv(P1\P0, f) and let fP∗ : H∗(P1, P0;Z) → H∗(P1, P0;Z) be the
map induced by fP on the relative homology groups H∗(P1, P0;Z). The Conley
index of S is the shift equivalence class [fP∗]s of fP∗.

Intuitively, two maps fP∗ and gP̄∗ are shift equivalent if and only if they have
the same assymptotic behavior. Note that since an index pair for an isolated
invariant set is not unique, the Conley index of an isolated invariant set does
not depend on the choice of index pair.

The key property of the Conley index is that it says something about the
dynamics of f . In particular, if the index is nontrivial, so are the dynamics.
This is the so-called Ważewski property:

Theorem 2.11. If [fP∗]s 6= [0]s, then S 6= ∅.

Since similar assymptotic behavior relates two different maps in the same
shift equivalence class, it is sufficient then to have a map fP∗ not be nilpotent
in order to have a non-empty isolated invariant set. In practice, non-nilpotency
can be verified by taking iterates of a representative of [fP∗]s until non-nilpotent
behavior is detected.

Corollary 2.12. Let K ⊂ M be the finite union of disjoint, compact sets
K1, . . . ,Km and let S = Inv(K, f). Let S′ = Inv(K1, fKm ◦ · · · ◦fK1) ⊂ S where
fKi denotes the restriction of f to Ki. If

[(fKm ◦ · · · ◦ fK1)∗]s 6= [0]s,

then S′ is nonempty. Moreover, there is a point in S whose trajectory visits the
sets Ki in such order.

This corollary is used heavily to in our computational proofs of symbolic
dynamics. What makes the implementation possible is an efficiently-computable
sufficient condition for non-nilpotency. For more details on the implementation,
see [4].

2.4 Combinatorial structures

The concepts from discrete Conley index theory from the previous section have
analogs in a combinatorial setting which is much more natural from a compu-
tational perspective.

Definition 2.13. A multivalued map F : X ⇒ X is a map from X to its
power set, so that F (x) ⊂ X. If F is acyclic and we have f(x) ∈ F (x) for some
continuous, single-valued map f , then F is an enclosure of f .
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One reason multivalued maps and enclosures are used in our computations
is that, if constructed properly, they enable rigorous results. Moreover, if F is
an enclosure of f and (P0, P1) is an index pair for F (as we will define below),
then it is an index pair for f . It follows that the information contained in the
Conley index of F translates back to the dynamics of f .

We begin by setting up a grid G on M , which is a compact subset of the n
dimentional manifold M composed of finitely many elements Bi. Each element
is a cubical complex, hence a compact set, and it is essentially an element of
a finite partition of a compact subset of M . In practice, all elements of the
grid are rectangles represented as products of intervals (viewed in some nice
coordinate chart); that is, for Bi ∈ G, Bi =

∏n
k=1[xik, y

i
k]. We refer to each

element of G as a box. In our setting, for each k the interval widths yik − xik
are the same for all i, meaning the dimensions of all boxes are the same, but
this is in no way necessary. For a collection of boxes K ⊂ G, we denote by |K|
its topological realization, that is, its corresponding subset of M . From now on
we will use caligraphy capital letters to denote collections of boxes in G and by
regular capital letters we will denote their topological realization, e.g., |Bi| = Bi.

In our setting, we create a grid by selecting one box B such that |B| encloses
the entire area we wish to study. Then we subdivide B evenly d times in each
coordinate direction in order to increase the resolution at which the dynamics
are studied. The integer d will be refered to as the depth. Thus working at
depth d gives us a maximum of 2dn (where n = dimM) boxes with which to
work, each coordinate of size 2−d relative to the original size of the box B.

Definition 2.14. A combinatorial enclosure of f is a multivalued map F : G ⇒
G defined by

F(B) = {B′ ∈ G : |B′| ∩ F (B) 6= ∅},
where F is an enclosure of f .

We construct combinatorial enclosures as follows. Given any B ∈ G, we
define F (x), x ∈ B = |B|, as the image of B using a rigorous enclosure for the
map f . This rigorous enclosures is obtained by keeping track of the error terms
in the computations of the image of a box and ensuring that the true image
f(B) is contained in |F(B)|. In particular, we the interval arithmetic library
Intlab [21] to provide this guarantee. Note that immediately |F| becomes an
enclosure of f .

Definition 2.15. A combinatorial trajectory of a combinatorial enclosure F
through B ∈ G is a bi-infinite sequence γG = (. . . ,B−1,B0,B1, . . . ) with B0 = B,
Bn ∈ G, and Bn+1 ∈ F(Bn) for all n ∈ Z.

The definitions which follow are by now standard in the computational Con-
ley index literature. We will state definitions and refer the reader to [4] for the
algorithms which construct the objects defined.

Definition 2.16. The combinatorial invariant set in N ⊂ G for a combinatorial
enclosure F is

Inv(N ,F) = {B ∈ G : there exits a trajectory γG ⊂ N}.
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Definition 2.17. The combinatorial neighborhood or one-box beighborhood
of B ⊂ G is

o(B) = {B′ ∈ G : |B′| ∩ |B| 6= ∅}.

Definition 2.18. If
o(Inv(N ,F)) ⊂ N

then N ⊂ G is a combinatorial isolating neighborhood for F .

Definition 2.19. A pair P = (P1,P0) ⊂ G is a combinatorial index pair for
the combinatorial enclosure F if its topological realization Pi = |Pi| is an index
pair for any map f for which F is an enclosure.

We have now made all definitions necessary to define the discrete Conley
index. Note however that computing the induced map on homology is a difficult
task in and of itself. For a thorough treatment of computational homology,
dealing with this and other applications, see [14]. For our computations, we
use the homcubes package, part of the software package CHomP [10], which
computes the necessary maps on homology to define the Conley index.

3 Simplifying Subshifts

Given a subshift of finite type (XG, σG) for a graph G, it is often of inter-
est to know whether there is a graph H on fewer vertices such that (XG, σG)
and (XH , σH) are conjugate. To this end, we recall the notion of strong shift
equivalence, which is stronger than shift equivalence from Definition 2.9.

Definition 3.1 (Strong shift equivalence). Let A and B be matrices. An ele-
mentary shift equivalence between A and B is a pair (R,S) such that

A = RS and B = SR. (3)

In this case, we write (R,S) : A→ B. If there is a sequence of such elementary
shift equivalences (Ri, Si) : Ai−1 → Ai, 1 ≤ i ≤ k, we say that A0 and Ak are
strongly shift equivalent.

This notion is useful because of the following result due to R. F. Williams
relating shift equivalence to symbolic dynamics.

Theorem 3.2 ([24]). For directed graphs G and H, the corresponding subshifts
(XG, σG) and (XH , σH) are conjugate if and only if the transition matrices of
G and H are strongly shift equivalent.

Theorem 3.2 allows us to prove that two subshifts are conjugate by a se-
ries of simple matrix computations. Finding matrices that give a strong shift
equivalence, however, can be a very difficult problem. Two methods of finding
such equivalences are given in [15]: state splitting, where a single vertex is split
into two, or state amalgamation, where two vertices are combined into one. In
graph-theoretic terms, amalgamating two vertices is equivalent to contracting
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them, or contracting the edge between them. In general obtaining the smallest
element of a strong shift equivalence class may involve both splittings and amal-
gamations. We instead focus on the simpler problem of obtaining H only by
amalgamating vertices in G. This also has the advantage of producing a matrix
that is more useful for our needs in this paper (see Section 4).

Let A be the binary n × n transition matrix for G. The following two
conditions, adapted from [15], will allow us to amalgamate vertices i and j.

Forward Condition: A~ei = A~ej and (~e>i A) · (~e>j A) = 0 (4)

Backward Condition: ~e>i A = ~e>j A and (A~ei) · (A~ej) = 0 (5)

Here ~ei denotes the column vector with a 1 in position i and zeros elsewhere.
From a graph-theoretic or dynamical systems point of view, the forward con-
dition says that i and j have the same image but disjoint preimages, and the
backward condition says they have the same preimage but disjoint images. See
Figure 2 for an example.

a

b c

⇒ b ac

Figure 2: A forward amalgamation

Note that the backward condition for A is the same as the forward condition
for A>. The following result allows us to reduce A to a smaller n− 1 by n− 1
matrix B if either of these conditions are satisfied for some pair of vertices. See
e.g. [15, §2] for a proof.

Theorem 3.3. If i and j satisfy the forward condition (4) or backward condition
(5) for a transition matrix A, then there is an elementary shift equivalence from
A to the matrix obtained by amalgamating i and j.

By applying Theorem 3.3 repeatedly, as long as there exist i, j satisfying
either contraction condition, one can reduce A to a much smaller representative
of its strong shift equivalence class. The resulting matrix B at the end of
this process corresponds to a subshift (XH , σH) which is therefore conjugate to
(XG, σG).

For small enough matrices it is feasible to perform a simple brute-force search
to find the smallest B which can be obtained from A via amalgamations, but
we would like a more efficient algorithm for larger matrices. Unfortunately
it is shown in [9] that it is NP-hard (computationally intractable) to find an
ordering of amalgamations which yields the smallest representative. In light of
this result, we use the procedure outlined in Algorithm 1, which is a essentially
a randomized greedy algorithm performed many times. Taking the number of
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Algorithm 1 simplify subshift: Amalgamating a subshift of finite type

Input: subshift T ∈ {0, 1}n×n, number of trials K
Tmin ← T
for k from 1 to K do
π ← random permutation(n)
Tπ ← T (π, π) {relabel vertices}
repeat
amalgamated ← false

for (i, j) ∈ E(Tπ) ordered lexographically do
if conditions (4) or (5) hold for A = Tπ then
Tπ ← amalgamate(Tπ, i, j)
amalgamated ← true

break for
end if

end for
until not amalgamated {no further amalgamations}
if size(Tπ) < size(Tmin) then
Tmin ← Tπ

end if
end for
Output: Tmin

trials k to be about n2 will typically give a good approximation factor, meaning
that if m amalgamations are possible, the algorithm will perform roughly m/3 or
m/2 amalgamations. It remains an open question whether an algorithm exists
which has a provable approximation guarantee.

4 Techniques

Given a continuous map f : X → X, we will apply discrete Conley index theory
to compute subshifts of finite type to which f is semi-conjugate. This is the
approach of the DFT method, which we describe first in Section 4.1. We also
add a handful of new techniques and algorithms which we present in Sections 4.2
and 4.3. Finally, we discuss implementation and efficiency details in Section 4.4.

4.1 The DFT method

To obtain lower bounds on topological entropy, we compute a semi-conjugate
symbolic dynamical system using the approach described in [4], which is based
on the discrete Conley index. The technique consists of three main steps:

1. Discretize a compact subset of the phase space by constructing a grid G of
boxes, and compute a rigorous enclosure for the dynamics on these boxes
as described in Section 2.4.
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2. Find a combinatorial index pair from these boxes and determine the Con-
ley index for this pair using [18].

3. From the index, compute a subshift to which the original system is semi-
conjugate.

This approach is very general, and in principle could be applied to systems of
arbitrary dimension. A major benefit to using this method here, however, is
that in our setting it is completely automated. As long as one knows roughly
where in the phase space the invariant objects of interest are, one can simply
plug in the parameters and compute. See Section 4.4 for more details on the
implementation.

An advantage to studying hyperbolic parameters of Hénon map (1) for |b| ≤ 1
is that the nonwandering set is disconnected. This follows from Plykin theory,
as discussed in [20, §7.9], from which we know that any connected trapping
region (a region N with f(N) ⊂ int(N)) of the attractor has at least three
holes. Considering a disc covering such a hole, we see that since the image each
hole must strictly cover another hole, an iterate of this disk must eventually
expand, which contradicts the area-preserving or area-shrinking of the maps we
are considering. Thus, all such trapping regions must be disconnected.

Since the nonwandering set is disconnected, we can bypass much of the
complication in the second step of the DFT method, that of finding an index
pair. This is because the invariant set will be naturally isolated; at a fine enough
resolution, the collection of boxes that cover the invariant set will already be
separated into disjoint regions.

4.2 Reducing large subshifts

When applying the DFT method to complex systems, the resulting semi-conjugate
subshift (step 3 above) is often very large. In fact, the main result in [4] is shown
via a subshift with 247 symbols. Such large subshifts can have limited practi-
cal value; they provide a topological entropy bound and information about the
number of orbits of a given period, but these large subshifts often carry little
intuition about the underlying structure of the dynamics. The question then
becomes, how can we distill more useful information from these large subshifts
to get a more intuitive understanding of the system?

The answer we propose here is to simplify the resulting subshift using amal-
gamations, as described in Section 3. Specifically, we add a final step to the
DFT method, where we run the semi-conjugate subshift obtained through Al-
gorithm 1. As we will see in Section 5, in practice this procedure can greatly
reduce the number of symbols required to describe the system. In some cases
this simplification reveals a simple underlying structure, such as connections
between a handful of low-period orbits, which would otherwise be impossible
to glean from the 200+ symbols of the original subshift. This simplification
is also useful in comparing our results to previous work and conjectures; using
Algorithm 1, one can attempt to amalgamate our computed subshift A to yield
a target subshift B (where here we identify subshifts with their corresponding
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Figure 3: Sensitivity of the entropy bound with respect to the aspect ratio (a)
and the area (b) of the boxes. The map used was Hénon (1) with parameters
(5.685974, -1), or plateau 14 from Section 5.1.

transition matrices). We apply this technique in Section 5.1; see Figure 8 in
particular.

As a final note, recall that the subshift generated by the DFT method has
a useful geometric interpretation: from [4] we know that we can associate a
region Ni of the phase space to each symbol si of the subshift A, such that
any trajectory (. . . , s−2, s−1, s0, s1, s2, . . . ) in A corresponds to a trajectory in
the original system through the regions (. . . , N−2, N−1, N0, N1, N2, . . . ). For-
tunately, amalgamation (and thus Algorithm 1) preserves this property in the
following sense. If A′ is derived from A by a sequence of amalgamations, each
symbol s′i of A′ can be expressed as an amalgamation of symbols of A. Taking
N ′i to be the union of the regions corresponding to these symbols, it is easy to
see that the same trajectory property holds for A′.

4.3 Robustness and scaling

A natural concern for any approach which involves discretizing the phase space
is the robustness of the method with respect to the choice of discretization. In
our setting, this discretization is determined by the resolution (depth), aspect
ratio1, and the precise placement of the grid G.

Ideally, slight changes in these scaling parameters would have at most minor
effects on the resulting subshift or entropy bound, but there are several reasons
why this is unreasonable to expect. Perhaps most obvious is that a subshift of
finite type is a discrete object, and one cannot expect any sort of continuity in
the scaling parameters when the output itself is discrete. More to the point, the
combinatorial isolation of the index pair depends on the topological properties
of rigorous numerical bounds on the images of boxes, which can be very sensitive

1We will use this term to refer to the shape of the boxes in higher dimensions as well.
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to the precise grid parameters. A simple example is in achieving disjoint regions;
when trying to separate regions A and B of the phase space with dist(A,B) = d,
using a grid whose boxes Bi have width yik−xik = 4d in each dimension k, great
care must be taken in placing the grid, or the entire index pair could degenerate.
More subtle is a situation where the combinatorial image of A does not overlap
B, but does after a slight shift or rescaling of the grid. These issues bring
into question the practical robustness of the DFT method with respect to these
scaling parameters.

To measure this robustness, we plot the computed entropy lower bound for
a particular Hénon map against the area and the aspect ratio of the boxes in
Figure 3. There we define w1 = yi1 − xi1 and w2 = yi2 − xi2 to be the width of
a box Bi in dimensions 1 and 2, respectively (recall that in our setting these
are independent of i). The grid resolution may be defined as − 1

2 log2 w1w2, or
more generally as − 1

n log2 V (Bi), where V denotes the n-dimensional volume.
We choose the this formula so that after normalizing by the volume of the some
fixed box B the notions of resolution and depth align.

Of course, the DFT method may behave very differently on other maps,
but the behavior shown is quite typical: the entropy lower bound is roughly
monotone increasing with respect to the resolution, and (very) roughly unimodal
with respect to the aspect ratio. This behavior is not surprising; the error from
discretization decreases with the box area, and both extremes of the aspect
ratio (i.e. w1 >> w2 and w2 >> w1) should result in essentially 1-dimensional
information and hence a trivial entropy lower bound for most maps.

While the DFT method appears to be relatively robust with respect to the
grid resolution, Figure 3(a) clearly shows a high sensitivity to the aspect ratio.
Specifically, small changes in the aspect ratio at depth 9 resulted in large jumps
in the entropy lower bound, even when close to the optimal ratio. While the
behavior at depth 10 is somewhat more typical, this sensitivity is still something
to keep in mind. In particular, for the sake of replication, care should be taken
when altering and storing the aspect ratio.

To find an appropriate aspect ratio for a given map, one can perform a scaling
parameter exploration at a lower depth, similar to the one in Figure 3(a). This
can be expensive for higher-dimensional systems, however. In such cases it may
be useful to use the following technique:

1. Start at an initial aspect ratio and compute a semi-conjugate subshift
using the DFT method.

2. Use Algorithm 1 or a brute-force search to simplify the subshift, keeping
track of the regions which were amalgamated.

3. Examine the amalgamations that were performed, and note whether any
particular dimension was amalgamated along more than another; if so,
scale the boxes down in that direction and repeat from step 1.

This approach is motivated by the intuition that amalgamations should identify
scaling imbalances: if the boxes are too small in a particular dimension, the
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index pair will likely be amalgamated along that dimension (or more precisely,
the symbols corresponding to those index pair regions).

Note also that one can scale a map in a non-constant fashion to better align
it with the grid; consider the following map, which is just the Hénon map (1)
conjugated by the map g(x, y) = (exp(cy)x, y).

f(x, y) =
(

(a− (exp(cy)x)2 + by) exp(−c exp(cy)x), exp(cy)x
)

(6)

Certainly for large values of c, this map would be more aptly analyzed by first
conjugating by g−1. More generally, such non-constant scaling may be used to
focus on areas af the phase space where isolation is more difficult.

We now return to the resolution scaling discussed above. As mentioned, the
DFT method is surprisingly robust with respect to the resolution of the grid, and
the entropy bound is roughly monotone increasing with the resolution. Similar
plots shown in [4] suggested monotonicity, but had insufficient data; it is likely
that a continuous resolution scaling would fill in these plots to reveal a rough
monotonicity in that case as well.

This monotonicity is of course beneficial behavior, as one would like the pre-
cision of the bound to increase with the precision of the box covering, but it
is especially useful in hyperbolic settings. By [20, Theorem 9.6.1], hyperbolic
systems admit a finite Markov partition of the invariant set, and since the non-
wandering set is disconnected (see above), in theory this partition is obtainable
when the boxes are small enough. Thus we expect to obtain the true entropy
value at a high enough resolution, and by seeing where the entropy levels off we
can be confident, though not certain, that our lower bound is the actual value.
We will apply this intuition in Section 5.

4.4 Implementation and efficiency

The computations in this paper were performed in Matlab, using Intlab [21],
GAIO [6], and CHomP [10]. The machines used had memory between 1 and 2
gigabytes and clock speeds between 1 and 2.2 gigahertz. The runtimes varied,
as we will describe below, but ranged from a few seconds at low grid resolutions
to several hours for high resolutions.

As mentioned above, it is useful to observe how the entropy bound changes as
we increase the grid resolution, but of course this procedure is not without cost.
One would expect the runtime of the bound computation to increase, perhaps
dramatically, with the resolution of the discretization. Empirically, the running
time seems to grow roughly as nr where n is the dimension of the invariant set,
and r is the resolution of the grid, as defined above.

Fortunately, as we have mentioned several times, the DFT method and the
new techniques we add here are all completely automated. By this we mean
that one needs only to specify the map and the parameters to be studied (and
the discretization parameters discussed above), and the rest of the computation,
all the way to the semi-conjugate subshift, is done without any further human
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Figure 4: Hyperbolic plateaus for Hénon from [1], with a on the horizontal
axis and b on the vertical axis. The label for each plateau is centered over the
parameter values used to represent the plateau.

action or input. Thus, although the computations may be time-consuming for
high resolutions, it is computation time, not human time.

This lack of manual intervention enables vast explorations of map and dis-
cretization parameters. For this paper, a total of 58 parameter values of the
Hénon map were studied: 43 in Section 5 and 15 in Section 5.1. For each of the
58 parameter values, we computed entropy bounds at 64 or 72 different reso-
lutions, yielding a total of over 3900 separate computations. This exploration
would have been infeasible without complete automation (or a large team of
researchers).

5 Hyperbolic plateaus of Hénon

We now apply the methods outlined in Section 4 to the real-valued Hénon map

fa,b(x, y) = (a− x2 + by, x) (7)

for parameter values (a, b) such that fa,b is (uniformly) hyperbolic. Note that
this excludes the classical parameters (1.4, 0.3); for rigorous topological lower
bounds in the classical case, see [4] and [17].

Using the hyperbolic plateaus of Arai, we select representative parameter
values to study for each plateau, as shown in Figure 4. For each plateau, we
use the continuous resolution scaling approach mentioned in Section 4.3, to get
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Figure 5: Rigorous lower bounds for topological entropy for the hyperbolic
plateaus labeled 1 through 43 in Figure 4.
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a feel for how close our bounds might be to the actual values. The entropy
bounds we compute constitute our main result, summarized in Theorem 5.1.

Theorem 5.1. Let Fi = {fa,b | (a, b) ∈ Ri}, where Ri is the ith plateau in
Figure 4. Then for all i and all f ∈ Fi we have h(f) ≥ hi, where the hi are
defined below:

h1 = 0.6931 h5 = 0.6291 h6 = 0.4639 h7 = 0.5403 h8 = 0.5277
h9 = 0.5270 h10 = 0.4333 h11 = 0.6774 h12 = 0.5967 h13 = 0.5134
h14 = 0.5549 h15 = 0.4189 h16 = 0.5723 h17 = 0.5904 h18 = 0.5193
h20 = 0.6578 h21 = 0.4295 h22 = 0.4496 h23 = 0.5808 h24 = 0.6469
h26 = 0.6076 h28 = 0.4295 h29 = 0.6087 h30 = 0.3693 h31 = 0.3503
h33 = 0.5403 h34 = 0.4035 h36 = 0.4890 h37 = 0.4295 h39 = 0.6347
h40 = 0.5546 h41 = 0.6544 h42 = 0.6289 h43 = 0.6653.

Proof. For each Ri we selected (ai, bi) ∈ Ri as a representative (these choices are
shown in Figure 4). We then computed the map on boxes for fai,bi at different
resolutions, and for each resolution we computed a rigorous lower bound for
topological entropy using the DFT method; these bounds are summarized in
Figure 6. Finally, by [1] we know each Ri is (uniformly) hyperbolic and so for
each i we can apply the maximum lower bound achieved for (ai, bi) to all of
Ri.

Figures 1 and 5 show an overview of our results. Note that the entropy
values shown are merely lower bounds, and not necessarily the true values.
Since we are computing these bounds for hyperbolic parameter values, however,
we know from Section 4.3 that if our entropy lower bound levels off as the grid
resolution increases, we have strong evidence that we have obtained the correct
value. Typical index pairs from these computations are shown in Figure 7, with
colored regions corresponding to symbols in the resulting subshift.

In Figure 6, we show plots of entropy bounds computed versus the resolution,
for each of the 43 parameter values with a nonzero bound. Using the above
heuristic, it seems that for most of the plateaus, the bounds we computed should
be exact or very close. A few notable exceptions are plateaus 9, 10, 21, 28, 30,
and 31, since the plots do not seem to have leveled off, and we would expect
many of these bounds to improve with further computations. For plateaus 33,
34, 36, 37, and 39, it is unclear whether the plot has leveled off. As we saw in
Section 4.3, the DFT method is fairly robust with respect to the grid resolution,
and the entropy lower bound is roughly monotonic in the resolution. The plots
in Figure 6 reaffirm this, with very few exceptions.

While we have computed a large array of lower bounds, covering a vast
portion of the parameter space of the Hénon map, a recent result of Arai gives a
method of rigorously computing exact entropy values for (uniformly) hyperbolic
Hénon [2]. In fact, in that work he computes values for plateaus numbered 5,
7, 11, and 12 in Figure 4, which match our lower bounds exactly. In that it
computes exact entropy values, the method of [2] is certainly superior to the
DFT method in the case we study here, and indeed it would be very interesting
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Figure 7: Two index pairs from the computations. The black is the exit set
P0 while the colors correspond to the amalgamated regions after applying Al-
gorithm 1.

to use it to test the accuracy of our other bounds. However, it is important
to note that since the method of [2] relies heavily on hyperbolicity, it is not as
generally applicable. In particular, it could not be applied to the Hénon map
for the classical parameter values, studied in [4], as the map is not uniformly
hyperbolic for those parameters.

While much of the parameter space in Figure 5 is covered by our lower
bounds, there is still much of the parameter space which is not hyperbolic, or
has not yet been proven to be hyperbolic. Thus, it remains in future work to
lower-bound the entropy in the remaining white regions. At first this seems like
a daunting or impossible task, since in the nonhyperbolic regions, we no longer
have plateaus of topological entropy, and thus cannot extend a bound from a
single set of parameters to an entire region. Fortunately, the DFT method can
be applied to intervals of parameter values [a1, a2] × [b1, b2], yielding a single
lower bound which applied to the entire interval, as demonstrated in [4] and [8].
Thus, it would be of great interest to compute lower bounds on an interval
tiling of the Hénon parameter space, and then compare these bounds to those
computed here; as mentioned in Section 4.4, the complete automation of our
method enables such parameter explorations.

5.1 Area-preserving Hénon maps

When b = −1, the Hénon maps are area-preserving and orientation-preserving.
This case has been well-studied, especially in the Physics literature. Starting
in 1991, Davis, MacKay, and Sannami (DMS) [3] conjectured that Hénon was
hyperbolic for three values of a (5.4, 5.59, 5.65) and conjectured conjugacies
to symbolic dynamics for these three values as well. In 2002, de Carvalho and
Hall in [5] replicated the results for a = 5.4 using a pruning approach. In 2004,
Hagiwara and Shudo in [12] used a different pruning method to replicate all
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(a) The matrix TDFT



1 1 0 0 0 0 0 0
0 0 0 1 1 0 1 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 1


(b) The matrix TDMS from [3]

Figure 8: Amalgamation of the 42× 42 symbol matrix obtained using the DFT
method. The black squares in (a) denote the nonzero entries of TDFT while
the gray regions represent the amalgamated symbols, which one can easily see
match TDMS exactly.

three of the values that DMS studied, and two more. They also give estimates
of the topological entropy for 4 ≤ a ≤ 5.7, which are displayed in Figure 10.
Finally in 2007 some rigorous results appeared by Arai in [1], where he proved
that there are 16 hyperbolic regions for b = −1, covering the parameters studied
by DMS and the two others studied by Hagiwara and Shudo. Arai goes on in [2]
to prove that the subshift conjectured by DMS for a = 5.4 is actually conjugate.

While our method cannot prove exact topological entropy values or conju-
gacies, we can attempt to verify that the entropy of the subshifts given in [3]
are lower bounds, and perhaps show that the subshifts themselves are semi-
conjugate. We focus first on the a = 5.4 case, where Davis et al. conjectured
that fa is conjugate to the subshift corresponding to the transition matrix TDMS

in Figure 8(b), which has topological entropy h(TDMS) ≈ 0.6774. Note that this
is the same plateau as plateau 11 from the previous section.

Using our technique, we prove that f5.4 is semi-conjugate to a 42×42 symbol
matrix TDFT, depicted in Figure 8(a). The topological entropy of this matrix is
the same value, h(TDFT) ≈ 0.6774. The fact that h(TDMS) = h(TDFT) suggests
that the subshifts given by TDMS and TDFT might be conjugate, and indeed we
prove this in Theorem 5.2.

Theorem 5.2. The map f5.4 is semi-conjugate to the subshift TDMS given in
Figure 8(b). Moreover the symbols of TDMS correspond to the regions labeled in
Figure 9, which are the same regions conjectured by DMS.

Proof. Applying Algorithm 1 to TDFT, we obtain a strong shift equivalence
between TDMS and TDFT, which shows that the corresponding subshifts are
indeed conjugate. Moreover, the amalgamated vertices can be chosen so that
we obtain the same partition that was used by Davis et al., which is shown in
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to indicate the symbols for the smaller, shift-equivalent symbol system.

Figure 9, with the regions labeled so as to match the symbols (row indices) of
TDMS.

Our method also gives lower bounds which match the values conjectured by
Davis et al. for a = 5.59 and a = 5.65, as well as the value conjectured by
Hagiwara and Shudo for a = 4.58. In addition to the these values, we also focus
on 11 other values, which all together correspond to the first 15 area-preserving
plateaus computed by Arai (the 16th is the maximal entropy plateau, which is
plateau 1 in the previous section). Our results are summarized in the following
theorem.

Theorem 5.3. The following entropy bounds hold for the Hénon maps fa =
fa,−1. Here we write h(f[a0,a1]) ≥ v to mean ∀a ∈ [a0, a1], h(fa) ≥ v.

1. h
(
f[4.5383, 4.5386]

)
≥ 0.6373 2. h

(
f[4.5388, 4.5430]

)
≥ 0.6373

3. h
(
f[4.5624, 4.5931]

)
≥ 0.6391 4. h

(
f[4.6189, 4.6458]

)
≥ 0.6404

5. h
(
f[4.6694, 4.6881]

)
≥ 0.6429 6. h

(
f[4.7682, 4.7993]

)
≥ 0.6459

7. h
(
f[4.8530, 4.8604]

)
≥ 0.6466 8. h

(
f[4.9666, 4.9692]

)
≥ 0.6527

9. h
(
f[5.1470, 5.1497]

)
≥ 0.6718 10. h

(
f[5.1904, 5.5366]

)
≥ 0.6774

11. h
(
f[5.5659, 5.6078]

)
≥ 0.6814 12. h

(
f[5.6343, 5.6769]

)
≥ 0.6893

13. h
(
f[5.6821, 5.6858]

)
≥ 0.6893 14. h

(
f[5.6859, 5.6860]

)
≥ 0.6893

15. h
(
f[5.6917, 5.6952]

)
≥ 0.6893

Proof. Using the DFT method, we computed bounds for a single a value for
each plateau; the representatives chosen were the following: 4.5385, 4.5409,
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Figure 10: Topological entropy of the area-preserving Hénon maps, where b =
−1. The estimates produced by Hagiwara and Shudo are in blue, and our
rigorous lower bounds are in green.

4.5800, 4.6323, 4.6788, 4.7838, 4.8600, 4.9679, 5.1483, 5.4000, 5.5900, 5.6500,
5.6839, 5.6859, 5.6934. Combining these bounds with the hyperbolic plateaus
computed in [1], and using Theorem 2.4, we can extend the bounds to their
corresponding plateau.

Figure 10 shows a plot of the lower bounds from Theorem 5.3, shown against
the estimates computed by Shudo and Hagiwara in [12]. The 4 cases discussed
above correspond to plateaus 3, 10, 11, and 12. For these plateaus, our lower
bounds match the estimates exactly, and our bounds for plateaus 4, 5, and 6
are very close. This is roughly what we expect given the resolution plots shown
in Figure 11. An interesting trend we see in these data is that the algorithm
performed better on the larger plateaus. This is perhaps because the stable and
unstable manifolds seem to be more transverse the farther the parameters are
from a bifurcation, thus making it easier to isolate the important regions of the
phase space.
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