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Abstract

We strengthen recent connections between prediction markets and learn-
ing by showing that a natural class of market makers can be understood
as performing stochastic mirror descent when trader demands are sequen-
tially drawn from a fixed distribution. This provides new insights into how
market prices (and price paths) may be interpreted as a summary of the
market’s belief distribution by relating them to the optimization problem
being solved. In particular, we show that under certain conditions the sta-
tionary point of the stochastic process of prices generated by the market
is equal to the market’s Walrasian equilibrium of classic market analysis.
Together, these results suggest how traditional market making mechanisms
might be replaced with general purpose learning algorithms while still re-
taining guarantees about their behaviour.

1 Introduction and literature review

This paper is part of an ongoing line of research, spanning several authors, into formal
connections between markets and machine learning. In [5] an equivalence is shown between
the theoretically popular prediction market makers based on sequences of proper scoring
rules and follow the regularised leader, a form of no-regret online learning. By modelling
the traders that demand the assets the market maker is offering we are able to extend
the equivalence to stochastic mirror decent. The dynamics of wealth transfer is studied
in [3], for a sequence of markets between agents that behave as Kelly bettors (i.e. have log
utilities), and an equivalence to stochastic gradient decent is analysed. More broadly, [9, 2]
have analysed how a wide range of machine learning models can be implemented in terms
of market equilibria.

The literature on the interpretation of prediction market prices [7, 11] has had the goal of
relating the equilibrium prices to the distribution of the beliefs of traders. More recent work
[8] has looked at a stochastic model, and studied the behavior of simple agents sequentially
interacting with the market. We continue this latter path of research, motivated by the
observation that the equilibrium price may be a poor predictor of the behavior in a volitile
prediction market. As such, we seek a more detailed understanding of the market than the
equilibrium point – we would like to know what the “stationary distribution” of the price
is, as time goes to infinity.
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As is standard in the literature, we assume a fixed (product) distribution over traders’ beliefs
and wealth. Our model features an automated market maker, following the framework of [1]
is becoming a standard framework in the field.

We obtain two results. First, we prove that under certain conditions the stationary point
of our stochastic process defined by the market maker and a belief distribution of traders
converges to the Walrasian equilibrium of the market as the market liquidity increases. This
result, stated in Theorem 1, is general in the sense that only technical convergence conditions
are placed on the demand functions of the traders – as such, we believe it is a generalisation
of the stochastic result of [8] to cases where agents are are not limited to linear demands,
and leave this precise connection to future work.

Second, we show in Corollary 1 that when traders are Kelly bettors, the resulting stochastic
market process is equivalent to stochastic mirror descent; see e.g. [6]. This result adds to
the growing literature which relates prediction markets, and automated market makers in
general, to online learning; see e.g. [1], [5], [3] .

This connection to mirror descent seems to suggest that the prices in a prediction market
at any given time may be meaningless, as the final point in stochastic mirror descent often
has poor convergence guarantees. However, standard results suggest that a prudent way
to form a “consensus estimate” from a prediction market is to average the prices. The
average price, assuming our market model is reasonable, is provably close to the stationary
price. In Section 5 we give a natural example that exhibits this behavior. Beyond this,
however, Theorem 2 gives us insight into the relationship between the market liquidity and
the convergence of prices; in particular it suggests that we should increase liquidity at a rate
of
√
t if we wish the price to settle down at the right rate.

2 Model

Our market model will follow the automated market maker framework of [1]. We will equip
our market maker with a strictly convex function C : Rn → R which is twice continuously
differentiable. For brevity we will write ϕ := ∇C. The outcome space is Ω, and the contracts
are determined by a payoff function φ : Ω → Rn such that Π := ϕ(Rn) = ConvHull(φ(Ω)).
That is, the derivative space Π of C (the “instantaneous prices”) must be the convex hull
of the payoffs.

A trader purchasing shares at the current prices π ∈ Rn pays C(ϕ−1(π) + r) − C(ϕ−1(π))
for the bundle of contracts r ∈ Rn. Note that our dependence solely on π limits our model
slightly, since in general the share space (domain of C) may contain more information than
the current prices (cf. [1]). The bundle r is determined by an agent’s demand function
d(C, π) which specifies the bundle to buy given the price π and the cost function C.

Our market dynamics are the following. The market maker posts the current price πt, and
at each time t = 1 . . . T , a trader is chosen with demand function d drawn i.i.d. from some
demand distribution D. Intuitively, these demands are parameterized by latent variables
such as the agent’s belief p ∈ ∆Ω and total wealth W . The price is then updated to

πt+1 = ϕ(ϕ−1(πt) + d(C, πt)). (1)

After update T , the outcome is revealed and payout φ(ω)i is given for each contract i ∈
{1, . . . , n}.

3 Stationarity and equilibrium

We first would like to relate our stochastic model (1) to the standard notion of market
equilibrium from the Economics literature, which we call the Walrasian equilibrium to avoid
confusion. Here prices are fixed, and the equilibrium price is one that clears the market,
meaning that the sum of the demands r is 0 ∈ Rn. In fact, we will show that the stationary
point of our process approaches the Walrasian equilibrium point as the liquidity of the
market approaches infinity.
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First, we must add a liquidity parameter to our market. Following the LMSR (the cost
function C(s) = b ln

∑
i e
si/b), we define

Cb(s) := bC(s/b). (2)

This transformation of a convex function is called a perspective function and is known to
preserve convexity [4]. Observe that ϕb(s) := ∇Cb(s) = ∇C(s/b) = ϕ(s/b), meaning that
the price under Cb at s is the same as the price under C at s/b. As with the LMSR, we
call b the liquidity parameter ; this terminology is justified by noting that one definition of
liquidity, 1/λmax∇2Cb(s) = b/λmax∇2C(s/b) (cf. [1]). In the following, we will consider the
limit as b→∞.

Second, in order to connect to the Walrasian equilibrium, we need a notion of a fixed-price
demand function: if a trader has demand d(C, ·) given C, what would the same trader’s
demand be under a market where prices are fixed and do not “change” during a trade? For
the sake of generality, we restrict our allowable demand functions to the ones for which the
limit

d(F, π) := lim
b→∞

d(Cb, π) (3)

exists; this demand d(F, ·) will be the corresponding fixed-price demand for d. We now define
the Walrasion equilibrium point π∗, which is simply the price at which the market clears
when traders have demands distributed by D. Formally, this is the following condition:1∫

D
d(F, π∗) dD(d) = 0 (4)

Note that 0 ∈ Rn; the demand for each contract should be balanced.

The stationary point of our stochastic process, on the other hand, is the price πsb for which
the expected price fluctuation is 0. Formally, we have

E
d∼D

[∆(πsb , d(Cb, π
s
b))] = 0, (5)

where ∆(π, d) := ϕ(ϕ−1(π) + d) − π is the price fluctuation. We now consider the limit of
our stochastic process as the market liquidity approaches ∞.

Theorem 1. Let C be a strictly convex and α-smooth2 cost function, and assume that
∂
∂bd(Cb, π) = o(1/b) uniformly in π and all d ∈ D. If furthermore the limit (3) is uniform
in π and d, then limb→∞ πsb = π∗.

Proof. Note that by the stationarity condition (5) we may define π∗ and πsb to be the roots
of the following “excess demand” functions, respectively:

Z(π) :=

∫
D
d(F, π) dD(d), Zsb (π) := b E

d∼D
[∆(π, d(Cb, π))],

where we scale the latter by b so that Zsb does not limit to the zero function.

Let s = ϕ−1(π) be the current share vector. Then we have

lim
b→∞

b∆(π, d(Cb, π)) = lim
b→∞

b
(
ϕ
(
ϕ−1(π) + d(Cb, π)/b

)
− π

)
= lim
a→0

ϕ
(
s+ a d(C1/a, π)

)
− π

a

= lim
a→0
∇ϕ

(
s+ a d(C1/a, π)

) (
d(C1/a, π) + a ∂

∂ad(C1/a, π)
)

= lim
b→∞

∇ϕ
(
s+ 1

b d(Cb, π)
) (
d(Cb, π) + 1

b
∂
∂bd(Cb, π)(−b2)

)
= lim
b→∞

∇2C(s) d(Cb, π) = ∇2C(s) d(F, π),

1Here and throughout we ignore technical issues of uniqueness. One may simply restrict to the
class of demands for which uniqueness is satisfied.

2C is α-smooth if λmax∇2C ≤ α
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where we apply L’Hopital’s rule for the third equality. Crucially, the above limit is uniform
with respect to both d ∈ D and π ∈ Π; uniformity in d is by assumption, and uniformity in
π follows from α-smoothness of C, since C is dominated by a quadratic. Since the limit is
uniform with respect to D, we now have

lim
b→∞

Zsb (π) = lim
b→∞

b E
d∼D

[∆(π, d(Cb, π))] = E
d∼D

[
lim
b→∞

b∆(π, d(Cb, π))

]
= ∇2C(s) E

d∼D
[d(F, π)] = ∇2C(s)Z(π).

As ∇2C(s) is positive definite by assumption on C, we can conclude that limb→∞ Zsb and
Z share the same zeroes. Since Z has compact domain and is assumed continuous with a
unique zero π∗, for each ε ∈ (0, εmax) there must be some δ > 0 s.t. |Z(π)| > ε for all π s.t.
‖π − π∗‖ > δ (otherwise there would be a sequence of πn → π′ s.t. f(π′) = 0 but π′ 6= π∗).
By uniform convergence there must be a B > 0 s.t. for all b > B we have ‖Zsb −Z‖∞ < ε/2.
In particular, for π s.t. ‖π−π∗‖ > δ, |Zsb (π)| > ε/2. Thus, the corresponding zeros πsb must
be within δ of π∗. Hence limb→∞ πsb = π∗.3

3.1 Utility-based demands

Maximum Expected Utility (MEU) demand functions are a particular kind of demand func-
tion derived by assuming a trader has some belief p ∈ ∆n over the outcomes in Ω, some
wealth W ≥ 0, and a monotonically increasing utility function of money u : R→ R. If such
a trader buys a bundle r of contracts from a market maker with cost function C and price π,
her wealth after ω occurs is Υω(C,W, π, r) := W+φ(ω)·r−[C(ϕ−1(π)+r)−C(ϕ−1(π))]. We
ensure traders do not go into debt by requiring that traders only make demands such that
this final wealth is nonnegative: ∀ω Υω(C, π, r) ≥ 0. The set of debt-free bundles for wealth
W and market C at price π is denoted S(C,W, π) := {r ∈ Rn : minω Υω(C,W, π, r) ≥ 0}.
A continuous MEU demand function duW,p(C, π) is then just the demand that maximizes a
trader’s expected utility subject to the debt-free constraint. That is,

duW,p(C, π) := argmax
r∈S(C,W,π)

E
ω∼p

[u (Υω(C,W, π, r))] . (6)

We also define a fixed-price MEU demand function duW,p(F, π) similarly, where

Υω(F,W, π, r) := W +φ(ω) · r−π · r and S(F,W, π) := {r ∈ Rn : minω Υω(F,W, π, r) ≥ 0}
are the fixed price analogues to the continuously priced versions above. Using the notation
bS := {b r | r ∈ S}, the following relationships between the continuous and fixed price ver-
sions of Υ, SW , and the expected utility are a consequence of the convexity of C. Their main
purpose is to highlight the relationship between wealth and liquidity in MEU demands. In
particular, they show that scaling up of liquidity is equivalent to a scaling down of wealth
and that the continuously priced constraints and wealth functions monotonically approach
the fixed priced versions.

Lemma 1. For any strictly convex cost function C, wealth W > 0, price π, demand
r, and liquidity parameter b > 0 the following properties hold: 1. Υω(Cb,W, π, r) =
bΥω(C,W/b, π, r/b); 2. S(Cb,W, π) = b S(C,W/b, π); 3. S(C,W, π) is convex for all
C; 4. S(C,W, π) ⊆ S(Cb,W, π) ⊆ S(F,W, π) for all b ≥ 1. 5. For monotone utilities
u, Eω∼p [u (Υω(F,W, π, r))] ≥ Eω∼p [u (Υω(C,W, π, r))].

Proof. Property (1) follows from a simple computation:

Υω(Cb,W, π, r) = W + φ(ω) · r − bC(ϕ−1(π) + r/b) + bC(ϕ−1(π))

= b
(
W/b+ φ(ω) · (r/b)− C(ϕ−1(π) + r/b) + C(ϕ−1(π))

)
,

which equals bΥω(C,W/b, π, r/b) by definition. We now can see property (2) as well:

S(Cb,W, π) = {r : min
ω
bΥω(C,W/b, π, r/b) ≥ 0} = {b r : min

ω
Υω(C,W/b, π, r) ≥ 0}.

3We thank Avraham Ruderman for a helpful discussion regarding this proof.
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For (3), define fC,s,ω(r) = C(s+ r)−C(s)−φ(ω) · r, which is the ex-post cost of purchasing
bundle r. As C is convex, and fC,s,ω is a shifted and translated version of C plus a linear
term, fC,s,ω is convex also. The constraint Υω(C,W, π, r) ≥ 0 then translates to fC,s,ω(r) ≤
W , and thus the set of r which satisfy the constraint is convex as a sublevel set of a convex
function. Now S(C,W, π) is convex as an intersection of convex sets, proving (3).

For (4) suppose r satisfies fC,s,ω(r) ≤ W . Note that fC,s,ω(0) = 0 always. Then by

convexity we have for f := fC,s,ω we have f(r/b) = f
(

1
b r + b−1

b 0
)
≤ 1

bf(r) + b−1
b 0 ≤ W/b,

which implies S(C,W, π) ⊆ S(Cb,W, π) when considering (3). To complete (4) note that
fC,s,ω dominates fF,s : r 7→ (ϕ(s)−φ(ω)) · r by convexity of C: C(s+ r)−C(s) ≥ ∇C(s) · r.

Finally, proof of (5) is obtained by noting that the convexity of C means that C(ϕ−1(π) +
r)− C(ϕ−1(π)) ≥ ∇C(ϕ−1(π)) · r = π · r and exploting the monotonicty of u.

Lemma 1 shows us that MEU demands have a lot of structure, and in particular, properties
(4) and (5) suggest that they may satisfy the conditions of Theorem 1; we leave this as an
open question for future work. Another interesting aspect of Lemma 1 is the relationship
between markets with cost function Cb and wealths W and markets with cost function C
and wealths W/b – indeed, properties (1) and (2) suggest that the liquidity limit should
in some sense be equivalent to a wealth limit, in that increasing liquidity by a factor b
should yield similar dynamics to decreasing the wealths by b. This would relate our model
to that of [8], where the authors essentially show a wealth-limit version of Theorem 1 for a
binary-outcome market where traders have linear utilities (a special case of (6)). We leave
this precise connection for future work.

4 Market making as mirror descent

We now explore the surprising relationship between our stochastic price update and standard
stochastic optimization techniques. In particular, we will relate our model to a stochastic
mirror descent of the form

xt+1 = argmin
x∈R

{η x · ∇F (xt; ξ) +DR(x, xt)}, (7)

where at each step ξ ∼ Ξ are i.i.d. and R is some strictly convex function. We will refer to
an algorithm of the form (7) a stochastic mirror descent of f(x) := Eξ∼Ξ[F (x; ξ)].

Theorem 2. If for all d ∈ D we have some F (· ; d) : Rn → Rn such that d(R∗, π) =
−∇F (π; d), then the stochastic update of our model (1) is exactly a stochastic mirror descent
of f(π) = Ed∼D[F (π; d)].

Proof. By standard arguments, the mirror descent update (7) can be rewritten as

xt+1 = ∇R∗(∇R(xt)−∇F (xt; ξ)),

where R∗ is the conjugate dual of R. Take R = C∗, and let ξ = d ∼ D. By assumption,
we have ∇F (x; d) = −d(R∗, x) = −d(C, x) for all d. As ∇R∗ = ∇C = ϕ, we have ϕ−1 =
(∇R∗)−1 = ∇R by duality, and thus our update becomes xt+1 = ϕ

(
ϕ−1(xt) + d(C, xt)

)
,

which exactly matches the stochastic update of our model (1).

As an example, consider Kelly betters, which correspond to fixed-price demands d(C, π) :=

dlog
W,p(F, π) with utility u(x) = log x as defined in (3). A simple calculation shows that our

update becomes

πt+1 = ϕ

(
ϕ−1(πt) +

W

π

p− π
1− π

)
, (8)

where W and p are drawn (independently) from P and W.

Corollary 1. The stochastic update for fixed-price Kelly betters (8) is exactly a stochas-
tic mirror descent of f(π) = W · KL(p, π), where p and W are the means of P and W,
respectively.
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Proof. We take F (x; dlog
W,p) = W · (KL(p, x) +H(p)). Then

∇F (x; dlog
W,p) = W

(
−p
x

+
p− 1

1− x

)
= −W

x

p− x
1− x

= −dlog
W,p(F, x).

Hence, by Theorem 2 our update is a stochastic mirror descent of:

f(x) := E[F (x; dlog
W,p)] = E[Wp log x+W (1− p) log(1− x)] = W · (KL(p, x) +H(p)) ,

which of course is equivalent to W ·KL(p, x) as the entropy term does not depend on x.

Note that while this last result is quite compelling, we have mixed fixed-price demands with
a continuous-price market model – see Section 3.1. One could interpret this combination as
a model in which the market maker can only adjust the prices after a trade, according to a
fixed convex cost function C. This of course differs from the standard model, which adjusts
the price continuously during a trade.

4.1 Leveraging existing learning results

Theorem 2 not only identifies a fascinating connection between machine learning and our
stochastic prediction market model, but it also allows us to use powerful existing techniques
to make broad conclusions about the behavior of our model. Consider the following result:

Proposition 1 ([6]). If ‖∇F (π; p)‖2 ≤ G2 for all p, π, and R is σ-strongly convex, then
with probability 1− δ,

f(πT ) ≤ min
π
f(π) +

(
D2

ηT
+
G2η

2σ

)(
1 + 4

√
log

1

δ

)
.
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Figure 1: Price movement for Kelly
betters with binomial(q = 0.6, n = 6,
α = 0.5) beliefs in the LMSR market
with liquidity b = 10.

In our context, Proposition 1 says that the average
of the prices will be a very good estimate of the min-
imizer of f , which as suggested by happens to be the
underlying mean belief p of the traders! Moreover, as
the Kelly demands are linear in both p and W , it is
easy to see from Theorem 1 that p is also the station-
ary point and the Walrasian equilibrium point (the
latter was also shown by [11]). On the other hand, as
we demonstrate next, it is not hard to come up with
an example where the instantaneous price πt is quite
far from the equilibrium at any given time period.

Before moving to our empirical work, we make one
final point. The above relationship between our
stochastic market model and mirror descent sheds
light on an important question: how might an auto-
mated market maker adjust the liquidity so that the
market actually converges to the mean of the traders’ beliefs? The learning parameter η
can be thought of as the inverse of the liquidity, and as such, Proposition 1 suggests that
increasing the liquidity as

√
t may cause the mean price to converge to the mean belief

(assuming a fixed underlying belief distribution).

5 Empirical work

Example: biased coin Consider a classic Bayesian setting where a coin has unknown
bias Pr[heads] = q, and traders have a prior β(α, α) over q (i.e., traders are α-confident that
the coin is fair). Now suppose each trader independently observes n flips from the coin, and
updates her belief; upon seeing k heads, a trader would have posterior β(α+ k, α+ n− k).

When presented with a prediction market with contracts for a single toss of the coin, where
and contract 0 pays $1 for tails and contract 1 pays $1 for heads, a trader would purchase
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Figure 2: Mean square loss of average and instantaneous prices relative to the mean belief
of 0.26 over 20 simulations for State 9 for b = 1 (left), b = 3 (middle), and b = 10 (right).
Bars show standard deviation.

contracts as if according to the mean of their posterior. Hence, the belief distribution P of
the market assigns weight P(p) =

(
n
k

)
qk(1− q)n−k to belief p = (α + k)/(2α + n), yielding

a biased mean belief of (α+ nq)/(2α+ n).

We show a typical simulation of this market in Figure 1, where traders behave as Kelly
betters in the fixed-price LMSR. Clearly, after almost every trade, the market price is
quite far from the equilibrium/stationary point, and hence the classical supply and demand
analysis of this market yields a poor description of the actual behavior, and in particular, of
the predictive quality of the price at any given time. However, the mean price is consistently
close to the mean belief of the traders, which in turn is quite close to the true parameter q.

Election Survey Data We now compare the quality of the running average price versus
the instantaneous price as a predictor of the mean belief of a market. We do so by simulating
a market maker interacting with traders with unit wealth, log utility, and beliefs drawn from
a fixed distribution. The belief distributions are derived from the Princeton election survey
data[10]. For each of the 50 US states, participants in the survey were asked to estimate
the probability that one of two possible candidates were going to win that state.4 We use
these 50 sets of estimates as 50 different empirical distributions from which to draw trader
beliefs.

A simulation is configured by choosing one of the 50 empirical belief distributions S, a
market liquidity parameter b to define the LMSR cost function C(s) = b ln

∑
i e
si/b, and an

initial market position vector of (0, 0) – that is, no contracts for either outcome. A configured
simulation is run for T trades. At each trade, a belief p is drawn from S uniformly and
with replacement. This belief is used to determine the demand of the trader relative to the
current market pricing. The trader purchase a bundle of contracts according to its demand
and the market moves its position and price accordingly. The complete price path πt for
t = 1, . . . , T of the market is recorded as well as a running average price π̄t := 1

t

∑t
i=1 πt for

t = 1 . . . , T . For each of the 50 empirical belief distributions we configured 9 markets with
b ∈ {1, 2, 3, 5, 10, 15, 20, 30, 50} and ran 20 independent simulations of T = 100 trades. We
present a portion of the results for the empirical distributions for states 9 and 11. States 9
and 11 have, respectively, sample sizes of 2,717 and 2,709; means 0.26 and 0.9; and variances
0.04 and 0.02. These are chosen as being representative of the rest of the simulation results:
State 9 with mean off-center and a spread of beliefs (high uncertainty) and State 11 with
highly concentrated beliefs around a single outcome (low uncertainty).

The results are summarised in Figures 2, 3, and 4. The first show the square loss of the
average and instaneous prices relative to the mean belief for high uncertainty State 9 for
b = 1, 3, 10. Clearly, the average price is a much more reliable estimator of the mean belief
for low liquidity (b = 1) and is only outperformed by the instaneous price for higher liquidity
(b = 10), but then only early in trading. Similar plots for State 11 are shown in Figure 3
where the advantage of using the average price is significantly diminished.

4The original dataset contains conjunctions of wins as well as conditional statements but we
only use the single variable results of the survey.
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Figure 3: Mean square loss of average and instantaneous prices relative to the mean belief
of 0.9 over 20 simulations for State 11 for b = 1 (left), b = 3 (middle), and b = 10 (right).
Bars show standard deviation.

Figure 4 shows the improvement the average price has over the instantaneous price in square
loss relative to the mean belief for all liquidity settings and highlights that average prices
work better in low liquidity settings, consistent with the theory. Similar trends were observed
for all the other States, depending on whether they had high uncertainty – in which case
average price was a much better estimator – or low uncertainty – in which case instanteous
price was better.
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Figure 4: An overview of the results for States 9 (left) and 11 (right). For each trade
and choice of b, the vertical value shows the improvement of the average price over the
instantaneous price as measure by square loss relative to the mean.

6 Conclusion and future work

As noted in Section 3.1, there are several open questions with regard to maximum expected
utility demands and Theorem 1, as well as the relationship between trader wealth and market
liquidity. It would also be interesting to have a application of Theorem 2 to a continuous-
price model, which yields a natural minimization as in Corollary 1. The equivalence to
mirror decent stablished in Theorem 2 may also lead to a better understanding of the
optimal manner in which a automated prediction market ought to increase liquidity so as
to maximise efficiency.
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