Computational Complexity of £-Block Conjugacy

Tyler Schrock Rafael Frongillo
University of Colorado, Boulder

September 4, 2020

Abstract

We consider several computational problems related to conjugacy between sub-
shifts of finite type, restricted to k-block codes: verifying a proposed k-block con-
jugacy, deciding if two shifts admit a k-block conjugacy, and reducing the represen-
tation size of a shift via a k-block conjugacy. We give a polynomial-time algorithm
for verification, and show GI- and NP-hardness for deciding conjugacy and reduc-
ing representation size, respectively. Our approach focuses on 1-block conjugacies
between vertex shifts, from which we generalize to k-block conjugacies and to edge
shifts. We conclude with several open problems.

1 Introduction

One-dimensional subshifts of finite type (SFTs) are of fundamental importance in the
study of symbolic dynamical systems. Despite their central role in symbolic dynamics,
however, several basic questions about SF'Ts remain open, particularly with regard to
computation. Most prominent is the conjugacy problem: whether it is possible to de-
cide if two given SF'Ts are conjugate. In this work, we study restricted versions of the
conjugacy problem, with an eye toward applications (algorithms to simplify represen-
tations of SFTs) as well as developing insights toward the full conjugacy problem. In
particular, we address the computational complexity of deciding or verifying conjugacy
when given a bound on the block size of the corresponding sliding block code. We focus
on the case of vertex shifts; see below for other representations, notably edge shifts.

First consider the question of verification: given two vertex shifts and a proposed
sliding block code, what is the computational complexity of verifying that the code
induces a conjugacy? A polynomial-time algorithm is known for the irreducible case;
we give a polynomial-time algorithm for the general case (§3). Second, the question of
deciding k-block conjugacy: given two vertex shifts, what is the complexity of deciding if
there exists a sliding block code, with block length at most k, that induces a conjugacy?
By the first result on efficient verification, this problem is in NP; we show it to be Gl-
hard (at least as hard as the Graph Isomorphism problem) for all £ > 1 (§4). Third,
the question of reduction: given a vertex shift and integer ¢, what is the complexity of
deciding whether there exists a k-block conjugacy which reduces the number of vertices
by ¢7 Extending a construction from previous work [5], we show that this problem, for
k =1, is NP-complete (§5). Similar problems have been studied for higher-dimensional
shifts, and are generally ¥.9-complete or harder [1, 7, 13, 20].

It is interesting to contrast our results with those of the recent work [5], which
studies the special case k = 1 with the restriction that the block code be a sequence of

amalgamations. (Recall that any conjugacy can be expressed as a sequences of split-
tings followed by amalgamations; see § 2.) This previous work shows that the analogous
version of our third problem, of reducing the number of vertices using only amalga-
mations, is NP-complete, but it does not address the verification problem; intuitively
it seems plausible that verification would also be NP-hard. Returning to our setting,
note that general 1-block codes need not be sequences of amalgamations (Figure 1).
Thus, while it is unsurprising that the reduction problem remains NP-hard in our set-
ting, it was perhaps unclear whether verification could be done in polynomial time, as
a priori the number of splittings required could be super-polynomial. Finally, recent
related work shows the decidability of conjugacy via higher-block codes, though the
computational complexity of this problem is not discussed [3].

Edge shifts have received more attention in the literature, perhaps because of their
succinct representations as integer matrices. Precisely because of their succinct repre-
sentations, the question of verification is somewhat nuanced: verifying a given sliding
block code requires writing down the proposed code, which can be exponential in the
description size of the original edge shifts, so while the runtime of our algorithm can
be exponential in the description sizes of the shifts, it is still polynomial-time (§6).
We also show Gl-hardness for the corresponding conjugacy problems, and leave several
open questions (§7).

2 Setting

We begin with basic graph-theoretic definitions and convention. A directed graph
G = (V,E) is a set of vertices V along with a set of edges £ C V' x V. When multiple
graphs are in play, we will write G = (Vig, Eg) to clarify which graphs the vertices or
edges correspond to. For a directed graph G = (V, E) and a vertex v € V, we define
Nt(w)={u eV :(vu) € E} and N~ (v) = {u € V : (u,v) € E} to be the set of
out-neighbors and in-neighbors of v, respectively.

Unless specified otherwise, a cycle of length n will mean a sequence vive -+ v, € V
such that (v;,v;+1) € E fori € {1,...,n+1} where v,41 := v1. That is, vive - v, is a
cycle in our terminology if the path vivy - --v,v; forms a cycle in G. We define C,,(QG)
to be the set of cycles of length n in G = (V| E). Cycles are words (see below), and in
particular a graph-theoretic cycle corresponds to multiple cycles in our terminology. For
example, if the path vyvovgv; forms a cycle in G, then vivovs, vovzvy, V3V1V2 € C3(G).

Let A be a finite set. The full shift A% over alphabet A is the set {(x;)icz : 7; €
A for all i € Z}. An element of A” is called a point. A block (or word) in A is a string
aias - - - ap of symbols from A. We will use the term infinite word to describe strings
in A which are infinite in exactly one direction. If z = (z;);ez € A%, we use T[qp for
a < b to denote the block x4xq1 -+ xp. Similarly, we use z[,) to denote the infinite
word T,Tq+1---. Let F be a set of blocks over A called forbidden blocks. Then Xr
is defined to be the subset of A% where each € X contains none of the forbidden
block in F. A shift space (or shift) is a subset X C A% such that X = X7 for some
set of forbidden blocks F. If there exists a finite set F such that X = Xz, then X is
called a shift of finite type.

Given a directed graph G = (V, E), we associate to it the shift space X¢ = {(v;)icz :
v; € V, (vi,vi41) € E for all ¢ € Z}, which is the collection of all bi-infinite walks on G.
Note that X¢ is a shift of finite type with F = {v;v; : (v;,v;) ¢ E}. Any shift space
of this form is called a vertezr shift. Similarly, given a directed multigraph G = (V, E),
i.e. where F is a multiset, and an injective labeling of the edges from A, we define the

edge shift X¢, of labelings of bi-infinite walks on G. Again edge shifts are shifts of finite
type with F = {ejea : e; does not terminate at the initial vertex of es}.

A shift X is irreducible if for every pair of words wi,ws appearing in any points
in X, there is a word ws such that wiwsws appears as a word in some point in X.
Similarly, X is reducible if it is not irreducible. In graph-theoretic terms, first consider
any graph containing a vertex with either no out-neighbors or no in-neighbors. Such a
vertex is called stranded. A graph (or multigraph) with no stranded vertices is called
essential. A graph (or multigraph) with the property that for every pair of vertices
u,v there is a path from u to v is called strongly connected. Finally, a vertex shift
X¢ (or edge shift X¢) is irreducible if G is essential and strongly connected. Even
more, note that no point in X¢ (or X§&) can pass through a stranded vertex and that
stranded vertices can be efficiently trimmed from G (in an iterative fashion) to create
an essential graph. Thus we assume without loss of generality that any directed graph
(or multigraph) representing a (irreducible or reducible) vertex shift (or edge shift) is
essential.

Given a shift X with alphabet A;, we can transform X into a shift space over
another alphabet As in the following way. Fix integers m,a with —m < a. Then
letting B,,(X) denote the set of blocks of size n from the shift X and given a function
® : Bntar1(X) — Ag, the corresponding sliding block code with memory m and
anticipation a is the function ® defined by ®oo((2:)icz) = (®(T[i—m i+a)))icz. That
is, @~ looks at a block of size m + a + 1 through a window to determine a character
from Ay. Then the window is slid infinitely in both directions. Letting k = m +a + 1,
we will call any sliding block code with window size k a k-block code. Given a sliding
block code as ® : A} — As, we extend ® to all finite and infinite words w of length at
least k by ®((wi)ier) = (®(Wji—m,ita)))i—m,i+acI, Where I C Z. That is, we extend ®
to words by sliding ® over the entire word.

A sliding block code @, : X — Y which is bijective is called a conjugacy. If the
conjugacy @, is a k-block code, we call ®, a k-block conjugacy. We note that every
conjugacy has an inverse conjugacy which is k’-block for some &’. Of particular concern
for this paper are 1-block conjugacies, where we specifically point out that the inverse
of a 1-block conjugacy is almost never 1-block.

Let X be any shift space with alphabet A;. We define the kth higher block shift
X with alphabet Ay = Bj(X) by the image of X under By : X — (Bi(X))% where
for any point p € X, Bn(p)i = pjiiyk—1)- If X = X happens to be a vertex shift,
we can construct the kth higher block shift in terms of the graph. For any directed
graph G, construct the graph GI¥ by Vo) = {v1---vg : v1--- v is a path in G} and
Eqw = {(viva- - vp, 02+ UpUk41) V1 Vg4 is a path in G}. Then Xgow = Xgﬂ.
When dealing with k-block codes, it is often useful to pass to a higher block shift by
noting that there is a k-block conjugacy ®, : X — Y if and only if there is a 1-block
conjugacy <I>([>ko] : XK — Y [12, Proposition 1.5.12].

Furthermore, any sliding block code ®, : X — X g between vertex shifts induces
the function @ : |J;2 | Cn(G) — s~ Cpn(H), which we define as follows. Given a cycle
c in G, there is a unique cycle d in H with |¢| = |d| such that ®(c*.c™) = d>.d*;
we set ®c(c) = d. Note that we have overloaded ¢ to mean both a right infinite and
a left infinite word; while the notation is overloaded, the meaning will always be clear
from context. In the special case of a 1-block code, the block map ® : A; — Ay is
simply a map between the alphabets. In this case, when X is a vertex shift, we have

Dc(vy---vp) = P(v1) -+ - P(vy).

Definition 1. Let X be a vertex shift. We say vertices u, v € Vg can be amalgamated
if one the following conditions is met.

1. Nt(u) = NT(v) and N~ (u) NN~ (v) =0
2. N“(u)=N"(v) and Nt (u) "N N*t(v) =0

We say u and v are amalgamated when they are replaced by the vertex uv which has
N*t(uv) = NT(u) UN*t(v) and N~ (uv) = N~ (u) U N~ (v).

Definition 2. Let X be a vertex shift. A vertex v € Vg can be split into two vertices
v1 and v provided the edges of vy, vy satisfy one of the following conditions.

1. {N*(v1), N*(vq)} is a partition of NT(v) and N~ (v1) = N~ (v2) = N~ (v).
2. {N~(v1), N~ (v9)} is a partition of N~ (v) and N*(v1) = NT(v3) = NT(v).

The corresponding new graph is called a state splitting of v. Note that state splittings
and amalgamations are inverse operations.

The definitions for edge shifts are similar. Since edges shifts are based on multi-
graphs, N~ (v) and N1 (v) are multisets. The definition of a state splitting is identical
noting that the partition is a multiset partition. For amalgamations, two vertices
u,v can be amalgamated if N~ (u) = N~ (v) or N*(u) = NT(v). In the case where
N~ (u) = N~ (v), u,v are replaced by a single vertex uv with N~ (uwv) = N~ (u) =
N~ (v) and N*(uv) = N*(u) & N*(v), where NT(u) & NT(v) is the multiset disjoint
union.

Theorem 3 ([12, 19]). Let X, X be vertex shifts (or edge shifts). Then X¢ and Xg
are conjugate if and only if there is a sequence of state splittings followed by a sequence
of amalgamations which transform G into H.

In the case of a 1-block code ® : Vi — Vi, we may view the block map as a partition
of the vertices of GG, where each element of the partition is converted to a vertex of
H. In light of Theorem 3, it may be tempting to think that every 1-block code can
be written as a sequence of amalgamations only, as intuitively splitting a vertex while
requiring the vertices be re-amalgamated has no benefit. Yet this statement is not true;
there are simple examples of two graphs admitting a 1-block conjugacy, where no pair
of vertices can be amalgamated in either graph (Figure 1).

We conclude the background with a common way a sliding block code can fail to
be injective. Given a k-block code ®,, : Xg — Xp, if there exist distinct words
wywews, wiwhws appearing in X with |wi| = |ws| = k, such that ®(wiwows) =
O (wiwhws), we say Doy collapses a diamond. As we now state, if a sliding block code
is injective, it cannot collapse a diamond. (As we discuss in §3.2, if ®. is injective,
collapsing a diamond is actually the only way ®., can fail to be injective.) We prove
the result for completeness; see, e.g., [12, Theorem 8.1.16] for a similar result in the
irreducible case.

Lemma 4. Let & : Xg — X be a k-block code. If ® collapses a diamond, then ®s
18 not injective.

(b) .

bide —— a

VAU

Figure 1: (a) Two vertex shifts which are conjugate by a 1-block code but not by
a sequence of amalgamations. In fact, one can verify by checking all smaller graphs
that this is a minimal such example. (b) The conjugacy, demonstrated via a splitting
followed by four amalgamations.

Proof. Suppose ® collapses a diamond. That is, ®(wjwows) = ®(wiwhws) for some
words wy,ws of length k£ and distinct words wo, w) in G. Consider any infinite word
wo which can precede wy and any infinite word w4 which can follow ws. Then we have
P oo (wowrwowzwy) = Poo (Wowrwhwswy), so Py is not injective. O

3 Verification: Testing a k-Block Map for Conjugacy

Given a pair of directed graphs G, H, and a proposed k-block map ®, we wish to verify
whether or not ® induces a conjugacy between the vertex shifts X4, X. We will focus
in this section on the case k = 1, as the case k > 1 follows immediately by recoding to
the kth higher block shift. When G and H are irreducible (strongly connected), this
problem boils down to checking that the two graphs have the same number of cycles of
each length up to some constant, and furthermore that ® induces an injection on these
cycles. Cycle counting can be done efficiently using powers of the adjacency matrices,
and an efficient injectivity check is given by Sutner [16]. We detail the full procedure
in §3.1 for completeness.

One may expect the general case, when G and H need not be strongly connected, to
be much more complex. Reducible vertex shifts are perhaps most naturally understood
by first decomposing them into irreducible components. As such, tThe difficulty of the
general case is evidenced by the failure of several proposed algorithms wherein one
subdivides the graph into its irreducible components and uses the algorithm for the
irreducible case on each, together with some other global checks; in §3.2, we give

counter-examples to several such statements. ! Instead, we solve the general case more
directly by reduction to the irreducible case: we efficiently augment the graphs and
block map with new vertices and edges, until the resulting graphs are irreducible, in
such a way as to preserve conjugacy (or lack thereof).

3.1 Irreducible Case

As described above, we will focus first on 1-block codes. An efficient algorithm to verify
a given 1-block code is known in the case where GG, H are irreducible, from the cellular
automata literature [16, Theorem 5]. For completeness, we restate a version of this
result in the language of symbolic dynamics.

The following straightforward topological result allows us to restrict attention to
the map induced on cycles between the graphs. The proof follows from three facts:
the image of a compact set under a continuous map is itself compact, compact sets are
closed in a Hausdorff space, and a closed set containing a set dense in X is all of X. 2

Proposition 5. Suppose X,Y are compact metric spaces, ¥ : X — Y is continuous,
and D CY is a dense subset of Y. If 1) surjects onto D, then v surjects onto all of Y.

We will apply Proposition 5 with D being the set of periodic points of Xg. The
following result, that ® induces a 1-block conjugacy if and only if it induces a bijection
on cycles, appears to be known (see e.g. [12, Exercise 2.3.6]); we give the proof for
completeness.

Theorem 6. Irreducible vertex shifts Xq, Xg are conjugate via a I1-block code if and
only if there is a vertexr map ® : Vg — Vi such that the induced map ®¢ is a bijection.

Proof. If ®, is a conjugacy, then it is a bijection on periodic points, which are in
bijection with cycles of least period; we conclude ®. is a bijection. For the converse,
suppose P. is bijective. Then every periodic point in Xz is mapped to by .. Since the
periodic points are a dense subset of the compact metric space X, by Proposition 5
®, is surjective. For injectivity, by contrapositive, suppose ®,, is not injective, so
there exist distinct points p,q € X such that o (p) = Poo(q). We proceed in cases.

(Case 1) Suppose first that p, ¢ disagree at |Vg|? + 1 consecutive indices, meaning
the words p,),y disagree at every index for a,b € Z with b —a = Va|? + 1.
Consider all possible pairs of vertices in G; there are |Vg|? such pairs. Thus there
exist distinct indices ¢,d € {a,a + 1...,b} such that (p.,q.) = (pa,qq). But then
Pc(ple,a—1)) = Pe(qie,a-1))-

(Case 2) Suppose instead that p, ¢ do not disagree at |Vg|?> + 1 consecutive indices:
there exist indices a,b with a < b — 1 such that p, ¢ agree at indices a and b, but p, ¢
disagree at every index between a and b. Let w be any word connecting p, = ¢ to

Pa = qa- Then Oc(ppy pw) = Pc(qjapw)- O

To verify that the cycle map ®. is bijective, we will test for injectivity explicitly,
and rely on counting arguments to check surjectivity. For injectivity, it turns out that
checking cycles up to length |Vg|? suffices.

!As further evidence that the reducible case might be more complex, consider the problem of
minimizing right-resolving presentations of a sofic shifts; there is an efficient algorithm for irreducible
shifts [8], while the general case is likely to be PSPACE-complete [14].

2We thank an anonymous reviewer for this succinct proof.

Proposition 7. Suppose @ : Xg — Xg is a 1-block code between irreducible vertex
2
shifts. If ®. is injective on ULV:GJ Cn(G), then ®. is injective.

Proof. Let c¢,d be distinct cycles of size |¢| = |d| = k > |Vg|?>. Proceeding by strong
induction, suppose ®. is injective on all cycles of size less than k. There are |Vg|?
possible pairs of vertices in G. Thus there exist distinct indices a, b such that (¢4, d,) =
(cp,dp). That is, Cla,b—1]» dja,p—1] are cycles of the same length and cp, 41, dpq—1) are
cycles of the same length. Since ¢,d were distinct, we can assume without loss of
generality that cq 1], djq5—1) are distinct. By the induction hypothesis, ®c(clqp—1)) #
e (djgp—1))- Thus Pc(c) # Pc(d). O

Proposition 7 suggests the naive algorithm of checking all cycles up to length |V|?
to verify injectivity of ®.. This algorithm is remarkably inefficient, however; letting
n = Vg, there can be Q(n™") cycles of length up to n2, as is the case for the complete
graph. Fortunately, these checks can be performed much more efficiently, as noted by
Sutner [16], by rephrasing them as a search problem in a graph built from pairs of
vertices in G. This procedure is outlined in Algorithm 1.

Theorem 8 ([16, Theorem 5]). Let X¢ be a vertex shift and A ={1,2,...,m}. Then
any given map ® : Vg — A induces a map ¢ : |JCn(G) — |JA™. Deciding if ®. is

injective can be determined in O(|Vg|*) time.

Proof. First we build the directed meta-graph M = (Viy, Eps) where Vi = {(u,v) :
u,v € Vi and Epy = {((u1,v1), (uz,v2)) : ®(u1) = ®(v1), P(uz) = ®(v2) and (ui,ug) €
Eg, (vi,v2) € Eg}. That is, M is a graph on pairs of vertices from G, with an edge
connecting pairs P;, P if and only if (i) there is a pair of (possibly non-distinct) edges
in G connecting the two vertices in P; to the vertices in P, and (ii) the induced map
on words of length two (i.e., edges) maps the two edges together. M can be constructed
in O(|Vg[*) time.

Given M, the map ®. is injective if an only if there is no cycle in M which passes
through a vertex (vy,v2) € Vi with v; # vy. Furthermore, such a cycle in M exists
if and only if M has a strongly connected component containing an edge and a vertex
(u,v) with u # v. Tarjan’s strongly connected components algorithm [18] now applies,
in O(|Vas| + |Eym|) = O(|Vg|*) time. O

Putting the above results together with the higher-block codes gives the desired
algorithm to verify k-block conjugacies; the full conjugacy algorithm for & = 1 is
outlined in Algorithm 2. As the description size of a k-block code is Q(|Vg|¥), the
algorithm runs in polynomial time.

Corollary 9. Given a k-block code @ : Xg — Xp between irreducible vertex shifts,
deciding if ® is a conjugacy is in P. In particular, it can be determined in O(|Vg|**)
time.

Proof. Given G, H, we first pass to the kth higher block shift X,u of X¢, recalling
that CI%[)]Z] is a 1-block code and ®, is a conjugacy if and only if @Q’ﬂ is a conjugacy [12,
Proposition 1.5.12]. We can construct ol . Xeow — Xg in time O(|Vaw | + |Eqm|) =
O(|Vgm|?). Noting that [Vm| < [Vi|®, it thus suffices to show the case k = 1.

By Theorem 6, ®, is a conjugacy if and only if @ is a bijection. As k = 1, Theo-
rem 8 shows that injectivity of ®. can be determined in O(|Vg|*) time. To show ®. is

surjective, it suffices to check that |C;(G)| = |Ci(H)| for all ¢ € N. Letting A(G), A(H)
be the adjacency matrices of G, H, we note |C;(G)| = tr(A(G)?), so our desired check
is equivalent to checking tr(A(G)Y) = tr(A(H)?) for all i € N [12, Proposition 2.2.12].
This equality is in turn equivalent to A(G) and A(H) have the same nonzero eigenval-
ues, meaning the characteristic polynomials pg,pg satisfy pg(z) = xsz(:x) for some
¢ € N. We can now check this condition by computing the coefficients of pg, pyg in
O(|Vg|“ log|Vg|) time [4, 10], where w is the exponent of matrix multiplication, and
then checking the above equality in O(|Vg|*log|Vs|) time. As w < 3, the overall
runtime is therefore O(|Vg|*). O

3.2 General Case

As discussed above, the general case appears much more complex. In particular, several
useful statements about conjugacy between irreducible vertex shifts fail to hold in the
general case. First, given a sliding block code @, : Xg¢ — Xpg between irreducible
vertex shifts, it is known that if &, is injective and G, H have the same topological
entropy, then @, is a conjugacy [12, Corollary 8.1.20]. (The topological entropy of a
shift X is defined as h(X) = nh_)rglo Llog, [B,(X)|.) If the shifts are reducible, however,

., can satisfy these conditions but fail to be surjective (Figure 2a). Second, we have
from Theorem 6 that if &, is a 1-block code between irreducible vertex shifts, then
®. being a bijection implies @, is bijective. In the reducible case, ®. can be bijective
while @, fails injectivity (Figure 2b) or surjectivity (Figure 2a).

As an even stronger test, one might guess for general vertex shifts that if &, :
Xg — Xy is surjective and the induced maps between irreducible subgraphs are all
conjugacies, then ®, is a conjugacy. If true, this statement would suggest applying
the algorithm in Corollary 9 to each irreducible subgraph, at which point one would
only need to test surjectivity. Yet this statement is also false; ®. being a bijection
implies neither the injectivity nor the surjectivity of ®, (Figure 2). By extending the
argument of Theorem 6, one can correct the statement by adding a check for diamonds:
if @ is surjective, the induced maps between irreducible subgraphs are all conjugacies,
and ® does not collapse a diamond, then ®, is a conjugacy. Unfortunately, while this
revised statement does break the problem of verifying a proposed 1-block conjugacy
into more manageable pieces, how to turn it into a decision procedure, let alone an
efficient algorithm, is far from clear.

To verify a potential conjugacy between vertex shifts efficiently, we will instead
apply a more direct reduction to the irreducible case. Given a 1-block code @, :
Xa — Xy between reducible vertex shifts, we will extend G and H to irreducible
graphs while preserving the conjugacy or non-conjugacy of ®,,. The key operation for
this extension is the following procedure, which adds a new sink vertex to the graph
G and H in such a way as to preserve conjugacy/non-conjugacy. We will then apply
this procedure in reverse to add a new source vertex, at which point we have enough
structure to connect the new sink vertex to the new source vertex, which renders both
graphs irreducible.

Let {T;}icr be the sink components of H and 7] = ®~1(T;) be the subgraph of G
which maps to T; under ®,,. The procedure is as follows:

1. For each i, pick an arbitrary vertex v; in T;.

2. For each i, pick an arbitrary cycle ¢; in T; ending at v; of length |¢;| < |T;|.

« ~ RN
a f _ a <— bd f
(a) \d%e/ \e/
g g
U U
b«—c b
/ ™~ N
ar\ /f _— ar\ /C@(*f
(b) TS !
g g

Figure 2: Counter-examples showing various statements which hold in the irreducible
case fail in the reducible case. Note that all four shifts have the same topological
entropy, h(X) = 7. (a) A 1-block code between two reducible shifts which restricts
to conjugacies between the irreducible components (and hence ®. is a bijection) but
is not surjective. (b) A 1-block code between two reducible shifts which restricts to
conjugacies between the irreducible components but is not injective.

3. Form the graph H by adding a vertex ¢ to H along with the edge (t,t) and the
edges {(vi,t)}ier.

4. For each i, define V; to be the collection of all the vertices v’ € ®~*(v;) which
are followed by an infinite word w’ such that ®(v'w’) = v;c®.

5. Form the graph G by adding a vertex ' to G along with the edge (#,t') and the
edges {(v/,t) : v/ € V/}ier.

O(u), ifutt

6. Define ., : X~ — X5 by ®(u) = .
R i by ®) {t, if u=t¢

Proposition 10. Let & : Xg — Xpg be a 1-block code between reducible vertex
shifts. Then ®o : X5 — Xy as described above is a conjugacy if and only if P is a
conjugacy.

Proof. Since X¢ is a subshift of X (and similarly for H) and o preserves ®, it
immediately follows that ®, is a conjugacy whenever do is. For the converse, suppose
$o is not a conjugacy.

If & is not injective, we have distinct points p1,p2 € X such that (ioo(pl) =
<i>oo(p2) = q. If ¢ € Xy, then p1,ps € X by the definition of ®o, so ®o is not
injective. If ¢ ¢ Xy, then ¢ = wvit™®. By the definition of ®, we have p; = wv/t'>
and py = wyv”t'>° where w1v’' # wev”. By the construction of N~ (¢') in step 5 above,
there exist infinite words w’, w” such that v'wv’,v"w” are words in G and ®(v'w') =
v;c®® = P(v"w"). Thus Poo(w1v'w') = oo (wav"w”), and P is not injective.

If & is not surjective, then there exists p € X ;; which is not mapped to. If ¢ € Xp,
then @ is not surjective. Otherwise, g ¢ Xy, so ¢ = wv;t™ for some i € I. But noting
the construction of N~ (¢') in step 4 above, we added an edge from v’ to ¢’ if and only if
v" was followed by an infinite word w’ such that ®(v'w’) = v;¢;. That is, we selectively
added edges from vertices in H to t' so that the point wv;t* is mapped to if and only
if the point wv;c;® is mapped to. Thus ®,, was still already not surjective. O

We now construct the final graphs G* and H* by
1. First, using the procedure above to add new sink vertices t,t' to each graph.

2. Reverse the edges in the two graphs; the new sink vertices from the step above
are now source vertices. Use the procedure above to again add new sink vertices
s,8". Reverse the edges in the two graphs once again. The newly added vertices
s, s’ are now newly added source vertices.

3. Form the strongly connected graphs G* and H* by adding the edge (¢,s) to H
and the edge (¢, s') to G.

o(u), ifug {t,s}
4. Define % : Xg+ — Xp+ by ®*(u) =< t, ifu=+t
s, ifu=3s'
Proposition 11. Let P : Xg — Xy be a 1-block code between reducible vertex shifts.

Then @5 : Xg+ — Xp~ as described in the construction above is a conjugacy if and
only if P is a conjugacy.

10

Proof. By Proposition 10, Poo - Xa — Xp is a conjugacy if and only if @ is a
conjugacy, where the graphs G, H immediately precede the addition of the edges (¢, s)
and (t',s"). As in the proof of Proposition 10, X is a subshift of Xg+ (and similarly
for H) and @ preserves ®, s0 P is a conjugacy if ®% is. For the other direction,
suppose ®%_ is not a conjugacy.

First suppose @} is not injective. Since G*, H* are irreducible, we have cycles c, d
in G* from Theorem 6 such that ®%(c) = ®}(d). Without loss of generality, we can
assume ¢ = swt’ and d = s'wgt’, where w, # wq. Thus ® collapses the diamond
(s'wet!, s'wat’), so by Lemma 4, @ is not injective.

Now suppose @ is not surjective. Again by Theorem 6, we know there is a cycle
¢ which is not in the image of ®%. Without loss of generality, we can assume ¢ = swt,
where w does not contain s or {. But then s*.wt> is a point in X which is not in

the image of P O

We now have that given reducible vertex shifts Xqg, Xz and a proposed 1-block
conjugacy between them, the shifts can be embedded into irreducible shifts such that
the conjugacy or non-conjugacy is preserved. Next we show this embedding can be
performed efficiently; the procedure described in the proof is outlined in Algorithm 5.

Theorem 12. Given reducible vertex shifts X, Xy and a 1-block code as ® : Vg —
Vi, the graphs G* and H* can be constructed in O(|Vg|3) time.

Proof. Let T be an arbitrary sink component in H and T’ be the subgraph ®~!(T) of
G. We will show the corresponding neighbors of ¢, can be selected in O(|Vy/|?) time.
Iterating over all sink components T' € T and source components S € S will give an
overall complexity of O(Y ver Vo> + X ges [Vor[?) = O(|V|?) time. (Adding the
edges (t, s), (', ') takes constant time.)

Let v be an arbitrary vertex of T, and let ¢ be the shortest cycle in T through
v, which can be computed using breadth-first search in O(|Vy| + |Er|) = O(|Vy|?) =
O(|Vg|?) time. Note that |c| < |T|, so we have completed steps 1 and 2. Step 3 is
constant time. The only nontrivial step that remains is step 4, the computation of the
set V' C Vv, from which steps 5 and 6 follow trivially in linear time.

Let C = (Vio, Ec) be the subgraph of T corresponding to ¢, and let C' = (Ver, Ecr)
be the subgraph of 7" which maps onto C as follows: Vo = & 1(Vp), and Eor =
{(W/,v') € Epr : (®(u'),®(v")) € E¢}. The subgraph C’ can be constructed in O(|Vy|?)
time. Note that infinite walks in C’ starting from any v’ € ®~!(v) are precisely the
walks in 7" that map onto ¢*°, and moreover, there is an infinite walk in C’ starting
from v’ if and only if there is a path in C’ from v’ to a cycle in C’. We therefore define
V' C @ 1(v) C Vir to be the set of vertices v’ such that there is a path in C’ from v’ to
a cycle in C’. To compute V’, we can simply run breadth-first search from each vertex
in &1 (1), in O(®~(v)| - ([Ver| + |Fer])) = O([Vip[?) time. 0

We have now seen an efficient procedure to embed a pair of reducible graphs into
a pair of irreducible graphs, such that the original pair admits a 1-block conjugacy if
and only if the embedded pair does. Moreover, the embedded irreducible graphs have
at most twice the number of vertices as the original graphs. With this procedure in
hand, we can extend our verification algorithm to the reducible case.

Corollary 13. Given vertex shifts Xg, Xy and a k-block code @, as P : Vg — Vi,
deciding if ® is a conjugacy can be determined in O(|Vg|**) time.

11

Proof. If G, H are irreducible, Corollary 9 applies immediately. For the reducible case,
as in Corollary 9, by passing to the kth higher block shift it suffices to show the case
k = 1. From Theorem 12, we can embed G, H into the irreducible shifts G*, H* in
O(|Vg|?) time. Furthermore, |Vg«| < 2|Vg|, so |Vg«| = O(|Vg|). Then by Corollary 9,
we can verify if ®% (and hence @) is a conjugacy in O(|Vg=|?) = O(|Vg|*). O

4 Deciding k-Block Conjugacy

We now turn to the question of deciding k-block conjugacy. Specifically, we wish to
understand the complexity of the problem k-BC below, to decide whether vertex shifts
Xag, Xy are conjugate via a k-block code @, : X¢ — Xpg. Note that the description
size of ® is polynomial in |Vg| and |Vg|, and thus from Corollary 13 we know that
a potential k-block conjugacy can be verified in polynomial time; hence, k-BC is in
NP. We will show that k-BC is Gl-hard for all k, where Gl is the class of problems
with a polynomial-time Turing reduction to the Graph Isomorphism problem [11]. (A
graph isomorphism is bijection between the vertices of two graphs which preserves the
edges/non-edge relation; the Graph Isomorphism problem is to decide if two given
undirected graphs are isomorphic.)

Definition 14. Given directed graphs G, H, the k-Block Conjugacy Problem, denoted
k-BC, is to decide if there is a k-block conjugacy P : X — Xy between the vertex
shifts X and Xg.

To begin, we give the straightforward result that the case £ = 1 is Gl-hard, essen-
tially because 1-block conjugacies between vertex shifts for equal sized graphs must be
isomorphisms. The result appears to be well-known, and follows from e.g. Salo and
To6rma [15, Theorem 1]. Our proof shows something slightly stronger, that the problem
is hard even when restricting to irreducible shifts.

Theorem 15. The 1-Block Conjugacy Problem, 1-BC, is Gl-hard.

Proof. Given strongly connected graphs directed G, H with |Vg| = |Vp|, we show that
the shifts X, X7 are conjugate via 1-block code if and only if the graphs are isomorphic
(cf. [12, Ex. 2.2.14]). The result then follows as graph isomorphism between strongly
connected directed graphs is Gl-hard, by the usual reduction from the undirected case
(replace each edge with two directed edges).

First suppose ¥ : Vi — Vp is a graph isomorphism. As ¥(vjv9) is a legal word
in Xy for all words of length 2, by definition of a graph isomorphism, we have that
Uy : Xg — Xp is a valid 1-block code. Letting ® = ¥~! : Vg — Vg, we have
Voo (Poo((7i)icz)) = (V(P(2:)))icz = (%:)iez for all x € Xy, and Poo(Voo((wi)iez)) =
(®(V(x4)))icz = (xi)iez for all z € Xg. Thus, o is the 2-sided inverse of Vo, and
U, is a 1-block conjugacy.

For the other direction, suppose ®., : Xg¢ — Xy is a 1-block conjugacy. Then
{®(v) : v € Viz} must be exactly the set of words of length 1 in Xy, i.e., the vertices
of H. Since |Vg| = |Vu|, ® : Vg — Vg is a bijection. Also, for any edge (vi,v2) € Eg,
we have ®(vivg) = @(v1)P(v2), so (P(v1), P(v2)) € Ey as P is a well-defined sliding
block code. Even more, consider any pair vs, v4 of vertices in Vg such that (vs,vy4) ¢ Eg.
Noting that ®(v3)®(v4) has a unique preimage as ® is a bijection and P, is surjective,
we have (®(v3), ®(v4)) ¢ Fg. Thus ® : Vg — Vg is a bijection on vertices which
preserves the edge relationship; that is, ® is a graph isomorphism. O

12

t
Uk,

N

(a) v ANS Uin = UL — -0 — Vg1 Vout
\Uz/
uf = sl —ul
(b) u A~ uin/ \uout
\ul{a---auz_lﬂuz/

Figure 3: The vertex gadgets for (a) each vertex v in G, and (b) each vertex v in H.

Next, we will show k-BC is Gl-hard for all k, by reduction to the 1-block case.
Specifically, given directed graphs G, H, we will construct graphs G’, H' such that
there exists a 1-block conjugacy @ : Xg — Xp if and only if there exists a k-block
conjugacy P/ : X — Xy exists. To form G’, we replace every vertex v € Vi with
a path vj,v1v9 - - - vp_1 followed by the diamond with sides Uk_lv,tgvout and vk_lv,gvout
(Figure 3a). To form H', we replace every vertex u € Vpy with two parallel paths
Uintfub - ub Uy and uinulfug . uiuout (Figure 3b).

Lemma 16. Given directed graphs G, H, let G', H' be constructed as above. If there
exists a k-block conjugacy ®. : Xqr — Xp, then for all v € Vi there exists u € Vi
such that @ (vipv1 - V1) = Usp.

Proof. Suppose for a contradiction that ®/_ is a k-block code such that for some v € Vi
we have @' (vipv1 - - - vg_1) # uin for all u € V. We break the argument into two cases.

First, suppose @ (viyv1 -+ -vg_1) = ul for i < k. (The case u? is identical.) Since
the shift map commutes with sliding block codes, we must have ®'(vy ---vp_1v}) =
®'(vy -+ vp_1v)) = z where z € {ul, |, uoy}. Picking any edge (v,0) € Eg and con-
tinuing to slide the block window, we must have ®'(i,01 - - 0x_1) € {af, @’} for some
@ € V. Without loss of generality, assume @' (001« - - 0x_1) = ﬁg. Furthermore, since
there is only one word in H' between u! and 4} of proper length but two words in G’
between 0;, and v;,, we have

/ t ~ ~ t t A~ ~t ~t / b N ~
D' (Vin -+ VpVoutVin * + * Vp—1) = Uj * * * UpUoutUin @] - - - U = D' (Vin + + - VgVoutVin + - - V1)

That is, @ collapses a diamond, so by Lemma 4, ®' is not a conjugacy.

Second, suppose @' (vipv1 « -+ Vg_1) = Uout- Pick any edge (0,v) € Eg. Then without
loss of generality, ®'(Oout¥in - -+ Vk—2) = u}; Continuing to slide the block window, we
have @' (0, « -+ 1) = Uout for some @ € V. Again, there are two words in G’ between
Oin and vy, but only one word in H' between oyt and e, which passes through u},‘/C
Thus, we have

/(A At ~ t 1 ~b
o (Uin * UpVoutVin * * - Uk—l) = UoutUin * * - UUout = o (Uin ©* UpUoutVin - * 'vk‘—l)a

so @' again collapses a diamond, and by Lemma 4, ®' is not a conjugacy. O

13

We now show that graphs G, H admit a 1-block conjugacy if and only if the graphs
G',H' constructed as above admit a k-block conjugacy. To do this, we first intro-
duce a natural operation on shift spaces, which “stretches” each point by a factor

N. Given alphabet A, and any point p = ---v.0'v" -+ € A%, we write pV) =
R TR TR T 1A VA - to be the point p with each symbol repeated N times.
leen a shift X over alphabet .A we define the shift space XN = {o*(pN)) :p e X,i €

Z} where o is the shift map. In particular, X (N} contains all shlfts of the Nth expan-
sion of points in X. While in general X(V) is not a vertex shift when N > 1, it is still
structured enough that the following lemma is immediate.

Lemma 17. Given shifts X,Y, there exists a 1-block conjugacy @ : X — Y if and
only if there exists a 1-block conjugacy <I>§30V> XN 5 Y WN)where @ = W) as block
maps.

To make use of this definition and lemma, we will project points in Xq, Xg+ to

X ék+2>, ch+2> by simply erasing the subscript and superscript information. Formally,
we define the 1-block map UG Vg — Vg by UG () = v for u € {vi,v1,..., 051,
v,i,v,ﬁ,vout}, and let 7¢ = V& : Xg — X *+2) We define wH , 7 similarly. Letting

Sf = (WG)fl(p) C X¢, we have that {SE :p € Xg+2>} is a partition of the points
in X¢r. (Similarly for Sf and Xp.)
Theorem 18. Given graphs G, H, construct G', H' as above. Then there exists a

1-block conjugacy P : Xag — Xg if and only if there exists a k-block conjugacy
o Xgl — XH/.

Proof. (=) Suppose there exists a 1-block conjugacy @ : X¢ — Xpg. By Lemma 17,
there is a 1-block conjugacy CIDS,]éH) : X<G]€Jr2> — Xy <k+2>. Define the k-block code
®: X — Xy with no memory by
D' (vyy - -) = ®(v)in

D' (v;) =)t ie{1,...,k}
o & (v;-l) =0l i€ {1,... Kk}

' (vout - -) D(v)out

To show that ®/_ is a bijection, we will show that for any p € XékJr) and g € Xy (k+2)
with <I>gf>+2> (p) = g, the map P/ : S’I? — Sf is a bijection. The result then follows
because @é@+2> is a bijection between Xg€+2> and Xgﬁm, and the sets {SpG 1 p €
Xék’dﬂ)}7 {Sf iq € ng+2>} partition Xqr, Xpg-.

We first claim that @’ (SG) C SH , which is to say, for every p’ € X such that
7% (p') = p, we have 7 (®/_(p')) = q. To see this, note that by construction of &', for
all p’ € Xg and all i € Z, we have UH(®/_(p');) = ®(VC(p))) = &*+2 (U (p))). The
condition 7% (p') = ¥ (p’) = p implies ¥ (p}) = p; for all i € Z. Combining the above
with the observation that ®%+2) (p;) = ¢; gives W (®'_(p');) = qi, as desired.

We now show @7 : SE — Sf is a bijection. Note that, by definition, any point in

S}? and Sf can be uniquely identified with a point in {b,¢}* by reading in order the
superscripts of each vy or uy in the point. The map @/, together with this identifica-
tion, induces a map ¢ : {b,t}* — {b,t}%. By construction of ® above, ¢ is the identity
map. Thus ®/_ is a bijection from SpG to Sf.

14

/

o
Xgl —= Xy / P

p—q
ova| N
(k2) @8 (er2) L
X& = 5 X P p—4q

Figure 4: Given ®' or ®, one can construct the other such that this diagram commutes.

(<) Suppose there exists a k-block conjugacy ®/_ : X¢ — Xpg/. By Lemma 16,
for every v € Vg, there exists u € Vg such that ® (v, --) = uj. Define the 1-

block code @ : Xg — Xy by ®(v) = V(& (viuv1 ---vp_1)). We claim @ is a
(k+2)

conjugacy. To show this, we instead will show ®55 ' defined by the same block map is
a conjugacy. To see <I><OIZ+2> is surjective, consider any q € Xg{+2>. Picking any ¢’ € Sf,
(k+2)

set p = &' (¢') and p = 7%(p'). We will now show ®5 7% (p) = ¢, so the diagram in
Figure 4 is commutative and ®, is surjective. For all 7 € Z,

D(p;) = U@ (pi)in -+ Pi)k-1)) = ¥ ((gi)in) = - (1)

To see <I>é’2+2> is injective, consider distinct p1,p2 € X ék+2>. Then SpG1 =+ SpGQ. Since
P’ is a conjugacy, @;o(sg) N @gO(SZ%) = (). By Lemma 16, there exist ¢q1,q2 € X§f+2>
such that SH = @ (S¢) and S = @/ (SS). By the construction of ® (and shown
in (1)), 8L (1) = q1 # g2 = 8L (p), s0 LT is injective. O

The construction in Theorem 18 gives a polynomial-time reduction from 1-BC to
k-BC for all k. (The same construction could plausibly give a reduction from m-BC
to ¢-BC where ¢ = (m — 1)(k + 2) + k, though if true the proof would be much more
involved.) Combining this reduction with Theorem 15 therefore gives Gl-hardness for
all k.

Corollary 19. k-BC is Gl-hard for all k.

5 Reducing Representation Size

Thus far we have addressed two problems. We first gave an efficient algorithm, given
directed graphs G, H and k-block map ®, to verify whether &, : Xg — Xy is a
conjugacy. We then showed that the problem of deciding whether X and Xy are
conjugate via a k-block map, given only G and H, is Gl-hard. We now address a
problem given only G and an integer ¢: whether we can find a k-block code which
reduces the size of G by ¢ vertices while preserving conjugacy.

Definition 20. Given a directed graph G and integer ¢, the k-Block Reduction Problem,
denoted k-BR, is to decide if there exists a directed graph H with |V | = |Vg| — ¢ such
that the vertex shifts X and X are conjugate via a k-block code.

We will show this problem is NP-complete for the case £ = 1, by modifying the
hardness proof of the State Amalgamation Problem (SAP), which asks if £ consecutive
amalgamations can be performed on a graph G [5]. The proof that SAP is NP-hard
shows that the set of graphs satisfying a certain structure property is closed under the
amalgamation operation. This structure is then leveraged to encode an NP-complete

15

Figure 5: A graph which satisfies the structure property

problem (Hitting Set). While 1-block codes are more general than sequences of amal-

gamations (Figure 1), we find that, surprisingly, the same set of graphs is also closed

under 1-block conjugacy. In fact, the rest of the construction of [5] suffices as well,

though much of the argument needs to be strengthened to the general 1-block case.
We begin by recalling the structure property.

Definition 21 ([5]). A directed graph G satisfies the structure property if it is essential
and there exists a partition {{a}, A, B, C'} of Vi such that the following four conditions
hold.

1. Nf(a) =N~ (o) ={a}UAUC.

2. For each a € A, N~ (a) = {a,a} and {a,a} C N*(a) C {a,a} U B.
3. For each c € C, N*(¢) = {c,a} and {c,a} C N~ (¢) C {¢,a} U B.
4. For each b€ B, N~(b) C A and N*(b) C C.

See Figure 5 for an example. We now show that the structure property is preserved
under 1-block conjugacy.

Lemma 22. Let G be a graph with the structure property having {{a}, A, B,C} as the
partition of Vi, and let @ : X — Xpg be a 1-block conjugacy. Then ®(vi) = ®(ve)
implies v1 = vy or v1,vy € B. In particular, H also satisfies the structure property with

vertex partition {{®(a)}, ®(A), ®(B), d(C)}.

Proof. First note that if ® : Xg — Xpg is a 1-block conjugacy from a graph G
with vertex partition {{a}, A, B,C} such that ®(v;) = ®(v2) implies v; = vy or
v1,v9 € B, then the fact that H satisfies the structure property with vertex partition
{{®(a)}, ®(A), ®(B), ®(C)} follows immediately. Now suppose for a contradiction that
v] # vy € Vi and ®(v1) = ®(v2); we proceed in cases.

Case 1: v1,v2 € {a} UAUC. Then @ (v5°) = P (v3°) and P is not a conjugacy.

16

Case 2: v = a,v2 € B. Let a € A,c € C be such that avec is a word in Xg. (Such
a,c exist as G is essential.) Then @ ((aveca)™) = P ((aaca)™®) and P is not a
conjugacy.

Case 3a: v1 € A,vy € B, (v1,v2) ¢ Eq. Let a € A be such that (a,vs2) € Eq. Note that
a # v1. Consider the point

p = (®(a)@(v2)®(a))™ = (2(a)®(v1)P())™

in Xy of period 3. Due to GG having the structure property and our assumption that ®,
is a 1-block conjugacy, the preimage of p must be defined by a 3-cycle whose vertices
are contained in {a} UAUC. In particular, the preimage must trace a self-loop, so we
know ®(a) = ®(a) or ®(a) = ®(v1) or ®(v1) = ®(«). Since we know P is injective on
{a} U AUC by Case 1, none of these are possible.

Case 3b: v € A vy € B, (v1,v2) € Eg. Let ¢ € C be such that (vg,c) € Eg. Consider
the point

p = (2(v2)@(c) ()™ = (P(v1)®(c)P(a))™

in Xp of period 3. Again by the requirement that the preimage of p traces a self-
loop, we know ®(v;) = ®(c) or ®(v1) = P(a) or ®(a) = P(c). However, all of these
situations violate the injectivity of ® on {a} U AUC.

Case 4: v; € C, vy € B. This is identical to Case 3 where the edges in the graph have
been reversed. O

As in [5], we will need a “weight widget” which acts as a weighted switch, using
the following notation. Let v be a vertex with N~ (v) = D and N*(v) = E. We will
write v : [D, E] in this situation, and as a slight abuse of notation, we will drop the
curly brackets if E or D is a singleton and write v : [u, E]. Additionally, we extend this
notation to sets S of vertices, so that S : [D, E] means N~ (S) = D and N*(S) = E,
where N~ (S) = U,cg N~ (v) and similarly for N*.

Definition 23 ([5]). Let G satisfy the structure property with Vg = {a} UAUBUC,
and let K > 0 be a fixed even integer. Then for nonempty subsets A, C A,C, C C,
the weight widget w = weighty [Ax, Cy] is the following collection of vertices.

o Ay = {aql‘],...,a}‘é/z}
o By ={b¥.. . ¥}
o C’w:{cqf’,...,c%m}

where A, N A, =0 = C, N C,, and for each i € {1,..., K/2} we have

® by q: [A* U {all“, R ,a%"fl},cl@“]

o byi:[a¥, CuU{cy,...,c"}].

[}

Moreover, we require these to be the only out-neighbors of A,, in B, i.e., BNN +(a}”) -
B, for all a’ € A,, and similarly for the in-neighbors of Cy,. For a given 1-block
conjugacy ®oo, letting S = @~ H(®(b¥))\ By = {b € B : ®(b) = ®(b¥)} \ By, we say w
is activated if S : [Ay, Cy].

17

a w4
| 2\% "
B A S

Figure 6: The weight widget weighty[A, Cy] with K = 4.

In other words, when the vertex b; is added, if j is odd we add edges from A, and
al’,..., af(‘;.il)/Q, and an edge to CE?+1)/2’ ‘and when j is even, we add an edge from a;u/z
and edges to C, and c{’, ..., 039/2. See Figure 6 for an example. The term “activate”
comes from the following fact, which we show below in Lemma 25(1): if § = {v} is
a singleton, then the construction of the weight widget allows v to amalgamate with
by, ..., b% in order, thus amalgamating {v} U B,, into a single vertex. For example,
the vertex v in Figure 6 can activate the weight widget shown. The next two lemmas

show that these amalgamations cannot be performed if the widget is not activated.

Lemma 24. Let w = weighty[As, Cy] be a weight widget in G. If P : X — Xp is a
1-block conjugacy between graphs with the structure property, then for any v € Vg and
(> 1, the statement bY € ®~1(®(v)) implies by | € D~ (®(v)) or |2~ H(®(v))| = 1.

Proof. By contrapositive, suppose [®~}(®(v))| > 1 and there exists b € ®~1(P(v))
such that b | ¢ ®~!(v). Without loss of generality, let ¢ be the largest such subscript.
We have two cases; in each we will find a word in Xp with no ®-preimage in Xg.
Case 1: £ is even. We will show there exists a € A\ {aj),,...,a% y} such that
@(a)@(v)@(c}%) is a word in X but has no preimage in X¢. To show the word has no

preimage, first recall from Lemma 22 that ®~!(®(a)) = a and ®~(®(c)) = ¢ for any
a€Aandce C,and c= c}% in particular. A preimage of this word therefore takes the
form abcy) for some b € B, but the only such word in X¢ has b=bY , ¢ &1 (®(v)).

The word @(v)@(cz"ﬂ) is in X, as (bz”,c;”ﬂ) is an edge in G by definition of the
weight widget, and by € ®~!(®(v)) by assumption. We next claim that there exists
ac A\ {azf}/Q, . ,a}”{/z} such that ®(a) € N=(®(v)). If @~ 1(®(v)) C {bY,bY,...,b%},
recall that [®~1(®(v))| > 1 and £ is the largest such subscript such that there exists
by, € O~1(®(v)) with 25 < ¢; now ay satisfies our claim as by construction (a}’, by))
is an edge of G. Otherwise, either v = b}" for j odd, or v ¢ B,. In the former, we
have) # A, C N~'(v). In the latter, we have N~ (v) # () since G is essential, and
N~1(v) N Ay, = 0 by construction.

Case 2: [is odd. Using an argument symmetric to Case 1, there exists ¢ € C'\

{@(C%H)m),...,@(c}‘ém)} such that the word @(az‘z_l)m)(b(v)@(c) is a word in Xp

without a preimage in Xg. O

18

Lemma 25. Suppose w = weight [As, Cy| is a weight widget in G. Then

1. Suppose Vi contains v : [Ax, Ci]. Define O : X — X by

@(u):{v’ if u e {v}U B,

u, else

where H is the minimal graph induced by G and ®. Then ® is a 1-block conjugacy
with |Vyg| = |Vg| — K.

2. If w = weightg [Ay, Cy] is not activated and P : X — Xy is a 1-block conju-
gacy, then ®~1(®(bY)) is a singleton for every b with i > 1.

Proof. (1) Note that by the construction of the weight widget, {v : [A, Ci]} U By, can
be amalgamated sequentially for a total of K amalgamations.

(2) Suppose b¥ € ®~1(v) for some v € Vg and consider V = ®~1(v) \ B,. By
Lemma 24 it suffices to show b¥ ¢ ®~!(v). By definition of w not being activated, we
have two cases.

Case 1: N (V) # A,. If there is some a € N~ (V) \ Ay, then ®(a)v®(c}) is a word
in Xp. Since there is no vertex in G' connecting a with c}’, the word has no preimage
in Xg and @, is not a conjugacy. Otherwise, there is some a € A, \ N~ (V). By
contrapositive, suppose b¥ € ®~!(v). Picking any ¢ € Ci, we have ®(a)v®(c) is a
word in Xp. Since there is no vertex in ®~!(v) connecting a with ¢, the word has no
preimage and @, is not a conjugacy.

Case 2: NT(V) # C.. By contrapositive, suppose by € ®~1(v). If there is some
c € NY(V)\ C,, then ®(a})v®(c) is a word in Xpg. Since there is no vertex in G
connecting a{’ with ¢, the word has no preimage and ®, is not a conjugacy. Otherwise,
there is some ¢ € C, \ NT(V). Considering any a € N~ (V), we have ®(a)v®(c) is a
word in X . Since there is no vertex in ®~!(v) connecting a with ¢, the word has no
preimage and ®, is not a conjugacy. O

We now define the Hitting Set problem, which is NP-complete [9], and state a lemma
which we will need in the proof.

Definition 26. Let Z = {S1,...,5,} be a collection of sets with J, S; = U. Given
a subset S C U, we define its hit set as hit(S) = {S; : SN S; # 0}. Given Z,U, and
an integer t, the hitting set problem, denoted HittingSet, is to decide whether there is a
set H of cardinality ¢ such that hit(H) = Z. We will also overload this notation, and
write hit(s) to mean hit({s}) for s € U.

Lemma 27 ([5]). Let (Z,U,t) be an instance of HittingSet. Suppose for some t < |Z|
there is no H with |H| < t and hit(H) = Z. Then for all H C U, |hit(H)| — |H| <
|Z] —t.

We now show that 1-BR is NP-complete, by reduction from HittingSet. Given the
lemmas developed above, the result essentially follows from the argument in [5], with
minor modifications for the 1-block case; for completeness, we give the full proof.

Theorem 28. 1-BR is NP-complete.

19

S5 Sy

A7 AL

bslsl bS152 bSQSQ bszsg b51,3 b52ﬁ a
C s C S2 S3 < B

Figure 7: The graph constructed in Theorem 28 for the HittingSet instance with Z =
{{u1,ua}, {ug,us}}, without any weight widgets attached.

Proof. First we show 1-BRisin NP. Given a vertex shift Xg and ® : Vg — {1,2,...,|Vg|—
n} from a proposed 1-block conjugacy @, we construct the minimal image graph G’
such that ®., : Xg — X¢ is well-defined. In particular, Vgr = {®!(u) : u € Vg } and
Eg = {(® Y(v1),® (v2)) : (v1,v2) € Eg}. By Corollary 13, we can determine if @,

is a conjugacy in O(|Vg|*) time.

To show hardness, we reduce from HittingSet; let Z = {S1, ..., Sy} be the collection
of sets and ¢ the given integer. Defining n = |U| for U = |, S;, we set the parameter
K = 6mn for the weight widgets. Then, as in [5], we build the following graph G =
(Va, E¢) with the structure property Vg = AU BUC U {a}.

1. Start with A = Z,B=0,C = U U{B}, where is a new vertex.

2. For each S; € Z, and ¢ € S; U {8}, add bg,. : [S;, ¢]. That is, add the vertex bg;s
to B and the path S; — bg,s — s for every s € S;, and add the vertex bg,3 to B
and path S; — bg,3 — B.

3. For each (s,S;) with s € S;, add the weight widget w = weightg[S;, {s,8}] =
(A, By, Cy). Note that A, will added to A, By, to B, and Cy, to C.

4. For each s € U, add the weight widget weight [hit(s), {s}].

5. Finally, add the vertex o and the necessary edges for G to have the structure
property, i.e., add the edges {(a,«), (a,a) : a € A} U{(b,a),(a,b) : b € B} U
{(v,v) :v e AUBU{a}}.

Summarizing, if W is the collection of weight widgets added above, A = ZUJ,,cy Aw,
B = {bSis 15, € Z,s€ Si}U{szﬂ 0 S; € Z}UUweW By, and C = UU{ﬂ}UUweW Cu.
See Figure 7 for an example with Z = {{u;,ua}, {ug,us}} where only steps (1), (2),
and (5) have been performed.

20

We will show there is a hitting set of size ¢ if and only if there is a 1-block conjugacy
® : Xg — X such that |Vir| < |[Vg|— (m+n—1t)K. The idea behind the reduction
is that s can either choose to be in the hitting set by combining some bg,s; with the
appropriate bg,3 to activate some of the weighty[S;, {s, 5}], or choose not to be in the
hitting set by combining all bg,s for S; € hit(s) to activate weight g [hit(s), {s}]. We will
be able to activate |hit(H)|+ |U \ H| = m + (n —t) weight widgets if there is a hitting
set of size t and strictly fewer if no such set exists. Finally, we show that our choice
of K is larger than any reduction in the number of vertices not caused by activating
weight widgets.

First, suppose there is a hitting set H for Z of size t. We will give a sequence of
(m+mn—t)K consecutive amalgamations, which together constitute a 1-block reducing
the number of vertices by (m +n — t)K. For each S; € Z, pick some s € H such
that S; € hit(s). Amalgamating bg,, with bg,g, we obtain a vertex v : [S;, {s, 8},
which by Lemma 25 can activate the weight widget w = weight,[S;, {s, 8}] for K
additional amalgamations. Performing the above steps for each S; € Z gives a total of
m(K + 1) > mK consecutive amalgamations.

As the above amalgamations only affected the vertices in B associated with H, next
consider any s € U\ H. We can amalgamate the vertices {bg,s : S; € hit(s)} in any order
to form by (s)s : [hit(s), {s}] which by Lemma 25 can then activate weight x [hit(s), {s}],
for an additional K amalgamations. For U \ H, we thus have at least (n — ¢)K total
amalgamations. Putting all of these steps together, we can perform at least mK +
(n —t)K = (m +n — t)K consecutive amalgamations, so there is a 1-block conjugacy
O : Xg — X such that |Vg| > V| — (m+n —) K.

Next suppose there is no hitting set H of size t. Let ® : Xg¢ — X be a 1-block
conjugacy such that N = V| — |Vie| is as large as possible. Define

H = {s € U : weight[hit(s), {s}] is activated},
F = {S; : weight;[Si, {s, B}] is activated for some s € S;},
H=U\H.

Note that there is a single path in G from S; to s, through the vertex bg,,, which is
required to activate both weighty [hit(s), {s}] and weightg[S;, {s, 8}]. Thus for every
bs,s we have that if S; € F', then s € H. That is,

F C{S;:s € H for some bg;s}. (2)

We now count how much smaller V| could be than |Vi|. From Lemma 22, @
is injective on A U C'U {a}, and thus the only reduction could come from combining
vertices in B. By construction, each activated widget can lead to reducing the number
of vertices by at most K. Let Bron-weight = {bs,s : Si € Z,5 € S;} U {bs,3: S; € Z} be
the vertices in B not in weight widgets. By Lemma 25, if u € ®~1(v) with [®~1(v)| > 1
for some u not in an activated widget, then u € Byon-weight U ey w1- Thus Vg can
be reduced by at most (|F|+ |H|)K + |Buon-weight| + |WW]. Since

| Bnon-weight| + [W| = (mn +m) + (mn +n) < K,

21

we have

N < (|F| + [H|)K + | Buon-weight| + |W|

(IF|+[H)K + K
(Jhit(H)| + (n — |H|) + 1)K (by (2) and H=U \ H)
(

<
<
<(m+n—-t)K (by Lemma 27).

6 Edge Shifts

Thus far we have restricted our attention to vertex shifts, rather than edge shifts,
though the latter are perhaps more commonly used in the literature. For various
reasons, the problems we consider are in general more appropriate for vertex shifts, as
we discuss in the following section. (Vertex shifts are also motivated by applications
(§7).) Nonetheless, we now give some results for edge shifts, for the first two problems:
verifying k-block conjugacies, and testing pairs of shifts for conjugacy. (The third
problem remains open.)

In the following, we will leverage our results for vertex shifts, using the standard
conversion from edge shifts to vertex shifts: edges become vertices, and pairs of adjacent
edges become edges [12, Proposition 2.3.9]. More formally, we recall that given edge
shift X¢, its vertex shift representation is the shift X where Vo = Eg and Egr =
{(es,€j) : esejis aword in X&}. Thus, for any edge shifts X¢&, X, there exists a
k-block conjugacy ® : X — X§ if and only if there exists a k-block conjugacy
@/ : X — Xp between the vertex shift representations of X and Xp.

First, we observe that our verification algorithm for vertex shifts immediately ap-
plies to edge shifts.

Theorem 29. Given directed multigraphs G, H and a proposed k-block code P :
X& — X4, deciding if oo is a conjugacy can be determined in O(|Eg|**).

Proof. Given edge shifts X¢, X§;, we first construct their vertex shift representations
X, X as above. Letting @/ be the corresponding block code between the vertex
shifts, by Corollary 13, we can determine if ®’_ is a conjugacy in O(|Ver|**) = O(|Eg|*)
time. O

We now turn to the k-block conjugacy problem for edge shifts, where we again show
Gl-hardness.

Definition 30. Given directed multigraphs G, H, the k-Block Conjugacy Problem,
denoted k-BC¢, is to decide is there is a k-block conjugacy ®., : X& — X§; between
the edge shifts X&, X§.

Theorem 31. k£-BC° is Gl-hard.

Proof. We first show that 1-BC® is Gl-hard. Given directed graphs G, H with |Eg| =
|Er|, as in the vertex shift case, we will argue that there exists a 1-block conjugacy
between the edge shifts if and only if the graphs are isomorphic. Suppose first that G, H
are isomorphic. Let G’, H' be the directed graphs for vertex shifts, as described above,
so that X = X& and X = X§;. Since G, H are isomorphic and G’, H' are created

22

et

k
€; e €k—2 €k—1 e
(a) v-S A Uﬁ>0i>~--*>0*>0302>t1/
b
€k
t
BE; Je-a
e ... — e t
(b) uiu’ ANS u—>fmo ofiufu’
b /
b\4 /3 fi-1 £
1 e—--- — e k

Figure 8: (a) The edge gadget for each pre-image graph. (b) The edge gadget for each
image graph.

by the same (deterministic) procedure, G’, H' are isomorphic. By Theorem 15, there
exists a 1-block conjugacy ® : Xg — Xpr, so X = X§ is conjugate to X = X§;
via a 1-block code.

Now suppose @, : X& — X is a 1-block conjugacy. Noting that ¢ : Eg —
Ep is a map on edges, we show that ® can be realized as a map on V5. To do
this, it suffices to show (i) for any two edges (vi,v2),(v1,v3) starting at the same
vertex, ®((vi,v2)), ®((v1,v3)) also start at the same vertex and (ii) for any two edges
(u1,u2), (us,uz) ending at the same vertex, ®((uy,uz)), ®((us,uz)) also end at the
same vertex. To see condition (i), consider any (v4,v1) € Eg. As ®((v4, v1)(v1,v2)) and
®((v4,v1)(v1,v3)) must both be words in X§;, we must have that ®((vi,v2)), ®((v1,v3))
both start at the same vertex. Similarly, for condition (ii), consider any (ug,us4) €
E¢g, and note that ®((uy,u2)(ugz,us)), P((us, uz)(u2,uq)) are both words in X§, so
D (uy, ug), P(us, uz) must end at the same vertex. Thus ® can be realized as a map
U : Vi — Vg on vertices which is surjective and preserves the edge/non-edge relation.
To show W is actually a graph isomorphism, consider the inverse ®!. Since @, is
1-block conjugacy and |Eg| = |Eg|, ®3! is a 1-block code. Again, &7 can be realized
as a surjective vertex map ¥’ which preserves the edge/non-edge relation. Since both
U : Vg — Vg and V' : Vg — Vg are surjective maps between finite sets, we actually
have ¥, ¥’ are bijections. Thus ¥ is a graph isomorphism from G to H.

We now reduce k-BC® to 1-BC®, as we did with vertex shifts. Given edge shifts
X§&, X§;, construct G, H as follows. To form G, substitute each edge in G with a path
of length k followed by two parallel edges and a final edge (Figure 8a). Construct H by
substituting each edge in H with a single edge followed by two parallel paths of length
k followed by a single edge (Figure 8b). Then construct the vertex shift representations
G H',G' H of G,H,G, H. By construction of the edge gadget, G’, H' can be formed
from G’, H' by using the vertex gadget in Figure 3. Thus by Theorem 18, there exists
a 1-block conjugacy @/ : X¢r — X if and only if there exists a k-block conjugacy
@go : Xa — Xp,. Since there exists a k-block conjugacy @ : X§ — X7 between
edge shifts if and only if there exists a k-block conjugacy @/ : Xgr — X between the
vertex representations, there exists a 1-block conjugacy @, : Xg — Xg if and only
if there exists a k-block conjugacy ® : Xa — Xg. Thus k-BC° is 1-BC®-hard and, in
particular, Gl-hard.]

23

Block size Verif. (G, H,®) Conjugacy (G, H) Reduction (G, ¥)

Vert k=1 1-BV: P 1-BC: Gl-hard, NP 1-BR: NP-complete
R k-BV: P k-BC: Gl-hard, NP k-BR: NP-complete ?

Ed k=1 1-Bv®: P 1-BC®: Gl-hard, NP* 1-BR®: NP-complete ?
8 k>1 k-BVE: P k-BCC: Gl-hard, NP* k-BR®: NP-complete ?

Table 1: Summary of results and open questions, for vertex and edge shifts. Question
marks denote conjectures, and BV refers to the verification problem (§3). The asterisk
(*) denotes a subtlety in how edge shifts are represented: the k-block conjugacy problem
is in NP when the representation size is considered to be the number of edges (i.e., a
unary representation), but membership in NP is not clear when the shift is given as an
adjacency matrix (i.e., a binary representation).

7 Discussion

We have addressed several variants of the conjugacy problem restricted to k-block
codes, with new algorithms to verify a proposed conjugacy, and hardness results for
k-block conjugacy and representation reduction via 1-block codes (Table 1). Below we
discuss subtleties of input representation, followed by applications and open problems.

Representations of SFTs. When considering how to describe a subshift of finite
type (SFT), three representations come to mind: a vertex shift, an edge shift, and a
list of forbidden words F. As our results pertain to vertex and edge shifts, we now
discuss some nuances in these two representations, leaving lists of forbidden words to
future work.

Perhaps the central advantage of edge shifts over vertex shifts is their compact rep-
resentation size: a shift on n symbols can be represented in size as small as O(logn)
by writing the multigraph as a integer adjacency matrix, as opposed to 2(n) for vertex
shifts. This compact representation size can have important implications on the com-
putational complexity. In the verification problem, for example, writing down a k-block
code ® naively takes Q(n) = Q(|Eg|) space, which can be exponential in the size of
the graphs G, H. (One can improve this by encoding ® as a integer |V| x |Vg| X |Ex|
tensor, specifying how many (u,v) € FEg edges map to a given e € Ep, but this can
still be exponential.) Thus, while our algorithm remains polynomial-time in n, it would
not be for cases allowing a compact representation of ®.

Similarly, for the conjugacy problem, we only know k-BC® to be in NP if we con-
sider the graphs G, H to be represented in adjacency list form, which takes Q(|Eg|)
space, rather than the typically more compact integer adjacency matrix form taking
O(|Ve|log |E¢|) space, as the natural certificate is the block map ® witnessing the con-
jugacy. For the matrix representation of edge shifts, membership in NP would require
a certificate exponentially smaller than the naive representation of the block map ®.

Finally, what “size reduction” means for edge shifts depends on the choice of adja-
cency list or matrix above. For the adjacency list, we have that the problem of reducing
the number of vertices in the graph is in NP, but it is less motivated, as the size is
dominated by |Eg|, not |[Vz|. On the other hand, while the adjacency matrix repre-
sentation size is dominated by |V, it is not clear whether the problem of reducing the
number of vertices is in NP, for the same reason as above.

24

Motivation from Markov partitions. As noted in [5], variants of the conjugacy
problem for vertex shifts have applications in simplifying Markov partitions, a tool
to study discrete-time dynamical systems via symbolic dynamics. Briefly, a Markov
partition is a collection C' of regions of the phase space, satisfying certain properties,
which induces a conjugacy to a vertex shift Xg where Vg = C| i.e., the vertices are
labeled with the regions of the phase space [6, Proposition 5.3.4]. (Our discussion
also applies to the weaker definition yielding only an almost 1-to-1 map [2, §6.1].)
In applications, one can encounter Markov partitions with thousands of regions, thus
motivating the problem of simplifying the partition. Without additional information
about the dynamical system, essentially the only way to do this while preserving the
relevant geometric information is to coarsen the partition, by replacing sets of regions
with a single region which is their union. This operation is exactly a 1-block code.
Our results therefore give an efficient algorithm to test whether a proposed coarsening
(1-block code) is valid (yields a conjugacy). Our results also imply that the problem
of minimizing the partition size is NP-complete. (Previous work [5] only showed the
latter for the case where the 1-block code was a sequence of amalgamations.)

Open problems. Our work leaves several open problems, such as those implied by
Table 1: resolving the complexity of the k-block conjugacy problem, and showing NP-
hardness of the size reduction problem. The complexity of deciding k-block conjugacy
between edge shifts represented as integer matrices is especially interesting, as member-
ship in NP is perhaps unlikely (see above). Regarding the k-block conjugacy problem
and resolving where it lies on the spectrum between Gl-complete and NP-complete, we
conjecture that, similar to the induced subgraph isomorphism problem [17], it is an
NP-complete problem which happens to be Gl-complete when |Vi| = |Vg|. Beyond
these questions, it would be interesting to address the complexity of k-block conjugacy
between SFT's given as lists of forbidden words, and the natural variants of the problem
for that input (for example, reducing the representation size of the list).

Acknowledgments

We thank Luke Meszar for valuable contributions to the early stages of this work.
We also thank Mike Boyle, Josh Grochow, Doug Lind, and Brian Marcus, for several
helpful conversations, references, and insights.

References

[1] Robert Berger. The undecidability of the domino problem. Number 66. American
Mathematical Society, 1966.

[2] Jan De Vries. Topological dynamical systems: an introduction to the dynamics of
continuous mappings. de Gruyter, 2014.

[3] Emilie Delnieppe. N-block presentations and decidability of direct conjugacy be-
tween subshifts of finite type. arXiv preprint arXiv:1604.01721, 2016.

[4] Jean-Guillaume Dumas, Clément Pernet, and Zhendong Wan. Efficient compu-
tation of the characteristic polynomial. In Proceedings of the 2005 international
symposium on Symbolic and algebraic computation, pages 140-147, 2005.

[5] Rafael M. Frongillo. Optimal state amalgamation is NP-hard. Ergodic Theory and
Dynamical Systems, 39(7):1857-1869, 2019. doi: 10.1017/etds.2017.105.

25

[6]

[17]

[18]

John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynamical Sys-
tems, and Bifurcations of Vector Fields. Springer, New York, 1983. ISBN 978-0-
387-90819-9.

Emmanuel Jeandel and Pascal Vanier. Hardness of conjugacy, embedding and
factorization of multidimensional subshifts. Journal of Computer and System Sci-
ences, 81(8):1648-1664, 2015. URL http://www.sciencedirect.com/science/
article/pii/S0022000015000604.

Natasa Jonoska and Brian Marcus. Minimal presentations for irreducible sofic
shifts. IEEE transactions on information theory, 40(6):1818-1825, 1994. URL
http://cat.inist.fr/7aModele=afficheN&cpsidt=3457216.

Richard M. Karp. Reducibility among combinatorial problems. Springer, 1972.

Walter Keller-Gehrig. Fast algorithms for the characteristics polynomial. Theo-
retical computer science, 36:309-317, 1985.

Johannes Kobler, Uwe Schoning, and Jacobo Toran. The Graph Isomorphism
problem: Its Structural Complexity. Berkhauser Verlag, Basel, Switzerland, 1993.

Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding.
Cambridge University Press, 1999. URL https://books.google.com/books?hl=
en&lr=&id=qSkNs3jr-DIC.

Douglas Lind and Klaus Schmidt. Symbolic and algebraic dynamical systems.
Handbook of dynamical systems, 1:765-812, 2002.

Andreas Malcher. Minimizing finite automata is computationally hard. Theoretical
Computer Science, 327(3):375 — 390, 2004. ISSN 0304-3975. doi: https://doi.
org/10.1016/j.t¢s.2004.03.070. URL http://www.sciencedirect.com/science/
article/pii/S0304397504004864. Developments in Language Theory.

Ville Salo and Ilkka Térma. Complexity of conjugacy, factoring and embedding for
countable sofic shifts of rank 2. In International Workshop on Cellular Automata
and Discrete Complex Systems, pages 121-134. Springer, 2014.

Klaus Sutner. Linear cellular automata and de bruijn automata. In Max-
ence Delorme and Jacques Mazoyer, editors, Cellular Automata: A Parallel
Model, pages 303-319, Dordrecht, 1999. Springer Netherlands. ISBN 978-94-015-
9153-9. doi: 10.1007/978-94-015-9153-9_12. URL https://doi.org/10.1007/
978-94-015-9153-9_12.

Maciej M. Systo. The subgraph isomorphism problem for outerplanar graphs.
Theoretical Computer Science, 17(1):91-97, 1982. ISSN 0304-3975. doi: https://
doi.org/10.1016/0304-3975(82)90133-5. URL http://www.sciencedirect.com/
science/article/pii/0304397582901335.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146-160, 1972.

26

http://www.sciencedirect.com/science/article/pii/S0022000015000604
http://www.sciencedirect.com/science/article/pii/S0022000015000604
http://cat.inist.fr/?aModele=afficheN&cpsidt=3457216
https://books.google.com/books?hl=en&lr=&id=qSkNs3jr-DIC
https://books.google.com/books?hl=en&lr=&id=qSkNs3jr-DIC
http://www.sciencedirect.com/science/article/pii/S0304397504004864
http://www.sciencedirect.com/science/article/pii/S0304397504004864
https://doi.org/10.1007/978-94-015-9153-9_12
https://doi.org/10.1007/978-94-015-9153-9_12
http://www.sciencedirect.com/science/article/pii/0304397582901335
http://www.sciencedirect.com/science/article/pii/0304397582901335

[19] Robert F. Williams. Classification of subshifts of finite type. Annals of Math-
ematics, 98(1):120-153, 1973. URL http://link.springer.com/content/pdf/
10.1007/BFb0061747 .pdf.

[20] Charalampos Zinoviadis. Hierarchy and expansiveness in 2d subshifts of finite type.
In International Conference on Language and Automata Theory and Applications,
pages 365-377. Springer, 2015.

A Algorithms

Function IsInjective(G, H,®):
Input: irreducible graphs G, H and a 1-block code ®

Output: true, if & : J,, Cr(G) — U,, Cn(H) is injective; false, otherwise

/* Construct the meta-graph M */
VM — VG X Vg;
EM — {((ul,vl), (UQ,UQ)) : <I>(u1) = ‘13(1}1), (I)(UQ) =

®(v9), and (u1,uz), (v1,v2) € Eg};

/* Decide if M has a cycle passing through (vi,v2) with vy # vy
*/
S + GetStronglyConnectedComponents (M) ; /* Tarjan’s */
foreach subgraph s in S do
if s is a singleton then
‘ continue;
end
foreach verter (vi,v2) in s do
if v1 # vy then
‘ return true;
end
end

end
return false;
Algorithm 1: Determine if ®. is injective

Function IsConjugacyIrreducible(G, H, ®):
Input: irreducible graphs G, H and a 1-block code ¢

Output: true, if ¢, is a conjugacy; false, otherwise
if not IsInjective(G, H, ®) then
‘ return false;

end
forie{1,...,|Vg|} do

if tr(A(G)") # tr(A(H)") then

‘ return false;
end

end
return true;
Algorithm 2: Determine if ®., between irreducible graphs is a conjugacy

27

http://link.springer.com/content/pdf/10.1007/BFb0061747.pdf
http://link.springer.com/content/pdf/10.1007/BFb0061747.pdf

Function AddSinkVertices(G, H, ®):
Input: reducible graphs G, H and a 1-block code ®

Result: (1) alters G, H by adding a new sink vertex to each graph, and
(2) extends ® to the new graphs so @, : Xg — Xp is a
conjugacy if and only if the original 1-block code was a conjugacy

/* Add the new vertex t and 't */

Vir.Add (1) ;

N () < {t};

N (1) + {t;

Ve.Add(t);

N*(H) « {t'}:

N=(t') « {t'};

T < GetSinkComponents(H);

foreach subgraph T in T do

T + &~ YT);

/* Find the subgraphs C and (' */

v < GetRandomVertex(T);

c < GetShortestCycleStartingAt (v);

Vo «—{ueVr:uec}

Ec + {(u,u) : uv is a word of length 2 contained in ¢*°};

Vor < {u e Ve <I>(u) S Vc};

FEor + {(u,u’) € by ((IJ(u), <I>(u/)) S Ec};

foreach vertex u in Vv do

if ®(u) = v A there is a path in C' from u to a cycle then
| N7(t').Add(w);
end

end

end

O(t') « t;

Algorithm 3: Turn every sink component into a single vertex

Function AddSourceVertices(G, H, P):
Input: reducible graphs G, H and a 1-block code ®

Result: (1) alters G, H by adding a new source vertex to each graph, and
(2) extends ® to the new graphs so @, : X¢ — Xp is a
conjugacy if and only if the original 1-block code was a conjugacy

G .ReverseEdgesQ);

H ReverseEdges ();

AddSinkVertices(G, H,®);

G ReverseEdges();

H ReverseEdges();
Algorithm 4: Turn every source component into a single vertex

28

Function IsConjugacyReducible(G, H, ®):
Input: reducible graphs G, H and a 1-block code ®

Output: true, if &, is a conjugacy; false, otherwise
AddSinkVertices(G, H, ®);
AddSourceVertices(G, H, ®);

/* Connect each new sink vertices to its respective new source
vertex x/
N~ (s) « t;
N=(s) « t;
return IsConjugacylrreducible(G, H, ®);
Algorithm 5: Determine if ., between reducible graphs is a conjugacy

29

	Introduction
	Setting
	Verification: Testing a k-Block Map for Conjugacy
	Irreducible Case
	General Case

	Deciding k-Block Conjugacy
	Reducing Representation Size
	Edge Shifts
	Discussion
	Algorithms

