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Abstract

We consider a popular problem in finance, option pricing, through the lens of an
online learning game between Nature and an Investor. In the Black-Scholes op-
tion pricing model from 1973, the Investor can continuously hedge the risk of
an option by trading the underlying asset, assuming that the asset’s price fluctu-
ates according to Geometric Brownian Motion (GBM). We consider a worst-case
model, in which Nature chooses a sequence of price fluctuations under a cumula-
tive quadratic volatility constraint, and the Investor can make a sequence of hedg-
ing decisions. Our main result is to show that the value of our proposed game,
which is the “regret” of hedging strategy, converges to the Black-Scholes option
price. We use significantly weaker assumptions than previous work—for instance,
we allow large jumps in the asset price—and show that the Black-Scholes hedging
strategy is near-optimal for the Investor even in this non-stochastic framework.

1 Introduction

An option is a financial contract that allows the purchase or sale of a given asset, such as a stock,
bond, or commodity, for a predetermined price on a predetermined date. The contract is named as
such because the transaction in question is optional for the purchaser of the contract. Options are
bought and sold for any number of reasons, but in particular they allow firms and individuals with
risk exposure to hedge against potential price fluctuations. Airlines, for example, have heavy fuel
costs and hence are frequent buyers of oil options.

What ought we pay for the privilege of purchasing an asset at a fixed price on a future expiration
date? The difficulty with this question, of course, is that while we know the asset’s previous prices,
we are uncertain as to its future price. In a seminal paper from 1973, Fischer Black and Myron
Scholes introduced what is now known as the Black-Scholes Option Pricing Model, which led to a
boom in options trading as well as a huge literature on the problem of derivative pricing [2]. Black
and Scholes had a key insight that a firm which had sold/purchased an option could “hedge” against
the future cost/return of the option by buying and selling the underlying asset as its price fluctuates.
Their model is based on stochastic calculus and requires a critical assumption that the asset’s price
behaves according to a Geometric Brownian Motion (GBM) with known drift and volatility.

The GBM assumption in particular implies that (almost surely) an asset’s price fluctuates continu-
ously. The Black-Scholes model additionally requires that the firm be able to buy and sell contin-
uously until the option’s expiration date. Neither of these properties are true in practice: the stock
market is only open eight hours per day, and stock prices are known to make significant jumps even
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during regular trading. These and other empirical observations have led to much criticism of the
Black-Scholes model.

An alternative model for option pricing was considered1 by DeMarzo et al. [3], who posed the
question: “Can we construct hedging strategies that are robust to adversarially chosen price fluc-
tuations?” Essentially, the authors asked if we may consider hedging through the lens of regret
minimization in online learning, an area that has proved fruitful, especially for obtaining guarantees
robust to worst-case conditions. Within this minimax option pricing framework, DeMarzo et al. pro-
vided a particular algorithm resembling the Weighted Majority and Hedge algorithms [5, 6] with a
nice bound.

Recently, Abernethy et al. [1] took the minimax option pricing framework a step further, analyzing
the zero-sum game being played between an Investor, who is attempting to replicate the option
payoff, and Nature, who is sequentially setting the price changes of the underlying asset. The
Investor’s goal is to “hedge” the payoff of the option as the price fluctuates, whereas Nature attempts
to foil the Investor by choosing a challenging sequence of price fluctuations. The value of this game
can be interpreted as the “minimax option price,” since it is what the Investor should pay for the
option against an adversarially chosen price path. The main result of Abernethy et al. was to show
that the game value approaches the Black-Scholes option price as the Investor’s trading frequency
increases. Put another way, the minimax price tends to the option price under the GBM assumption.
This lends significant further credibility to the Black-Scholes model, as it suggests that the GBM
assumption may already be a “worst-case model” in a certain sense.

The previous result, while useful and informative, left two significant drawbacks. First, their tech-
niques used minimax duality to compute the value of the game, but no particular hedging algorithm
for the Investor is given. This is in contrast to the Black-Scholes framework (as well as to the De-
Marzo et al.’s result [3]) in which a hedging strategy is given explicitly. Second, the result depended
on a strong constraint on Nature’s choice of price path: the multiplicative price variance is uniformly
constrained, which forbids price jumps and other large fluctuations.

In this paper, we resolve these two drawbacks. We consider the problem of minimax option pricing
with much weaker constraints: we restrict the sum over the length of the game of the squared price
fluctuations to be no more than a constant c, and we allow arbitrary price jumps, up to a bound ζ. We
show that the minimax option price is exactly the Black-Scholes price of the option, up to an additive
term of O(cζ1/4). Furthermore, we give an explicit hedging strategy: this upper bound is achieved
when the Investor’s strategy is essentially a version of the Black-Scholes hedging algorithm.

2 The Black-Scholes Formula

Let us now briefly review the Black-Scholes pricing formula and hedging strategy. The derivation
requires some knowledge of continuous random walks and stochastic calculus—Brownian motion,
Itô’s Lemma, a second-order partial differential equation—and we shall only give a cursory treat-
ment of the material. For further development we recommend a standard book on stochastic cal-
culus, e.g. [8]. Let us imagine we have an underlying asset A whose price is fluctuating. We let
W (t) be a Brownian motion, also known as a Weiner process, with zero drift and unit variance; in
particular, W (0) = 0 and W (t) ∼ N(0, t) for t > 0. We shall imagine that A’s price path G(t) is
described by a geometric Brownian motion with drift µ and volatility σ, which we can describe via
the definition of a Brownian motion: G(t) d= exp{(µ− 1

2σ
2)t+ σW (t)}.

If an Investor purchases a European call option on some asset A (say, MSFT stock) with a strike
price of K > 0 that matures at time T , then the Investor has the right to buy a share of A at price K
at time T . Of course, if the market price of A at T is G(T ), then the Investor will only “exercise”
the option if G(T ) > K, since the Investor has no benefit of purchasing the asset at a price higher
than the market price. Hence, the payoff of a European call option has a profit function of the form
max{0, G(T ) −K}. Throughout the paper we shall use gEC(x) := max{0, x −K} to refer to the
payout of the European call when the price of asset A at time T is x (the parameter K is implicit).

1Although it does not have quite the same flavor, a similar approach was explored in the book of Vovk and
Shafer [7].
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We assume the current time is t. The Black-Scholes derivation begins with a guess: assume that the
“value” of the European call option can be described by a smooth function V(G(t), t), depending
only on the current price of the asset G(t) and the time to expiration T − t. We can immedi-
ately define a boundary condition on V , since at the expiration time T the value of the option is
V(G(T ), 0) = gEC(G(T )).

So how do we arrive at a value for the option at another time point t? We assume the Investor has
a hedging strategy, ∆(x, t) that determines the amount to invest when the current price is x and the
time is t. Notice that if the asset’s current price isG(t) and the Investor purchases ∆(G(t), t) dollars
of asset A at t, then the incremental amount of money made in an infinitesimal amount of time is
∆(G(t), t) dG/G(t), since dG/G(t) is the instantaneous multiplicative price change at time t. Of
course, if the earnings of the Investor are guaranteed to exactly cancel out the infinitesimal change
in the value of the option dV(G(t), t), then the Investor is totally hedged with respect to the option
payout for any sample of G for the remaining time to expiration. In other words, we hope to achieve
dV(G, t) = ∆(G, t) dG/G. However, by Itô’s Lemma [8] we have the following useful identity:

dV(G, t) =
∂V
∂x

dG+
∂V
∂t
dt+

1
2
σ2G2 ∂

2V
∂x2

dt. (1)

Black and Scholes proposed a generic hedging strategy, that the investor should invest

∆(x, t) = x
∂V
∂x

(2)

dollars in the asset A when the price of A is x at time t. As mentioned, the goal of the Investor is
to hedge out risk so that it is always the case that dV(G, t) = ∆(G, t) dG/G. Combining this goal
with Equations (1) and (2), we have

∂V
∂t

+
1
2
σ2x2 ∂

2V
∂x2

= 0. (3)

Notice the latter is an entirely non-stochastic PDE, and indeed it can be solved explicitly:

V(x, t) = EY [gEC(x · exp(Y ))] where Y ∼ N (− 1
2σ

2(T − t), σ2(T − t)) (4)

Remark: While we have described the derivation for the European call option, with payoff function
gEC, the analysis above does not rely on this specific choice of g. We refer the reader to a standard
text on asset pricing for more on this [8].

3 The Minimax Hedging Game

We now describe a sequential decision protocol in which an Investor makes a sequence of trading
decisions on some underlying asset, with the goal of hedging away the risk of some option (or other
financial derivative) whose payout depends on the final price of the asset at the expiration time T .
We assume the Investor is allowed to make a trading decision at each of n time periods, and before
making this trade the investor observes how the price of the asset has changed since the previous
period. Without loss of generality, we can assume that the current time is 0 and the trading periods
occur at {T/n, 2T/n, . . . , 1}, although this will not be necessary for our analysis.

The protocol is as follows.
1: Initial price of asset is S = S0.
2: for i = 1, 2, . . . , n do
3: Investor hedges, invests ∆i ∈ R dollars in asset.
4: Nature selects a price fluctuation ri and updates price S ← S(1 + ri).
5: Investor receives (potentially negative) profit of ∆iri.
6: end for
7: Investor is charged the cost of the option, g(S) = g (S0 ·

∏n
i=1(1 + ri)).

Stepping back for a moment, we see that the Investor is essentially trying to minimize the following
objective:

g

(
S0 ·

n∏
i=1

(1 + ri)

)
−

n∑
i=1

∆iri.
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We can interpret the above expression as a form of regret: the Investor chose to execute a trading
strategy, earning him

∑n
i=1 ∆iri, but in hindsight might have rather purchased the option instead,

with a payout of g (S0 ·
∏n
i=1(1 + ri)). What is the best hedging strategy the Investor can execute

to minimize the difference between the option payoff and the gains/losses from hedging? Indeed,
how much regret may be suffered against a worst-case sequence of price fluctuations?

Constraining Nature. The cost of playing the above sequential game is clearly going to de-
pend on how much we expect the price to fluctuate. In the original Black-Scholes formula-
tion, the price volatility σ is a major parameter in the pricing function. In the work of Aber-
nethy et al., a key assumption was that Nature may choose any r1, . . . , rn with the constraint that
E[r2

i | r1, . . . , ri−1] = O(1/n). 2 Roughly, this constraint means that in any ε-sized time interval,
the price fluctuation variance shall be no more than ε. This constraint, however, does not allow for
large price jumps during trading. In the present work, we impose a much weaker set of constraints,
described as follows:3

• TotVarConstraint: The total price fluctuation is bounded by a constant c:
∑n
i=1 r

2
i ≤ c.

• JumpConstraint: Every price jump |ri| is no more than ζ, for some ζ > 0 (which may
depend on n).

The first constraint above says that Nature is bounded by how much, in total, the asset’s price path
can fluctuate. The latter says that at no given time can the asset’s price jump more than a given value.
It is worth noting that if c ≥ nζ2 then TotVarConstraint is superfluous, whereas JumpConstraint
becomes superfluous if c < ζ2.

The Minimax Option Price We are now in a position to define the value of the sequential option
pricing game using a minimax formulation. That is, we shall ask how much the Investor loses
when making optimal trading decisions against worst-case price fluctuations chosen by Nature. Let
V

(n)
ζ (S; c,m) be the value of the game, measured by the investor’s loss, when the asset’s current

price is S ≥ 0, the TotVarConstraint is c ≥ 0, the JumpConstraint is ζ > 0, the total number of
trading rounds are n ∈ N, and there are 0 ≤ m ≤ n rounds remaining. We define recursively:

V
(n)
ζ (S; c,m) = inf

∆∈R
sup

r : |r|≤min{ζ,
√
c}
−∆r + V

(n)
ζ ((1 + r)S; c− r2,m− 1), (5)

with the base case V (n)
ζ (S; c, 0) = g(S). Notice that the constraint under the supremum en-

forces both TotVarConstraint and JumpConstraint. For simplicity, we will write V (n)
ζ (S; c) :=

V
(n)
ζ (S; c, n). This is the value of the game that we are interested in analyzing.

Towards establishing an upper bound on the value (5), we shall discuss the question of how to
choose the hedge parameter ∆ on each round. We can refer to a “hedging strategy” in this game as
a function of the tuple (S, c,m, n, ζ, g(·)) that returns hedge position. In our upper bound, in fact
we need only consider hedging strategies ∆(S, c) that depend on S and c; there certainly will be a
dependence on g(·) as well but we leave this implicit.

4 Asymptotic Results

The central focus of the present paper is the following question: “For fixed c and S, what is the
asymptotic behavior of the value V (n)

ζ (S; c)?” and “Is there a natural hedging strategy ∆(S, c) that
(roughly) achieves this value?” In other words, what is the minimax value of the option, as well
as the optimal hedge, when we fix the variance budget c and the asset’s current price S, but let the
number of rounds tend to∞? We now give answers to these questions, and devote the remainder of
the paper to developing the results in detail.

We consider payoff functions g : R0 → R0 satisfying three constraints:
2The constraint in [1] was E[r2i | r1, . . . , ri−1] ≤ exp(c/n)− 1, but this is roughly equivalent.
3We note that Abernethy et al. [1] also assumed that the multiplicative price jumps |ri| are bounded by

ζ̂n = Ω(
p

(logn)/n); this is a stronger assumption than what we impose on (ζn) in Theorem 1.
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1. g is convex.

2. g is L-Lipschitz, i.e. |g(x)− g(y)| ≤ L|x− y|.
3. g is eventually linear, i.e. there exists K > 0 such that g(x) is a linear function for all
x ≥ K; in this case we also say g is K-linear.

We believe the first two conditions are strictly necessary to achieve the desired results. The K-
linearity may not be necessary but makes our analysis possible. We note that the constraints above
encompass the standard European call and put options.

Henceforth we shall let G be a zero-drift GBM with unit volatility. In particular, we have that
logG(t) ∼ N (− 1

2 t, t). For S, c ≥ 0, define the function

U(S, c) = EG[g(S ·G(c))],

and observe that U(S, 0) = g(S). Our goal will be to show that U is asymptotically the minimax
price of the option. Most importantly, this function U(S, c) is identical to V(S, 1

σ2 (T − c)), the
Black-Scholes value of the option in (4) when the GBM volatility parameter is σ in the Black-
Scholes analysis. In particular, analogous to to (3), U(S, c) satisfies a differential equation:

1
2
S2 ∂

2U

∂S2
− ∂U

∂c
= 0. (6)

The following is our main result of this paper.

Theorem 1. Let S > 0 be the initial asset price and let c > 0 be the variance budget. Assume we
have a sequence {ζn} with limn→∞ ζn = 0 and lim infn→∞ nζ2

n > c. Then

lim
n→∞

V
(n)
ζn

(S; c) = U(S, c).

This statement tells us that the minimax price of an option, when Nature has a total fluctuation
budget of c, approaches the Black-Scholes price of the option when the time to expiration is c.
This is particularly surprising since our minimax pricing framework made no assumptions as to
the stochastic process generating the price path. This is the same conclusion as in [1], but we
obtained our result with a significantly weaker assumption. Unlike [1], however, we do not show
that the adversary’s minimax optimal stochastic price path necessarily converges to a GBM. The
convergence of Nature’s price path to GBM in [1] was made possible by the uniform per-round
variance constraint.

The previous theorem is the result of two main technical contributions. First, we prove a lower
bound on the limiting value of V (n)

ζn
(S; c) by exhibiting a simple randomized strategy for Nature

in the form of a stochastic price path, and appealing to the Lindeberg-Feller central limit theorem.
Second, we prove an O(cζ1/4) upper bound on the deviation between V (n)

ζ (S; c) and U(S, c). The
upper bound is obtained by providing an explicit strategy for the Investor:

∆(S, c) = S
∂U(S, c)
∂S

and carefully bounding the difference between the output using this strategy and the game value. In
the course of doing so, because we are invoking Taylor’s remainder theorem, we need to bound the
first few derivatives of U(S, c). Bounding these derivatives turns out to be the crux of the analysis;
in particular, it uses the full force of the assumptions on g, including that g is eventually linear, to
avoid the pathological cases when the derivative of g converges to its limiting value very slowly.

5 Lower Bound

In this section we prove that U(S, c) is a lower bound to the game value V (n)
ζn

(S; c). We note that the
result in this section does not use the assumptions in Theorem 1 that ζn → 0, nor that g is convex
and eventually linear. In particular, the following result also applies when the sequence (ζn) is a
constant ζ > 0.
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Theorem 2. Let g : R0 → R0 be an L-Lipschitz function, and let {ζn} be a sequence of positive
numbers with lim infn→∞ nζ2

n > c. Then for every S, c > 0,

lim inf
n→∞

V
(n)
ζn

(S; c) ≥ U(S, c).

The proof of Theorem 2 is based on correctly “guessing” a randomized strategy for Nature. For each
n ∈ N, define the random variables R1,n, . . . , Rn,n ∼ Uniform{±

√
c/n} i.i.d. Note that (Ri,n)ni=1

satisfies TotVarConstraint by construction. Moreover, the assumption lim infn→∞ nζ2
n > c im-

plies ζn >
√
c/n for all sufficiently large n, so eventually (Ri,n) also satisfies JumpConstraint.

We have the following convergence result for (Ri,n), which we prove in Appendix A.
Lemma 3. Under the same setting as in Theorem 2, we have the convergence in distribution

n∏
i=1

(1 +Ri,n) d−→ G(c) as n→∞.

Moreover, we also have the convergence in expectation

lim
n→∞

E

[
g

(
S ·

n∏
i=1

(1 +Ri,n)

)]
= U(S, c). (7)

With the help of Lemma 3, we are now ready to prove Theorem 2.

Proof of Theorem 2. Let n be sufficiently large such that nζ2
n > c. LetRi,n ∼ Uniform{±

√
c/n}

i.i.d., for 1 ≤ i ≤ n. As noted above, (Ri,n) satisfies both TotVarConstraint and JumpConstraint.
Then we have

V
(n)
ζn

(S; c) = inf
∆1

sup
r1

· · · inf
∆n

sup
rn

g
(
S ·

n∏
i=1

(1 + ri)
)
−

n∑
i=1

∆iri

≥ inf
∆1
· · · inf

∆n

E
[
g
(
S ·

n∏
i=1

(1 +Ri,n)
)
−

n∑
i=1

∆iRi,n

]
= E

[
g
(
S ·

n∏
i=1

(1 +Ri,n)
)]
.

The first line follows from unrolling the recursion in the definition (5); the second line from replacing
the supremum over (ri) with expectation over (Ri,n); and the third line from E[Ri,n] = 0. Taking
limit on both sides and using (7) from Lemma 3 give us the desired conclusion.

6 Upper Bound

In this section we prove that U(S, c) is an upper bound to the limit of V (n)
ζ (S; c).

Theorem 4. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Let 0 < ζ ≤ 1/16. Then
for any S, c > 0 and n ∈ N, we have

V
(n)
ζ (S; c) ≤ U(S, c) +

(
18c+

8√
2π

)
LK ζ1/4.

We remark that the right-hand side of the above bound does not depend on the number of trading
periods n. The key parameter is ζ, which determines the size of the largest price jump of the stock.
However, we expect that as the trading frequency increases, the size of the largest price jump will
shrink. Plugging a sequence {ζn} in place of ζ in Theorem 4 gives us the following corollary.
Corollary 1. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Let {ζn} be a sequence
of positive numbers with ζn → 0. Then for S, c > 0,

lim sup
n→∞

V
(n)
ζn

(S; c) ≤ U(S, c).

Note that the above upper bound relies on the convexity of g, for if g were concave, then we would
have the reverse conclusion:

V
(n)
ζ (S; c) ≥ g(S) = g(S · E[G(c)]) ≥ E[g(S ·G(c))] = U(S, c).

Here the first inequality follows from setting all r = 0 in (5), and the second is by Jensen’s inequality.
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6.1 Intuition

For brevity, we write the partial derivatives Uc(S, c) = ∂U(S, c)/∂c, US(S, c) = ∂U(S, c)/∂S, and
US2(S, c) = ∂2U(S, c)/∂S2. The proof of Theorem 4 proceeds by providing a “guess” for the In-
vestor’s action, which is a modification of the original Black-Scholes hedging strategy. Specifically,
when the current price is S and the remaining budget is c, then the Investor invests

∆(S, c) := SUS(S, c).

We now illustrate how this strategy gives rise to a bound on V (n)
ζ (S; c) as stated in Theorem 4. First

suppose for somem ≥ 1 we know that V (n)
ζ (S; c,m−1) is a rough approximation to U(S, c). Note

that a Taylor approximation of the function rm 7→ U(S + Srm, c− r2
m) around U(S, c) gives us

U(S + Srm, c− r2
m) = U(S, c) + rmSUS(S, c)− r2

mUc(S, c) +
1
2
r2
mS

2US2(S, c) +O(r3
m)

= U(S, c) + rmSUS(S, c) +O(r3
m),

where the last line follows from the Black-Scholes equation (6). Now by setting ∆ = SUS(S, c) in
the definition (5), and using the assumption and the Taylor approximation above, we obtain

V
(n)
ζ (S; c,m) = inf

∆∈R
sup

|rm|≤min{ζ,
√
c}
−∆rm + V

(n)
ζ (S + Srm; c− r2

m,m− 1)

≤ sup
rm

−rmSUS(S, c) + V
(n)
ζ (S + Srm; c− r2

m,m− 1)

= sup
rm

−rmSUS(S, c) + U(S + Srm, c− r2
m) + (approx terms)

= U(S, c) +O(r3
m) + (approx terms).

In other words, on each round of the game we add anO(r3
m) term to the approximation error. By the

time we reach V (n)
ζ (S; c, n) we will have an error term that is roughly on the order of

∑n
m=1 |rm|3.

Since
∑n
m=1 r

2
m ≤ c and |rm| ≤ ζ by assumption, we get

∑n
m=1 |rm|3 ≤ ζc.

The details are more intricate because the error O(r3
m) from the Taylor approximation also depends

on S and c. Trading off the dependencies of c and ζ leads us to the bound stated in Theorem 4.

6.2 Proof (Sketch) of Theorem 4

In this section we describe an outline of the proof of Theorem 4. Throughout, we assume g is a
convex, L-Lipschitz, K-linear function, and 0 < ζ ≤ 1/16. The proofs of Lemma 5 and Lemma 7
are provided in Appendix B, and Lemma 6 is proved in Appendix C.

For S, c > 0 and |r| ≤
√
c, we define the (single-round) error term of the Taylor approximation,

εr(S, c) := U(S + Sr, c− r2)− U(S, c)− rSUS(S, c). (8)

We also define a sequence {α(n)(S, c,m)}nm=0 to keep track of the cumulative errors. We define
this sequence by setting α(n)(S, c, 0) = 0, and for 1 ≤ m ≤ n,

α(n)(S, c,m) := sup
|r|≤min{ζ,

√
c}
εr(S, c) + α(n)(S + Sr, c− r2,m− 1). (9)

For simplicity, we write α(n)(S, c) ≡ α(n)(S, c, n). Then we have the following result, which
formalizes the notion from the preceding section that V (n)

ζ (S; c,m) is an approximation to U(S, c).

Lemma 5. For S, c > 0, n ∈ N, and 0 ≤ m ≤ n, we have

V
(n)
ζ (S; c,m) ≤ U(S, c) + α(n)(S, c,m). (10)

It now remains to bound α(n)(S, c) from above. A key step in doing so is to show the following
bounds on εr. This is where the assumptions that g be L-Lipschitz and K-linear are important.
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Lemma 6. For S, c > 0, and |r| ≤ min{1/16,
√
c/8}, we have

εr(S, c) ≤ 16LK
(

max{c−3/2, c−1/2} |r|3 + max{c−2, c−1/2} r4
)
. (11)

Moreover, for S > 0, 0 < c ≤ 1/4, and |r| ≤
√
c, we also have

εr(S, c) ≤
4LK√

2π
· r

2

√
c
. (12)

Using Lemma 6, we have the following bound on α(n)(S, c).

Lemma 7. For S, c > 0, n ∈ N, and 0 < ζ ≤ 1/16, we have

α(n)(S, c) ≤
(

18c+
8√
2π

)
LK ζ1/4.

Proof (sketch). By unrolling the inductive definition (9), we can write α(n)(S, c) as the supremum
of f(r1, . . . , rn), where

f(r1, . . . , rn) =
n∑

m=1

εrm

(
S

m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
.

Let (r1, . . . , rn) be such that |rm| ≤ ζ and
∑n
m=1 r

2
m ≤ c. We will show that f(r1, . . . , rn) ≤

(18c+ 8/
√

2π) LK ζ1/4. Let 0 ≤ n∗ ≤ n be the largest index such that
∑n∗
m=1 r

2
m ≤ c−

√
ζ. We

split the analysis into two parts.

1. For 1 ≤ m ≤ min{n, n∗ + 1}: By (11) from Lemma 6 and a little calculation, we have

εrm

(
S

m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 18LK ζ1/4 r2

m.

Summing over 1 ≤ m ≤ min{n, n∗ + 1} then gives us

min{n, n∗+1}∑
m=1

εrm

(
S

m−1∏
i=1

(1+ri), c−
m−1∑
i=1

r2
i

)
≤ 18LKζ1/4

min{n, n∗+1}∑
m=1

r2
m ≤ 18LKζ1/4 c.

2. For n∗ + 2 ≤ m ≤ n (if n∗ ≤ n− 2): By (12) from Lemma 6, we have

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 4LK√

2π
· r2

m√∑n
i=m r

2
i

.

Therefore,

n∑
m=n∗+2

εrm

(
S

m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 4LK√

2π

n∑
m=n∗+2

r2
m√∑n
i=m r

2
i

≤ 8LK√
2π

ζ1/4,

where the last inequality follows from Lemma 8 in Appendix B.

Combining the two cases above gives us the desired conclusion.

Proof of Theorem 4. Theorem 4 follows immediately from Lemma 5 and Lemma 7.

Acknowledgments. We gratefully acknowledge the support of the NSF through grant CCF-
1115788 and of the ARC through Australian Laureate Fellowship FL110100281.
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A Proof of Lemma 3

For each 1 ≤ i ≤ n, the random variable log(1 +Ri,n) has mean and variance, respectively,

µn =
1
2

log
(

1− c

n

)
and σ2

n =
1
4

log2

(√
n+
√
c√

n−
√
c

)
.

We now define

Xi,n :=
log(1 +Ri,n)− µn

σn
√
n

, (13)

so X1,n, . . . , Xn,n are i.i.d. random variables with E[Xi,n] = 0 and
∑n
i=1 E[X2

i,n] = 1. Recalling
that Ri,n ∈ {±

√
c/n}, we see that the two possible values for Xi,n both approach 0 as n → ∞.

This means for any ε > 0 we can find a sufficiently large n such that |Xi,n| < ε for all 1 ≤ i ≤ n.
In particular, this implies the Lindeberg condition for the triangular array (Xi,n, 1 ≤ i ≤ n): for all
ε > 0,

lim
n→∞

n∑
i=1

E[X2
i,n 1{|Xi,n| > ε}] = 0.

Thus, by the Lindeberg central limit theorem [4, Theorem 3.4.5], we have the convergence in distri-
bution

∑n
i=1Xi,n

d−→ Z, where Z ∼ N (0, 1) is a standard Gaussian random variable.

Clearly µn → 0 as n→∞. Furthermore, one can easily verify that by the L’Hôpital’s rule,

lim
n→∞

σn
√
n =
√
c and lim

n→∞
nµn = − c

2
.

Therefore, from the convergence
∑n
i=1Xi,n

d−→ Z and recalling the definition (13) of Xi,n, we
also obtain

n∑
i=1

log(1 +Ri,n) =
n∑
i=1

(
µn + σn

√
nXi,n

)
= nµn + σn

√
n

n∑
i=1

Xi,n
d−→ −c

2
+
√
cZ.

In particular, by the continuous mapping theorem,
n∏
i=1

(1 +Ri,n) d−→ exp
(
− c

2
+
√
cZ
)
d= G(c).
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We now want to show that we also have convergence in expectation when g is an L-Lipschitz func-
tion, namely, that E[g(S ·

∏n
i=1(1 + Ri,n))] → E[g(S · G(c))]. Without loss of generality (by

replacing g(x) by ĝ(x) = g(S · x) − g(0)) we may assume S = 1 and g(0) = 0. For sim-
plicity, let Sn =

∏n
i=1(1 + Ri,n). For each M > 0 define the continuous bounded function

gM (x) = min{g(x),M}. The convergence in distribution Sn
d→ G(c) gives us

lim
n→∞

E[gM (Sn))] = E[gM (G(c))] for all M > 0. (14)

Since gM ↑ g pointwise, by the monotone convergence theorem we also have

lim
M→∞

E[gM (G(c))] = E[g(G(c))]. (15)

Now observe that E[Sn] = 1 and E[S2
n] = (1 + c/n)n ≤ exp(c). Since g(0) = 0 and g is L-

Lipschitz, we have g(x) ≤ Lx for all x ≥ 0. In particular, E[g(Sn)2] ≤ L2E[S2
n] ≤ L2 exp(c).

Moreover, by Markov’s inequality,

P(g(Sn) > M) ≤ P
(
Sn >

M

L

)
≤ E[Sn]
M/L

=
L

M
.

Therefore, for each n and for all M > 0, by Cauchy-Schwarz inequality,∣∣E[g(Sn)]− E[gM (Sn)]
∣∣ = E[(g(Sn)−M) · 1{g(Sn) > M}]
≤ E[g(Sn) · 1{g(Sn) > M}]
≤ E[g(Sn)2]1/2 P(g(Sn) > M)1/2

≤
(
L3 exp(c)/M

)1/2
.

Since the final bound does not involve n, this shows that limM→∞ E[gM (Sn)] → E[g(Sn)] uni-
formly in n. This allows us to interchange the order of the limit operations below, which, together
with (14) and (15), give us our desired result:
lim
n�∞

E[g(Sn)] = lim
n�∞

lim
M�∞

E[gM (Sn)] = lim
M�∞

lim
n�∞

E[gM (Sn)] = lim
M�∞

E[gM (G(c))] = E[g(G(c))].

This completes the proof of Lemma 3.

B Proofs of Lemma 5 and Lemma 7

B.1 Proof of Lemma 5

Lemma 5 essentially follows from the definition of α(n).

Proof of Lemma 5. We proceed by induction on m. For the base case m = 0, we use Jensen’s
inequality and the fact that E[G(c)] = 1:

V
(n)
ζ (S; c, 0) = g(S) = g(S · E[G(c)]) ≤ E[g(S ·G(c))] = U(S, c).

Now assume the statement (10) holds for m− 1. Then for m,

V
(n)
ζ (S; c,m) = inf

∆∈R
sup

|r|≤min{ζ,
√
c}
−∆r + V

(n)
ζ (S + Sr; c− r2,m− 1)

≤ inf
∆∈R

sup
|r|≤min{ζ,

√
c}
−∆r + U(S + Sr, c− r2) + α(n)(S + Sr, c− r2,m− 1)

≤ sup
|r|≤min{ζ,

√
c}
−rSUS(S, c) + U(S + Sr, c− r2) + α(n)(S + Sr, c− r2,m− 1)

= sup
|r|≤min{ζ,

√
c}
U(S, c) + εr(S, c) + α(n)(S + Sr, c− r2,m− 1)

= U(S, c) + α(n)(S, c,m).

The first line is from the definition (5); the second line is using the inductive hypothesis that (10)
holds form−1; the third line is from substituting the choice ∆ = SUS(S, c); the fourth line is from
the definition of εr; and the last line is from the definition of α(n)(S, c,m).
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B.2 Proof of Lemma 7

For completeness, we provide a more detailed proof of Lemma 7.

Proof of Lemma 7. Unrolling the inductive definition (9), we can write

α(n)(S, c) = sup
r1,...,rn

|rm|≤ζ,
Pn

m=1 r
2
m≤c

f(r1, . . . , rn),

where f is the function

f(r1, . . . , rn) =
n∑

m=1

εrm

(
S

m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
.

Let (r1, . . . , rn) be such that |rm| ≤ ζ and
∑n
m=1 r

2
m ≤ c. We will show that f(r1, . . . , rn) ≤

(18c+ 8/
√

2π) LK ζ1/4.

Assume for now that ζ ≤ c2. Let 0 ≤ n∗ ≤ n be the largest index such that
n∗∑
m=1

r2
m ≤ c−

√
ζ.

We split the analysis into two parts.

For 1 ≤ m ≤ min{n, n∗ + 1}: We want to apply the bound in Lemma 6, so let us verify that the
conditions in Lemma 6 are satisfied. Clearly |rm| ≤ ζ ≤ 1/16. Moreover, since c −

∑m−1
i=1 r2

i ≥
c−

∑n∗
i=1 r

2
i ≥
√
ζ and ζ ≤ 1/16, we also have

|rm| ≤ ζ ≤
ζ1/4

8
≤

√
c−

∑m−1
i=1 r2

i

8
.

Therefore, by (11) from Lemma 6,

εrm

(
S

m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 16LK

(
max

{(
c−

m−1∑
i=1

r2
i

)−3/2

,
(
c−

m−1∑
i=1

r2
i

)−1/2
}
|rm|3

+ max

{(
c−

m−1∑
i=1

r2
i

)−2

,
(
c−

m−1∑
i=1

r2
i

)−1/2
}
r4
m

)
≤ 16LK

(
max{ζ−3/4, ζ−1/4} |rm|3 + max{ζ−1, ζ−1/4} r4

m

)
= 16LK

(
ζ−3/4 |rm|3 + ζ−1 r4

m

)
(since ζ < 1)

≤ 16LK
(
ζ1/4 r2

m + ζ r2
m

)
(since |rm| ≤ ζ)

≤ 16LK
(
ζ1/4 r2

m + ζ1/4 1
163/4

r2
m

)
(since ζ ≤ 1/16)

= 18LK ζ1/4 r2
m.

Summing over 1 ≤ m ≤ min{n, n∗ + 1} gives us

min{n, n∗+1}∑
m=1

εrm

(
S

m−1∏
i=1

(1+ri), c−
m−1∑
i=1

r2
i

)
≤ 18LKζ1/4

min{n, n∗+1}∑
m=1

r2
m ≤ 18LKζ1/4 c. (16)

For n∗ + 2 ≤ m ≤ n, if n∗ ≤ n − 2: Without loss of generality we may assume rn 6= 0, for if
rn = 0, then the term depending on rn does not affect f(r1, . . . , rn) since

εrn

(
S

n−1∏
i=1

(1 + ri), c−
n−1∑
i=1

r2
i

)
= 0,
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so we can remove rn and only consider n∗ + 2 ≤ m ≤ n− 1. From the definition of n∗ we see that∑n∗+1
m=1 r

2
m > c−

√
ζ, and since

∑n
m=1 r

2
m ≤ c, this implies

n∑
m=n∗+2

r2
m ≤ c−

n∗+1∑
m=1

r2
m < c− (c−

√
ζ) =

√
ζ. (17)

Note also that for each n∗ + 2 ≤ m ≤ n,

0 < r2
n ≤

n∑
i=m

r2
i ≤ c−

m−1∑
i=1

r2
i ≤ c−

n∗+1∑
i=1

r2
i ≤

√
ζ ≤ 1

4
,

so by (12) from Lemma 6,

εrm

(
S

m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 4LK√

2π
· r2

m√
c−

∑m−1
i=1 r2

i

≤ 4LK√
2π
· r2

m√∑n
i=m r

2
i

.

Therefore, by applying Lemma 8 below to xi = r2
n∗+1+i, we see that

n∑
m=n∗+2

εrm

(
S

m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 4LK√

2π

n∑
m=n∗+2

r2
m√∑n
i=m r

2
i

≤ 8LK√
2π

(
n∑

m=n∗+2

r2
m

)1/2

≤ 8LK√
2π

ζ1/4,

(18)

where the last inequality follows from (17). Combining (16) and (18) gives us the desired conclu-
sion.

Now if ζ > c2, then the argument in the second case above (for n∗ + 2 ≤ m ≤ n) still holds with
n∗ set to be −1, so we still get the same conclusion.

It now remains to prove the following result, which we use at the end of the proof of Lemma 7.
Lemma 8. For x1, . . . , xk ≥ 0 with xk > 0, we have

k∑
i=1

xi√
xi + xi+1 + · · ·+ xk

≤ 2

(
k∑
i=1

xi

)1/2

.

Proof. Let Lk denote the objective function that we wish to bound,

Lk(x1, . . . , xk) =
k∑
i=1

xi√
xi + xi+1 + · · ·+ xk

,

and note that for any t > 0,

Lk(tx1, . . . , txk) =
√
t Lk(x1, . . . , xk), (19)

For each k ∈ N, let ∆k denote the unit simplex in Rk with xk > 0,

∆k =

{
(x1, . . . , xk) : x1, . . . , xk−1 ≥ 0, xk > 0,

k∑
i=1

xi = 1

}
,

and let ηk denote the supremum of the function Lk over x ∈ ∆k. Given x = (x1, . . . , xk) ∈ ∆k,
define y = (y1, . . . , yk−1) by yi = xi+1/(1− x1), so y ∈ ∆k−1. Then we can write

Lk(x1, . . . , xk) =
x1√

x1 + · · ·+ xk
+ Lk−1(x2, . . . , xk)

= x1 +
√

1− x1 Lk−1(y1, . . . , yk−1)

≤ x1 +
√

1− x1 ηk−1,
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where the second equality is from (19) and the last inequality is from the definition of ηk−1. The
function x1 7→ x1 +

√
1− x1 ηk−1 is concave and maximized at x∗1 = 1− η2

k−1/4, giving us

Lk(x1, . . . , xk) ≤ x∗1 +
√

1− x∗1 ηk−1 = 1−
η2
k−1

4
+

√
η2
k−1

4
ηk−1 = 1 +

η2
k−1

4
.

Taking the supremum over x ∈ ∆k gives us the recursion

ηk ≤ 1 +
η2
k−1

4
,

which, along with the base case η1 = 1, easily implies ηk ≤ 2 for all k ∈ N. Now given
x1, . . . , xk ≥ 0 with xk > 0, let x′ = (tx1, . . . , txk) with t = 1/(x1 + · · ·+xk), so x′ ∈ ∆k. Then
using (19) and the bound ηk ≤ 2, we get

Lk(x1, . . . , xk) =
1√
t
Lk(tx1, . . . , txk) ≤ ηk

(
k∑
i=1

xi

)1/2

≤ 2

(
k∑
i=1

xi

)1/2

,

as desired.

C Proof of Lemma 6

In this section we provide a proof of Lemma 6. Throughout the rest of this paper, we use the
following notation for the higher-order partial derivatives of U ,

USacb(S, c) =
∂a+bU(S, c)
∂Sa∂cb

, a, b ∈ N0.

We will use the following bounds on US2 , US3 , and US4 , which we prove in Appendix D. These
bounds are where we use the crucial assumptions that the payoff function g is convex, L-Lipschitz,
and K-linear.
Lemma 9. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Then for all S, c > 0,

|US2(S, c)| ≤ 2LK√
2π
· 1
S2
√
c

(20)

|US3(S, c)| ≤ 7LK · max{c−3/2, c−1/2}
S3

, (21)

|US4(S, c)| ≤ 28LK · max{c−2, c−1/2}
S4

. (22)

We will also use the following property of the function U .
Lemma 10. The function U(S, c) is convex in S and non-decreasing in c.

Proof. For each fixed c ≥ 0 and for each realization of the random variable G(c) > 0, the function
S 7→ g(S · G(c)) is convex. Therefore, U(S, c) is convex in S, being a nonnegative linear com-
bination of convex functions. In particular, this implies US2(S, c) ≥ 0. So by the Black-Scholes
equation (6), we also have Uc(S, c) = 1

2S
2US2(S, c) ≥ 0.

We are now ready to prove Lemma 6. For clarity, we divide the proof into two parts: we first prove
the bound (12), then prove the bound (11).

Proof of (12) in Lemma 6. Recall that U(S, c) is non-decreasing in c by Lemma 10. Then by the
Taylor remainder theorem, we can write

εr(S, c) = U(S + Sr, c− r2)− U(S, c)− rSUS(S, c)
≤ U(S + Sr, c)− U(S, c)− rSUS(S, c)

=
1
2
r2S2US2(S + Sξ, c)

14



where ξ is some value between 0 and r. Since |ξ| ≤ |r| ≤
√
c ≤ 1/2, we have (1 + ξ)2 ≥ 1/4.

Moreover, from (20) in Lemma 9, we have∣∣(1 + ξ)2S2US2(S + Sξ, c)
∣∣ ≤ 2LK√

2π
· 1√

c
.

Combining the bounds above gives us

εr(S, c) ≤
1
2

r2

(1 + ξ)2

∣∣(1 + ξ)2S2US2(S + Sξ, c)
∣∣ ≤ 4LK√

2π
· r

2

√
c
,

as desired.

Proof of (11) in Lemma 6. Fix S, c > 0, and consider the function

f(r) = U(S + Sr, c− r2), |r| ≤
√
c.

By repeatedly applying the Black-Scholes differential equation (6), we can easily verify that f(0) =
U(S, c), f ′(0) = SUS(S, c), and

f ′′(r) = p2(r) r S2US2(S + Sr, c− r2) + p3(r) (1 + r)2r S3US3(S + Sr, c− r2)

+ (1 + r)4r2 S4US4(S + Sr, c− r2),
(23)

where p2, p3 are the polynomials p2(r) = 2r3 + 4r2 − 3r − 6 and p3(r) = 4r2 + 4r − 2.

Noting that we can write
εr(S, c) = f(r)− f(0)− f ′(0)r,

another application of Taylor’s remainder theorem allows us to write

εr(S, c) =
1
2
f ′′(ξ)r2

for some ξ lying between 0 and r. It is easy to verify that we have∣∣∣∣ p2(ξ)
(1 + ξ)2

∣∣∣∣ ≤ 7,
∣∣∣∣ p3(ξ)
(1 + ξ)

∣∣∣∣ ≤ 3 for all |ξ| ≤ |r| ≤ 1
16
.

Moreover, since ξ2 ≤ r2 ≤ c/64, we have c − ξ2 ≥ 63
64c. Then from the bound (20) in Lemma 9,

we have∣∣(1 + ξ)2S2US2(S + Sξ, c− ξ2)
∣∣ ≤ 2LK√

2π
· 1

(c− ξ2)1/2
≤ 2LK√

2π
· 1

( 63
64c)

1/2
≤ LK c−1/2.

We also get from the bound (21) in Lemma 9,∣∣(1 + ξ)3S3US3(S + Sξ, c− ξ2)
∣∣ ≤ 7LK max{(c− ξ2)−3/2, (c− ξ2)−1/2}

≤ 7LK max
{(63

64
c
)−3/2

,
(63

64
c
)−1/2}

≤ 7LK
(

64
63

)3/2

max{c−3/2, c−1/2}

≤ 8LK max{c−3/2, c−1/2}.
Similarly, the bound (22) in Lemma 9 gives us∣∣(1 + ξ)4S4US4(S + Sξ, c− ξ2)

∣∣ ≤ 29LK max{c−2, c−1/2}.
Applying the bounds above to (23) gives us

|f ′′(ξ)| ≤
∣∣∣∣ p2(ξ)
(1 + ξ)2

∣∣∣∣ · |ξ| · ∣∣(1 + ξ)2S2US2(S + Sξ, c− ξ2)
∣∣

+
∣∣∣∣ p3(ξ)
(1 + ξ)

∣∣∣∣ · |ξ| · ∣∣(1 + ξ)3S3US3(S + Sξ, c− ξ2)
∣∣

+ ξ2 ·
∣∣(1 + ξ)4S4US4(S + Sξ, c− ξ2)

∣∣
≤ 7LK |r| c−1/2 + 24LK |r| max{c−3/2, c−1/2}+ 29LK r2 max{c−2, c−1/2}
≤ 31LK |r| max{c−3/2, c−1/2}+ 29LK r2 max{c−2, c−1/2}.
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Therefore, we obtain

|εr(S, c)| =
1
2
|f ′′(ξ)| · r2 ≤ 16LK

(
|r|3 max{c−3/2, c−1/2}+ r4 max{c−2, c−1/2}

)
,

as desired.

D Proof of the Bounds on the Derivatives (Lemma 9)

In this section we prove the bounds on the higher-order derivatives USa(S, c), a ≥ 0. Proving the
bounds in Lemma 9 is more difficult than the analysis that we have done so far, and uses the full
force of the assumptions that the payoff function g is convex, L-Lipschitz, and K-linear.

The outline of the proof is as follows. By writing U(S, c) as a convolution, we can write its deriva-
tives USa(S, c) as an expectation of g(S ·G(c)) modulated by certain polynomials (Appendix D.1).
TheK-linearity of g allows us to approximate g by the European-option payoff function gEC that we
encountered in Section 2, so we first prove Lemma 9 for the specific case when the payoff function
is gEC (Appendix D.2). We extend the bound on US2(S, c) to the general case by dominating the
function inside the expectation by another carefully constructed function (Appendix D.3). Finally,
we use the approximation of g by gEC to prove the bounds on the higher-order derivatives US3 and
US4 (Appendix D.4). In particular, Lemma 15 proves the bound (20), and Lemma 18 proves the
bounds (21) and (22).

Throughout the rest of this appendix, Z ∼ N (0, 1) denotes a standard Gaussian random variable,
and Φ and φ denote the cumulative distribution function and the probability density function, re-
spectively, of the standard Gaussian distribution. The symbol ∗ denotes the convolution operator on
R. We also use the fact that G(c) d= exp(− 1

2c+
√
cZ). Recall that the convexity of g implies differ-

entiability almost everywhere, so we can work with its derivative g′, which is necessarily increasing
(since g is convex) and satisfies |g′(x)| ≤ L (since g is L-Lipschitz).

Finally, in the proofs below we use the following easy property, which we state without proof.
Lemma 11. For f : R→ R, Z ∼ N (0, 1), and c ≥ 0, we have

E[f(Z) exp(
√
cZ)] = exp

( c
2

)
E[f(Z +

√
c)],

provided all the expectations above exist.

D.1 Formulae for the Derivatives

In this section we show that the partial derivative USa(S, c) can be expressed as an expectation of
a polynomial modulated by the payoff function g. We define the family of polynomials p[a](x, y),
a ≥ 0, as follows:

p[0](x, y) = 1

p[a+1](x, y) = (x− ay) p[a](x, y)− p[a]
x (x, y) for a ≥ 1,

(24)

where p[a]
x (x, y) = ∂p[a](x, y)/∂x.

The following is the main result in this section; note that we only assume that g is Lipschitz.
Lemma 12. Let g : R0 → R0 be an L-Lipschitz function. For a ≥ 0 and S, c > 0,

USa(S, c) =
1

Saca/2
E
[
p[a](Z,

√
c) · g

(
S · exp

(
− c

2
+
√
cZ
))]

,

where Z ∼ N (0, 1).

In proving Lemma 12 we will need the following result, which allows us to differentiate the convo-
lution.
Lemma 13. Fix c > 0. Let g : R0 → R0 be an L-Lipschitz function, and let g̃(x) = g(exp(x)). Let
ω : R → R be given by ω(x) = p(x) φ(x/

√
c), where p(x) is a polynomial in x with coefficients

involving c. Finally, let f : R → R be given by f(r) = (g̃ ∗ ω)(r). Then the derivative f ′(r) =
df(r)/dr can be written as the derivative of the convolution, f ′(r) = (g̃ ∗ ω′)(r).
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Proof. Fix r ∈ R. For h 6= 0, consider the quantity ρh = 1
h (f(r+h)−f(r)), and note that f ′(r) =

limh→0 ρh. Recalling the definition of f as a convolution and using the mean-value theorem, we
can write ρh as

ρh =
∫ ∞
−∞

g̃(x)
(
ω(r − x+ h)− ω(r − x)

h

)
dx =

∫ ∞
−∞

g(x) ω′(r − x+ ξh) dx,

for some ξh between 0 and h. Let

ρ0 :=
∫ ∞
−∞

g̃(x) ω′(r − x) dx = (g̃ ∗ ω′)(r).

Then by another application of the mean-value theorem, we can write

∆h := ρh − ρ0 = ξh

∫ ∞
−∞

g̃(x)
(
ω′(r − x+ ξh)− ω′(r − x)

ξh

)
dx

= ξh

∫ ∞
−∞

g̃(x) ω′′(r − x+ ξ
(2)
h ) dx,

(25)

for some ξ(2)
h lying between 0 and ξh. One can easily verify that the second derivative of ω is given

by

ω′′(x) =
q(x)
c2

φ

(
x√
c

)
,

where q(x) is the polynomial q(x) = (x2 − c)p(x)− 2cxp′(x) + c2p′′(x). Since g is L-Lipschitz,
for each x ∈ R we have

0 ≤ g̃(x) = g(exp(x)) ≤ g(0) + |g(exp(x))− g(0)| ≤ g(0) + L exp(x)

This gives us the estimate∣∣∣∣∫ ∞
−∞

g̃(x) ω′′(r − x+ ξ
(2)
h ) dx

∣∣∣∣
≤ 1
c2

∫ ∞
−∞

(
g(0) + L exp(x)

)
· |q(r − x+ ξ

(2)
h )| · φ

(
r − x+ ξ

(2)
h√

c

)
dx

=
1
c3/2

∫ ∞
−∞

(
g(0) + L exp(r + ξ

(2)
h −

√
cy)
)
· |q(
√
cy)| · φ(y) dy <∞,

where in the computation above we have used the substitution y = (r − x+ ξ
(2)
h )/

√
c. The last ex-

pression above shows that the integral is finite, since we are integrating exponential and polynomial
functions against the Gaussian density. Plugging this bound to (25) and recalling that |ξh| ≤ |h|, we
obtain

|∆h| ≤ |h| ·
∣∣∣∣∫ ∞
−∞

g̃(x) ω′′(r − x+ ξ
(2)
h ) dx

∣∣∣∣→ 0 as h→ 0.

Since ∆h = ρh − ρ0, this implies our desired conclusion,

f ′(r) = lim
h→0

ρh = ρ0 = (g̃ ∗ ω′)(r).

We are now ready to prove Lemma 12.

Proof of Lemma 12. We proceed by induction on a. The base case a = 0 follows from the
definition of U . Assume the statement holds for some a ≥ 0; we prove it also holds for a+ 1. Our
strategy is to express USa as a convolution, use Lemma 13 to differentiate the convolution, and write
the result back as an expectation.
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Fix S, c > 0 for the rest of this proof. Let g̃(x) = g(exp(x)) and φc(x) = φ(x/
√
c). From the

inductive hypothesis and the fact that −Z d= Z, we have

USa(S, c) =
1

Saca/2
E
[
p[a](−Z,

√
c) · g̃

(
logS − c

2
−
√
cZ
)]

=
1

Saca/2

∫ ∞
−∞

p[a](−x,
√
c) · g̃

(
logS − c

2
−
√
cx
)
· φ(x) dx

=
1

Sac(a+1)/2

∫ ∞
−∞

p[a]

(
− y√

c
,
√
c

)
· g̃
(

logS − c

2
− y
)
· φc(y) dy

=
1

Sac(a+1)/2

∫ ∞
−∞

g̃
(

logS − c

2
− y
)
· ω(y) dy

=
1

Sac(a+1)/2
(g̃ ∗ ω)

(
logS − c

2

)
,

where in the computation above we have used the substitution y =
√
cx, and we have defined the

function

ω(y) = p[a]

(
− y√

c
,
√
c

)
· φ
(
y√
c

)
.

In particular, ω has derivative

ω′(y) = − 1√
c

(
p[a]
x

(
− y√

c
,
√
c

)
+

y√
c
p[a]

(
− y√

c
,
√
c

))
φ

(
y√
c

)
.

Differentiating USa with respect to S and using the result of Lemma 13 give us

USa+1(S, c) = − a

Sa+1c(a+1)/2
(g̃ ∗ ω)

(
logS − c

2

)
+

1
Sa+1c(a+1)/2

(g̃ ∗ ω′)
(

logS − c

2

)
=

1
Sa+1c(a+1)/2

∫ ∞
−∞

g̃
(

logS − c

2
− y
) (

ω′(y)− aω(y)
)
dy

=
1

Sa+1ca/2

∫ ∞
−∞

g̃
(

logS − c

2
−
√
cx
) (

ω′(
√
cx)− aω(

√
cx)
)
dx

=
1

Sa+1ca/2

∫ ∞
−∞

g̃
(

logS − c

2
−
√
cx
) ((−x−a

√
c)p[a](−x,

√
c)−p[a]

x (−x,
√
c))√

c
φ(x) dx

=
1

Sa+1c(a+1)/2

∫ ∞
−∞

g̃
(

logS − c

2
−
√
cx
)
p[a+1](−x,

√
c) φ(x) dx

=
1

Sa+1c(a+1)/2
E
[
p[a+1](−Z,

√
c) · g̃

(
logS − c

2
−
√
cZ
)]

=
1

Sa+1c(a+1)/2
E
[
p[a+1](Z,

√
c) · g

(
S ·
(
− c

2
+
√
cZ
))]

,

as desired. In the computation above we have again used the substitution x = y/
√
c and the fact

that −Z d= Z. This completes the induction step and the proof of the lemma.

As an example, the first few polynomials p[a](x, y) are

p[0](x, y) = 1

p[1](x, y) = x

p[2](x, y) = x2 − yx− 1

p[3](x, y) = x3 − 3yx2 + (2y2 − 3)x+ 3y,
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giving us the formulae

U(S, c) = E
[
g
(
S · exp

(
− c

2
+
√
cZ
))]

US(S, c) =
1

S
√
c

E
[
Z · g

(
S · exp

(
− c

2
+
√
cZ
))]

US2(S, c) =
1
S2c

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]

US3(S, c) =
1

S3c3/2
E
[(
Z3 − 3

√
cZ2 + (2c− 3)Z + 3

√
c
)
· g
(
S · exp

(
− c

2
+
√
cZ
))]

.

We also have the following easy corollaries.

Corollary 2. For a ≥ 1, E[p[a](Z,
√
c)] = 0. For a ≥ 2, we also have E[p[a](Z +

√
c,
√
c)] = 0.

Proof. First assume a ≥ 1, and take g to be the constant function g(x) = 1. In this case U(S, c) = 1
and USa(S, c) = 0, so by the result of Lemma 12, E[p[a](Z,

√
c)] = Saca/2 USa(S, c) = 0. Next,

assume a ≥ 2, and take g to be the linear function g(x) = x. In this case U(S, c) = E[S ·G(c)] = S,
so USa(S, c) = 0. Then using the results of Lemma 11 and Lemma 12,

E
[
p[a](Z +

√
c,
√
c)
]

= exp
(
− c

2

)
E
[
p[a](Z,

√
c) exp(

√
cZ)
]

= Sa−1ca/2 USa(S, c) = 0.

D.2 Calculations for the European-Option Payoff Function

In this section, we bound the derivatives USa(S, c) for the special case when g is the payoff function
of the European call function, g(x) = max{0, x −K}, where K > 0 is a constant. Note that the
bounds on US3 and US4 are slightly stronger than the stated bounds (21) and (22), because in this
case we are able to compute the derivatives exactly.
Lemma 14. Let g(x) = max{0, x−K}. Then for all S, c > 0,

|US2(S, c)| ≤ K√
2π
· 1
S2
√
c

|US3(S, c)| ≤ K√
2π
· (2
√
c+ 1)
S3c

|US4(S, c)| ≤ K√
2π
· (6c+ 5

√
c+ 2)

S4c3/2

Proof. We first compute the Black-Scholes value U(S, c). Define

α ≡ α(S, c) = − 1√
c

log
S

K
+
√
c

2
,

and observe that S · exp(−c/2 +
√
cZ) ≥ K if and only if Z ≥ α. Then using the result of

Lemma 11, we have

U(S, c) = E
[(
S · exp

(
− c

2
+
√
cZ
)
−K

)
· 1{Z ≥ α}

]
= S · exp

(
− c

2

)
E
[
exp(
√
cZ) · 1{Z ≥ α}

]
−K P(Z ≥ α)

= S P(Z ≥ α−
√
c)−K P(Z ≥ α)

= S Φ(−α+
√
c)−K Φ(−α).

Differentiating the formula above with respect to c and applying the Black-Scholes differential equa-
tion (6), we get

US2(S, c) =
2
S2

Uc(S, c) =
1
S2c

[
Sαφ

(
−α+

√
c
)

+K(−α+
√
c)φ (α)

]
=

K

S2
√
c
φ(α),
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where the last equality follows from the relation Sφ(−α+
√
c) = Kφ(α). In particular, we have the

bound 0 ≤ US2(S, c) ≤ K/(S2
√

2πc). A direct calculation reveals that the higher order derivatives
of U are given by

US3(S, c) =
K

S3c

(
α− 2

√
c
)
φ(α) and US4(S, c) =

K

S4c3/2
(
α2 − 5

√
cα+ 6c− 1

)
φ(α).

It is not difficult to see that we have |α exp(−α2/2)| ≤ 1 and |α2 exp(−α2/2)| ≤ 1. Applying
these bounds to the formulae above gives us the desired conclusion.

D.3 Bounding the Second Derivative US2(S, c)

We now bound the second-order derivative US2(S, c) in the general case.
Lemma 15. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Then for all S, c > 0,

0 ≤ US2(S, c) ≤ 2LK√
2π
· 1
S2
√
c
.

Proof. Recall that U(S, c) is convex in S (Lemma 10), so US2(S, c) ≥ 0. If g is a linear function,
say g(x) = γx for some 0 ≤ γ ≤ L, then U(S, c) = E[γS ·G(c)] = γS. In this case US2(S, c) = 0,
and we are done.

Now assume g is not a linear function. Since g is non-negative, L-Lipschitz, and K-linear, we can
find 0 ≤ γ ≤ L such that g′(x) = γ for x ≥ K. Moreover, since g is convex and not a linear
function, we also have that γ > g′(0). Define the function g̃ : R0 → R0 by

g̃(x) =
g(x)− g(0)− xg′(0)

γ − g′(0)
, (26)

and note that g̃ is an increasing, 1-Lipschitz convex function with g̃(0) = g̃′(0) = 0, 0 ≤ g̃′(x) ≤ 1,
and g̃′(x) = 1 for x ≥ K.

Consider the quantity V (S, c) = E[g̃(S ·G(c))], and note that we can write

V (S, c) =
E [g(S ·G(c))− g(0)− g′(0) · S ·G(c)]

γ − g′(0)
=
U(S, c)− g(0)− g′(0) · S

γ − g′(0)
.

Taking second derivative with respect to S on both sides and using the fact that 0 ≤ γ−g′(0) ≤ 2L,
we obtain

0 ≤ US2(S, c) = (γ − g′(0)) · VS2(S, c) ≤ 2L · VS2(S, c).
We already know that VS2(S, c) ≥ 0 since g̃ is convex, so we only need to show that

VS2(S, c) ≤ K√
2π
· 1
S2
√
c
.

For 0 < S ≤ K, using the formula from Lemma 12 and the result of Lemma 16 below, we obtain

VS2(S, c) =
1
S2c

E
[
(Z2 −

√
cZ − 1) · g̃

(
S · exp

(
− c

2
+
√
cZ
))]
≤ 1
S2c
·S
√
c√

2π
≤ K√

2π
· 1
S2
√
c
,

and for S ≥ K, we use the result of Lemma 17 to obtain

VS2(S, c) =
1
S2c

E
[
(Z2 −

√
cZ − 1) · g̃

(
S · exp

(
− c

2
+
√
cZ
))]
≤ 1
S2c
·K
√
c√

2π
=

K√
2π
· 1
S2
√
c
.

This completes the proof of the lemma.

It remains to prove the following two results, which we use in the proof of Lemma 15 above with g̃
in place of g. Note that the first result below does not use the assumption that g is eventually linear.
Lemma 16. Let g : R0 → R0 be an increasing, nonnegative, convex, 1-Lipschitz function. Then for
all S, c > 0,

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]
≤ S
√
c√

2π
.
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Proof. Fix S, c > 0, and define the following quantities:

t1 =
√
c−
√
c+ 4

2
t2 =

√
c+
√
c+ 4

2

λ1 = S · exp
(
− c

2
+
√
c t1

)
λ2 = S · exp

(
− c

2
+
√
c t2

)
g1 = g(λ1) g2 = g(λ2)

t∗ =
1√
c

log
(

exp(
√
ct2)− 1

S
· exp

( c
2

)
· (g2 − g1)

)
.

Furthermore, define the function h : R→ R0 by

h(x) = g1 +
(
g2 − g1 − λ2 + S · exp

(
− c

2
+
√
c x
))
· 1{x ≥ t∗}.

We will show that

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]
≤ E

[
(Z2 −

√
cZ − 1) · h(Z)

]
, (27)

and furthermore, we can evaluate the latter expectation explicitly:

E
[
(Z2 −

√
cZ − 1) · h(Z)

]
= S
√
c φ(t∗ −

√
c) ≤ S

√
c√

2π
.

We begin by noting that t1 and t2 are the two roots of the polynomial x2 −
√
cx − 1. Since g is

increasing and 1-Lipschitz,

g2 − g1 = g(λ2)− g(λ1) ≤ λ2 − λ1 = S · exp
(
− c

2

) (
exp(
√
c t2)− exp(

√
c t1)

)
.

Therefore, from the definition of t∗, we see that

exp(
√
c t2)− exp(

√
c t∗) =

1
S
· exp

( c
2

)
· (g2 − g1) ≤ exp(

√
c t2)− exp(

√
c t1),

so t1 ≤ t∗ ≤ t2. Furthermore, by construction,

S · exp
(
− c

2
+
√
c t∗

)
= S · exp

(
− c

2
+
√
c t2

)
− (g2 − g1) = λ2 − g2 + g1,

so h(t∗) = g1. This means h is a continuous convex function of x (although we will not actually
use this property). We will now show that pointwise,

φ(x) · (x2 −
√
cx− 1) · g

(
S · exp

(
− c

2
+
√
cx
))
≤ φ(x) · (x2 −

√
cx− 1) · h(x). (28)

We consider four cases:

• Suppose x ≤ t1, so x2 −
√
cx− 1 ≥ 0. Since g is increasing and nonnegative,

0 ≤ g
(
S · exp

(
− c

2
+
√
cx
))
≤ g

(
S · exp

(
− c

2
+
√
c t1

))
= g1 = h(x).

• Suppose t1 ≤ x ≤ t∗, so x2 −
√
cx− 1 ≤ 0. Since g is increasing,

g
(
S · exp

(
− c

2
+
√
cx
))
≥ g

(
S · exp

(
− c

2
+
√
c t1

))
= g1 = h(x) ≥ 0.

• Suppose t∗ ≤ x ≤ t2, so x2 −
√
cx− 1 ≤ 0. Since g is increasing and 1-Lipschitz,

g
(
S · exp

(
− c

2
+
√
cx
))

≥ g
(
S · exp

(
− c

2
+
√
c t2

))
+ S · exp

(
− c

2
+
√
cx
)
− S · exp

(
− c

2
+
√
c t2

)
= g2 − λ2 + S · exp

(
− c

2
+
√
cx
)

= h(x) ≥ 0.
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• Suppose x ≥ t2, so x2 −
√
cx− 1 ≥ 0. Since g is increasing and 1-Lipschitz,

g
(
S · exp

(
− c

2
+
√
cx
))

≤ g
(
S · exp

(
− c

2
+
√
c t2

))
+ S · exp

(
− c

2
+
√
cx
)
− S · exp

(
− c

2
+
√
c t2

)
= g2 − λ2 + S · exp

(
− c

2
+
√
cx
)

= h(x).

Integrating (28) over x ∈ R gives us the desired inequality (27). Let us now evaluate the expectation
on the right hand side of (27). A simple computation using the properties of Z ∼ N (0, 1) gives us

E
[
(Z2 −

√
cZ − 1) · h(Z)

]
= g1 E

[
(Z2 −

√
cZ − 1)

]
+ (g2 − g1 − λ2) · E

[
(Z2 −

√
cZ − 1) · 1{Z ≥ t∗}

]
+ S · exp

(
− c

2

)
· E
[
(Z2 −

√
cZ − 1) exp(

√
cZ) · 1{Z ≥ t∗}

]
= (g2 − g1 − λ2) · (t∗ −

√
c) φ(t∗) + St∗ φ(t∗ −

√
c)

= −S · exp
(
− c

2
+
√
c t∗

)
· (t∗ −

√
c) φ(t∗) + St∗ φ(t∗ −

√
c)

= −S(t∗ −
√
c) φ(t∗ −

√
c) + St∗ φ(t∗ −

√
c)

= S
√
c φ(t∗ −

√
c),

as desired.

The following result is similar to Lemma 16, except that this result assumes the K-linearity of g and
achieves a stronger result.
Lemma 17. Let g : R0 → R0 be an increasing, nonnegative, convex, 1-Lipschitz function with the
property that g′(x) = 1 for x ≥ K. Then for all S ≥ K and c > 0,

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]
≤ K

√
c√

2π
.

Proof. This proof is similar in nature to the proof of Lemma 16, and we omit some of the details.

Case 1: Suppose S ≥ K exp(
√
c(c+ 4)/2). Recall the European-option payoff function gEC(x) =

max{0, x −K} from Section 2, and note that the K-linearity of g implies g(x) = g(K) + gEC(x)
for x ≥ K. Using the fact that g is increasing and K-linear, we can show that for all x ∈ R we have

(x2−
√
cx−1)·g

(
S · exp

(
− c

2
+
√
cx
))
≤ (x2−

√
cx−1)·

{
g(K) + gEC

(
S · exp

(
− c

2
+
√
cx
))}

.

Integrating both sides above with Z ∼ N (0, 1) in place of x and using the result of Lemma 14, we
obtain

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]

≤ E
[
(Z2 −

√
cZ − 1) ·

{
g(K) + gEC

(
S · exp

(
− c

2
+
√
cZ
))}]

= E
[
(Z2 −

√
cZ − 1) · gEC

(
S · exp

(
− c

2
+
√
cZ
))]

≤ K
√
c√

2π
.

Case 2: Suppose K ≤ S ≤ K exp(
√
c(c+ 4)/2). Define the following quantities:

t0 =
√
c

2
− 1√

c
log

S

K − g(K) + g1
, λ1 = S · exp

(
− c

2
+
√
c
(√c−√c+ 4

2

))
,

and g1 = g(λ1). Consider the function h2 : R→ R0 given by

h2(x) = g1 +
(
g(K)− g1 −K + S · exp

(
− c

2
+
√
c x
))
· 1{x ≥ t0}.
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Using the fact that g is increasing, 1-Lipschitz, and K-linear, we can show that for all x ∈ R,

(x2 −
√
cx− 1) · g

(
S · exp

(
− c

2
+
√
cx
))
≤ (x2 −

√
cx− 1) · h2(x).

Integrating both sides above with Z ∼ N (0, 1) in place of x, we get

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]
≤ E

[
(Z2 −

√
cZ − 1) · h2(Z)

]
.

Following the same calculation as in the proof of Lemma 16, we can evaluate the latter expectation
to be

E
[
(Z2 −

√
cZ − 1) · h2(Z)

]
= (K − g(K) + g1)

√
c φ(t0) ≤ K

√
c√

2π
,

where the last inequality follows from the relation 0 ≤ g(K)− g1 ≤ K − λ1, since g is increasing
and 1-Lipschitz.

D.4 Bounding the Higher-Order Derivatives

We now turn to bounding the higher-order derivatives US3(S, c) and US4(S, c). Our strategy is to
approximate the eventually linear payoff function g by the European-option payoff gEC and applying
the bounds for gEC developed in Lemma 14.
Lemma 18. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Then for all S, c > 0,

|US3(S, c)| ≤ 7LK · max{c−3/2, c−1/2}
S3

,

|US4(S, c)| ≤ 28LK · max{c−2, c−1/2}
S4

.

Proof. Since g is L-Lipschitz and K-linear, we can find 0 ≤ γ ≤ L such that g(x) = g(K)+γ(x−
K) for x ≥ K. We decompose g into two parts,

g(x) = γgEC(x) + g∗(x),

where gEC(x) = max{0, x−K} is the European-option payoff function, and g∗ : R0 → R0 is given
by g∗(x) = g(x) for 0 ≤ x ≤ K, and g∗(x) = g(K) otherwise.

Then the Black-Scholes value U(S, c) also decomposes,

U(S, c) = E[g(S ·G(c))] = γ E[gEC(S ·G(c))] + E[g∗(S ·G(c))] ≡ γ UEC(S, c) + U∗(S, c),

and similarly for the derivatives,

USa(S, c) = γ UEC
Sa (S, c) + U∗Sa(S, c), a ≥ 0. (29)

For the function gEC, Lemma 14 tells us that for all S, c > 0,

|UEC
S3 (S, c)| ≤ 3K√

2π
· max{c1/2, 1}

S3c
, |UEC

S4 (S, c)| ≤ 13K√
2π
· max{c, 1}

S4c3/2
. (30)

Now for the second function g∗, we use Lemma 12 to write

U∗Sa(S, c) =
1

Saca/2
E
[
p[a](Z,

√
c) · g∗

(
S · exp

(
− c

2
+
√
cZ
))]

. (31)

Since E[p[a](Z,
√
c)] = 0 for a ≥ 1 (Corollary 2), we may assume that g(0) = 0, so g∗(0) = 0 as

well. Since g is L-Lipschitz, this implies

sup
x∈R

∣∣g∗(x)
∣∣ = max

0≤x≤K
|g(x)| ≤ max

0≤x≤K
Lx = LK.

Therefore, by applying triangle inequality and Cauchy-Schwarz inequality to (31), we get for a ≥ 1,

|U∗Sa(S, c)| ≤ 1
Saca/2

E
[∣∣∣p[a](Z,

√
c)
∣∣∣ · LK] ≤ LK

Saca/2
E
[(
p[a](Z,

√
c)
)2
]1/2

. (32)
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For a = 3, 4, we use the recursion (24) to compute the polynomials p[a](Z,
√
c), and we evaluate

the expectation E[(p[a](Z,
√
c))2]. Plugging in this expectation to (32) with a = 3 gives us

|U∗S3(S, c)| ≤ LK

S3c3/2
·
(
4c2 + 18c+ 6

)1/2 ≤ √28 · LK · max{c, 1}
S3c3/2

. (33)

Therefore, by combining the bound above with the first inequality in (30) and using the decomposi-
tion (29), we get the first part of our lemma,

|US3(S, c)| ≤ 3√
2π
· LK · max{c1/2, 1}

S3c
+
√

28 · LK · max{c, 1}
S3c3/2

≤ 7LK · max{c, 1}
S3c3/2

.

A similar computation with a = 4 yields the second part of the lemma,

|US4(S, c)| ≤ 13√
2π
· LK · max{c, 1}

S4c3/2
+
√

518 · LK · max{c3/2, 1}
S4c2

≤ 28LK · max{c3/2, 1}
S3c2

.
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