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Abstract. Can learning algorithms find a Nash equilibrium? This is a natural
question for several reasons. Learning algorithms resemble the behavior of play-
ers in many naturally arising games, and thus results on the convergence or non-
convergence properties of such dynamics may inform our understanding of the
applicability of Nash equilibria as a plausible solution concept in some settings.
A second reason for asking this question is in the hope of being able to prove
an impossibility result, not dependent on complexity assumptions, for computing
Nash equilibria via a restricted class of reasonable algorithms. In this work, we
begin to answer this question by considering the dynamics of the standard multi-
plicative weights update learning algorithms (which are known to converge to a
Nash equilibrium for zero-sum games). We revisit a 3×3 game defined by Shap-
ley [10] in the 1950s in order to establish that fictitious play does not converge in
general games. For this simple game, we show via a potential function argument
that in a variety of settings the multiplicative updates algorithm impressively fails
to find the unique Nash equilibrium, in that the cumulative distributions of players
produced by learning dynamics actually drift away from the equilibrium.

1 Introduction

In complexity, once a problem is shown intractable, research shifts towards two di-
rections3 (a) polynomial algorithms for more modest goals such as special cases and
approximation, and (b) exponential lower bounds for restricted classes of algorithms.
In other words, we weaken either the problem or the algorithmic model. For the prob-
lem of finding Nash equilibria in games, the first avenue has been followed extensively
and productively, but, to our knowledge, not yet the second. It has been shown that a
general and natural class of algorithms fails to solve multiplayer games in polynomial
time in the number of players [4] — but such games have an exponential input anyway,
and the point of that proof is to show, via communication complexity arguments, that,
if the players do not know the input, they have to communicate large parts of it, at least
for some games, in order to reach equilibrium.

We conjecture that a very strong lower bound result, of sweeping generality, is pos-
sible even for bimatrix games. In particular, we suspect that a broad class of algo-
rithms that maintains and updates mixed distributions in essentially arbitrary ways can
be shown to fail to efficiently find Nash equilibria in bimatrix games, as long as these
algorithms cannot identify the matrices — since our ambition here falls short of proving

3 In addition, of course, to the perennial challenge of collapsing complexity classes. . .



that P 6= NP, such restriction needs to be in place. In this paper we start on this path of
research.

In targeting restricted classes of algorithms, it is often most meaningful to focus
on algorithmic ideas which are known to perform well under certain circumstances
or in related tasks. For games, learning is the undisputed champion among algorith-
mic styles. By learning we mean a large variety of algorithmic ways of playing games
which maintain weights for the strategies (unnormalized probabilities of the current
mixed strategy) and update them based on the performance of the current mixed strat-
egy, or single strategy sampled from it, against the opponent’s mixed strategy (or, again,
sampled strategy). Learning algorithms are known to converge to the Nash equilibrium
in zero-sum games [2], essentially because they can be shown to have diminishing re-
gret. Furthermore, in general games, a variant in which regret is minimized explicitly
[5] is known to always converge to a correlated equilibrium. Learning is of such cen-
tral importance in games that it is broadly discussed as a loosely defined equilibrium
concept — for example, it has been recently investigated viz. the price of anarchy [1, 7,
9].

There are three distinct variants of the learning algorithmic style with respect to
games: In the first, which we call the distribution payoff setting, the players get feedback
on the expected utility of the opponent’s mixed strategy on all of their strategies — in
other words, in a bimatrix game (R,C), if the row player plays mixed strategy x and
the column player y, then the row player sees at each stage the vector CyT while the
column player sees xTR. In the second variant which we call the stochastic setting, we
sample from the two mixed strategies and both players learn the payoffs of all of their
strategies against the one chosen by the opponent — that is, the row player learns the
Cj , the whole column corresponding to the column player’s choice, and vice-versa. A
third variant is the multi-armed setting, introduced in [2], in which the players sample
the distributions and update them according to the payoff of the combined choices. In all
three cases we are interesting in studying the behavior of the cumulative distributions of
the players, and see if they converge to the Nash equilibrium (as is the case for zero-sum
games).

An early fourth kind of learning algorithm called fictitious play does not fall into
our framework. In fictitious play both players maintain the opponent’s histogram of
past plays, adopt the belief that this histogram is the mixed strategy being played by the
opponent, and keep best-responding to it. In 1951 Julia Robinson proved that fictitious
play (or more accurately, the cumulative distributions of players resulting from ficti-
tious play) converges to the Nash equilibrium in zero-sum games. Incidentally, Robin-
son’s inductive proof implies a convergence that is exponentially slow in the number
of strategies, but Karlin [6] conjectured in the 1960s quadratic convergence; this con-
jecture remains open. Shapley [10] showed that fictitious play fails to converge in a
particular simple 3× 3 nonzero-sum game (it does converge in all 2× n games).

But how about learning dynamics? Is there a proof that this class of algorithms
fails to solve the general case of the Nash equilibrium problem? This question has been
discussed in the past, and has in fact been treated extensively in Zinkevich’s thesis [14].
Zinkevich presents extensive experimental results showing that, for the same 3×3 game
considered by Shapley in [10] (and which is the object of our investigation), as well as



in a variant of the same game, the cumulative distributions do not converge to a Nash
equilibrium (we come back to Zinkevich’s work later in the last section). However,
to our knowledge there is no actual proof in the literature establishing that learning
algorithms fail to converge to a Nash equilibrium.

Our main result is such a non-convergence proof; in fact, we establish this for each
of the variants of learning algorithms. For each of the three styles, we consider the
standard learning algorithm in which the weight updates are multiplicative, that is, the
weights are multiplied by an exponential in the observed utility, hence the name multi-
plicative experts weight update algorithms. (In the multi-armed setting, we analyze the
variant of the multiplicative weights algorithm that applies in this setting, in which pay-
offs are scaled so as to boost low-probability strategies). In all three settings, our results
are negative: for Shapley’s 3 × 3 game the learning algorithms fail, in general, to con-
verge to the unique Nash equilibrium. In fact, we prove the much more striking result
that in all settings, the dynamics lead the players’ cumulative distributions away from
the equilibrium exponentially quickly. The precise statements of the theorems differ,
reflecting the different dynamics and the analytical difficulties they entail.

At this point it is important to emphasize that most of the work on the field focuses
on proving the non-convergence of private distributions of the players, i.e. the distri-
bution over strategies of each player at each time-step. In general, this is easy to do.
In sharp contrast, we prove the non-convergence of the cumulative distributions of the
players; the cumulative distribution is essentially the time-average of the private dis-
tributions played up to some time-step. This is a huge difference, because this weaker
definition of convergence (corresponding to a realistic sense of what it means to play
a mixed strategy in a repeated game) yields a much stronger result. Only Shapley in
his original paper [10] (and Benaim and Hirsch [15] for a more elaborate setting) prove
non-convergence results for the cumulative distributions, but for fictitious play dynam-
ics. We show this for multiplicative weight updates, arguably (on the evidence of its
many other successes, see the survey [12]) a much stronger class of algorithms.

2 The Model

We start by describing the characteristics of game-play; to do that we need to specify
the type of information that the players receive at each time step. In this section we
briefly describe the three “learning environments” which we consider, and then for each
environment describe the types of learning algorithms which we consider.

2.1 Learning Environments

The first setting we consider is the distribution payoff setting, in which each player
receives a vector of the expected payoffs that each of his strategies would receive, given
the distribution of the other player. Formally, we have the following definition:

Definition 1. [Distribution payoff setting] Given mixed strategy profiles ct = (c1, . . . , cn),
and rt = (r1, . . . , rn)T with

∑
ri =

∑
ci = 1 for the column and row player, respec-

tively, and payoff matrices C, R of the underlying game,

rt+1 = f(RcTt , rt), ct+1 = g(rTt C, ct),



where f, g are update functions of the row, and column player, respectively, with the
condition that rt+1, ct+1 are distributions.

It may seem that this setting gives too much information to the players, to the point
of being unrealistic. We consider this setting for two reasons; first, intuitively, if learn-
ing algorithms can find Nash equilibria in any setting, then they should in this setting.
Since we will provide largely negative results, it is natural to consider this setting that
furnishes the players with the most power. The second reason for considering this set-
ting is that in this setting, provided f, g are deterministic functions, the entire dynamics
is deterministic, simplifying the analysis. Our results and proof approaches for this set-
ting provide the guiding intuition for our results in the more realistic learning settings.

The second setting we consider, is the stochastic setting, in which each player se-
lects a single strategy to play, according to their private strategy distributions, rt and
ct, and each player may update his strategy distribution based on the entire vector of
payoffs that his different strategies would have received given the single strategy choice
of the opponent. Formally, we have:

Definition 2. [Stochastic setting] Given mixed strategy profiles rt, and ct for the row
and column player, respectively, at some time t, and payoff matrices R, C of the under-
lying game, the row and column players select strategies i, and j according to rt and
ct, respectively, and

rt+1 = f(R·,j , rt), ct+1 = g(Ci,·, ct),

where f, g are update functions of the row and column player, respectively, and rt+1, ct+1

are required to be distributions, andMi,·,M·,i, respectively, denote the ith row and col-
umn of matrix M .

Finally, we will consider the multi-armed setting, in which both players select strate-
gies according to their private distributions, knowing only the single payoff value given
by their combined choices of strategies.

Definition 3. [Multi-armed setting] Given mixed strategy profiles rt, and ct for the
row and column player, respectively, at some time t, and payoff matrices R, C of the
underlying game, the row and column players select strategies i, and j according to rt
and ct, respectively, and

rt+1 = f(Ri,j , rt), ct+1 = g(Ci,j , ct),

where f, g are update functions of the row, and column player, respectively, and rt+1, ct+1

are distributions.

While the multi-armed setting is clearly the weakest setting to learn in, it is also,
arguably, the most realistic and closely resembles the type of setting in which many
everyday games are played.

Almost all of the results in this paper refer to the non-covergence of the cumulative
distributions of the players, defined as:

Ri,t =

∑t
j=0 ri,j

t
, Ci,t =

∑t
j=0 ci,j

t



2.2 Learning Algorithms

For each game-play setting, the hope is to characterize which types of learning algo-
rithms are capable of efficiently converging to an equilibrium. In this paper, we tackle
the much more modest goal of analyzing the behavior of standard learning models that
are known to perform well in each setting. For the distribution payoff setting, and the
stochastic setting, we consider the dynamics induced by multiplicative weight updates.
Specifically, for a given update parameter ε > 0, at each timestep t, a player’s distribu-
tion wt = (w1,t, . . . , wn,t) is updated according to

wi,t+1 =
wi,t(1 + ε)Pi∑
i wi,t(1 + ε)Pi

,

where Pi is the payoff that the ith strategy would receive at time t. We focus on this
learning algorithm as it is extraordinarily successful, both practically and theoretically,
and is known to have vanishing regret (which, by the min-max theorem, guarantees
that cumulative distributions

∑T
t=1

wt

T converge to the Nash equilibrium for zero-sum
games[12]).

For the multi-armed setting, the above weight update algorithm is not known to
perform well, as low-probability strategies are driven down by the dynamics. There is a
simple fix, first suggested in [11]; one scales the payoffs by the inverse of the probability
with which the given strategy was played, then applies multiplicative weights as above
with the scaled payoffs in place of the raw payoff. Intuitively, this modification gives
the low-weight strategies the extra boost that is needed in this setting. Formally, given
update parameter ε, and distribution wt, if strategy s is chosen at time t, and payoff P
is received, we update according to the following:

w∗s = ws,t(1 + ε)P/ws,t

w∗i 6=s = wi,t

wj,t+1 =
w∗j∑
k w
∗
k

.

We note that this update scheme differs slightly from the originally proposed scheme
in [11], in which a small drift towards the uniform distribution is explicitly added. We
omit this drift as it greatly simplifies the analysis; additionally, arguments from [13] can
be used to show that our update scheme also has the guarantee that the algorithm will
have low-regret in expectation (and thus the dynamics converge for zero-sum games).

2.3 The game

For all of our results, we will make use of Shapley’s 3× 3 bimatrix game with row and
column payoffs given by

R =

0 1 2
2 0 1
1 2 0

 , C =

0 2 1
1 0 2
2 1 0

 .



This game has a single Nash equilibrium in which both players play each strategy with
equal probabilities. It was originally used by Shapley to show that fictitious play does
not converge for general games.

3 Distribution Payoff Setting

In this section we consider the deterministic dynamics of running the experts weights
algorithm in the distribution payoff setting. We show that under these dynamics, pro-
vided that the initial distributions satisfy r 6= c, the cumulative distributionsRt, Ct tend
away from the Nash equilibrium. The proof splits into three main pieces; first, we define
a potential function, which we show is strictly increasing throughout the dynamics, and
argue that the value of the potential cannot be bounded by any constant. Next, we ar-
gue that given a sufficiently large value of the potential function, eventually the private
row and column distributions rt, ct must become unbalanced in the sense that for some
i ∈ {1, 2, 3}, ri > .999 and ci < .001 (or ri < .001, ci > .999). Finally, given this
imbalance, we argue that the dynamics consists of each player switching between es-
sentially pure strategies, with the amount of time spent playing each strategy increasing
in a geometric progression, from which it follows that the cumulative distributions will
not converge.

Each of the three components of the proof, including the potential function argu-
ment, will also apply in the stochastic, and multi-armed settings, although the details
will differ.

Before stating our main non-convergence results, we start by observing that in the
case that both players perform multiplicative experts weight updates with parameters
εR = εC , and start with identical initial distributions r = c, the dynamics do converge
to the equilibrium. In fact, not only do the cumulative distributionsRt, Ct converge, but
so do the private distributions rt, ct.

Proposition 1. If both players start with a common distribution r = c and perform
their weight updates with εR = εC = ε ≤ 3/5, then the dynamics of rt, ct converge to
the Nash equilibrium exponentially fast.

The proof is simple and is delegated to the full version of this paper. We now turn our
attention to the main non-convergence result of this section–if the initial distributions
are not equal, then the dynamics diverge.

Theorem 1. In the distribution payoff setting, with a row player performing experts
weight updates with parameter 1 + εR, and column player performing updates with
parameter 1 + εC , the cumulative distributions Rt =

∑t
i=0

ri

t , Ct =
∑t
i=0

ci

t diverge,
provided that the initial weights do not satisfy ri = cαi , with α = log(1+εR)

log(1+εC) .

The first component of the proof will hinge upon the following potential function
for the dynamics:

Φ(r, c) := log
(

max
i

(
ri
cαi

)
)
− log

(
min
i

(
ri
cαi

)
)
, (1)



with α = log(1+εR)
log(1+εC) . We are going to use the same potential function for the other two

learning settings as well. The following lemma argues that Φ(rt, ct) increases unbound-
edly.

Lemma 1. Given initial private distributions r0, c0 such that Φ(r0, c0) 6= 0, then
Φ(rt, ct) is strictly increasing, and for any constant k, there exists some t0 such that
Φ(rt0 , ct0) > k.

Proof. We consider the change in Φ after one step of the dynamics. For convenience,
we give the proof in the case that εR = εC = ε; without this assumption identical
arguments yield the desired general result. Also note that without loss of generality,
by the symmetry of the game, it suffices to consider the case when r1,t ≥ c1,t. The
dynamics define the following updates:

(
r1,t+1

c1,t+1
,
r2,t+1

c2,t+1
,
r3,t+1

c3,t+1

)
=
n1

n2

(
r1,t(1 + ε)c2+2c3

c1,t(1 + ε)r2+2r3
,
r2,t(1 + ε)2c1+c3

c2,t(1 + ε)2r1+r3
,
r3,t(1 + ε)c1+2c2

c3,t(1 + ε)r1+2r2

)
,

for some positive normalizing constants n1, n2. By the symmetry of the game, it suffices
to consider the following two cases: when argmaxi(ri/ci) = 1 and argmini(ri/ci) = 2,
and the case when argmaxi(ri/ci) = 1 and argmini(ri/ci) = 3. We start by considering
the first case:

Φ(rt+1, ct+1) = log
(

max
i

(
ri
ci

)
)
− log

(
min
i

(
ri
ci

)
)

≥ log
(
r1
c1

)
− log

(
r2
c2

)
= log(n1/n2) + log

(
r1,t
c1,t

)
+ (c2,t + 2c3,t − r2,t − 2r3,t) log(1 + ε)

− log(n1/n2)−
(

log
(
r2,t
c2,t

)
+ (c3,t + 2c1,t − r3,t − 2r1,t) log(1 + ε)

)
= Φ(rt, ct) + (−2c1,t + c2,t + c3,t − r2,t − r3,t + 2r1,t) log(1 + ε)
= Φ(rt, ct) + 3(r1,t − c1,t) log(1 + ε)

In the case second case, where argmaxi(ri/ci) = 1 and argmini(ri/ci) = 3, a
similar calculation yields that

Φ(rt+1, ct+1) ≥ Φ(rt, ct) + 3(c3,t − r3,t) log(1 + ε).

In either case, note that Φ is strictly increasing unless ri/ci = 1 for each i, which can
only happen when Φ(rt, ct) = 0.

To see that Φ is unbounded, we first argue that if the private distributions r, c are
both sufficiently far from the boundary of the unit cube, then the value of the potential
function will be increasing at a rate proportionate to its value. If r or c is near the
boundary of the unit cube, and maxi |ri − ci| is small, then we argue that the dynamics
will drive the private distributions towards the interior of the unit cube. Thus it will
follow that the value of the potential function is unbounded.



Specifically, if r, c ∈ [.1, 1]3, then from the derivative of the logarithm, we have

30 max
i
|ri − ci| ≥ Φ(r, c)

and thus provided rt, ct are in this range Φ(rt+1, ct+1) ≥ Φ(rt, ct)
(
1 + log(1+ε)

30

)
. If

r, c 6∈ [.1, 1]3, then arguments from the proof of Proposition 1 can be used to show that
after some time t0, either rt0 , ct0 ∈ [.2, 1]3, or for some time t′ < t0, maxi |ri − ci| ≥
.01, in which case by the above arguments the value of the potential function must have
increased by at least .01 log(1 + ε), and thus our lemma holds. ut

The above lemma guarantees that the potential function will get arbitrarily large.
We now leverage this result to argue that there is some time t0 and a coordinate i such
that ri,t0 is very close to 1, whereas ci,t0 is very close to zero. The proof consists of first
considering some time at which the potential function is quite large. Then, we argue
that there must be some future time at which for some i, j with i 6= j, the contributions
of coordinates i and j to the value of the potential function are both significant. Given
that | log(ri/ci)| and | log(rj/cj)| are both large, we then argue that after some more
time, we get the desired imbalance in some coordinate k, namely that rk > .999 and
ck < .001 (or vice versa).

Lemma 2. Given initial distributions r0 = (r1,0, r2,0, r3,0), c0 = (c1,0, c2,0, c3,0),
with Φ(r0, c0) ≥ 40 log1+εR(2000), assuming that the cumulative distributions con-
verge to the equilibrium, then there exists t0 > 0 and i such that either ri,t0 > .999 and
ci,t0 < .001, or ri,t0 < .001, and ci,t0 > .999.

Proof. For convenience, we will assume all logarithms are to the base 1 + εR, unless
otherwise specified. For ease of notation, let k = dlog1+εR(2000)e.Also, for simplicity,
we give the proof in the case that εR = εC = ε; as above, the proof of the general case
is nearly identical.

Assuming for the sake of contradiction that the cumulative distributions converge
to the equilibrium of the game, it must be the case that there exists some time t > 0 for
which arg maxi | log(ri,t/ci,t)| 6= arg maxi | log(ri,0/ci,0)|, and thus, without loss of
generality, we may assume that at time 0, for some i, j with i 6= j,

| log
(
ri,0
ci,0

)
| > 13k, and | log

(
rj,0
cj,0

)
| > 13k.

Without loss of generality, we may assume that ri > ci. We will first consider the cases
in which log(ri/ci) > 13k and log(rj/cj) > 13k, and then will consider the cases
when log(ri/ci) > 13k and log(ri/ci) < −13k.

Consider the case when log(r1/c1) > 13k and log(r2/c2) > 13k. Observe that
c3 > r3 and that k = ln(2000)/ ln(1+ εR) ≥ ln(2000)/εR. Let t0 be the smallest time
at which log(r3,t0)−max(log(r1,t0), log(r2,t0)) ≤ k. We argue by induction, that

log(c3,t)−max(log(c1,t), log(c2,t))− (log(r3,t)−max(log(r1,t), log(r2,t))) ≥ 12k,

for any t ∈ {0, . . . , t0 − 1}. When t = 0, this quantity is at least 13k. Assuming the
claim holds for all t < t′, for some fixed t′ < t0 − 1, we have that

∑t′+1
t=0 r1,t ≤



2
2εR

1
2000 , where the factor of 2 in the numerator takes into account the fact that the pay-

offs are slightly different than 2, 1, 0, for the three row strategies. Similarly,
∑t′+1
t=0 r2,t ≤

2
εR

1
2000 . Thus we have that

log(c3,t′+1)− log(c1,t′+1) ≥ log(c3,0)− log(c1,0)− 2(t′ + 1)− 4
2εR

1
2000

≥ log(c3,0)− log(c1,0)− 2(t′ + 1)− k

Similarly, we can write a corresponding expression for log(c3,t′+1)− log(c2,t′+1),
from which our claim follows.

Thus we have that log(c3,t0)−max(log(c1,t0), log(c2,t0)) ≥ 12k, and log(r3,t0)−
max(log(r1,t0), log(r2,t0)) ≤ k. After another 2.1k timesteps, we have that log(r3,t0)−
max(log(r1,t0), log(r2,t0)) ≤ −k, and log(c3,t0) −max(log(c1,t0), log(c2,t0)) ≥ 7k.
If log(r1,t0+2.1k) − log(r2,t0+2.1k) < −k, then we are done, since r2,t0+2.1k > .999,
c2,t0+2.1k < .001. If log(r1,t0+2.1k) − log(r2,t0+2.1k) > −k, then it must be the case
that log(r1,t0+4.2k)−log(r2,t0+4.2k) > k, at which point we still have log(c3,t0+4.2k)−
max(log(c1,t0+4.2k), log(c2,t0+4.2k)) > 2k, so we have r1,t0+4.2k > .999, c1,t0+4.2k <
.001. The case when log(r1/c1) > 13k and log(r3/c3) > 13k is identical.

In the case when log(r1/c1) > 13k and log(r2/c2) < −13k, we let t0 be the first
time at which either log(r1,t0)− log(r3,t0) > −k or log(c2,t0)− log(c3,t0) > −k. As
above, we can show by induction that log(r2,t0 −max(log(r1,t0), log(r3,t0)) < −12k,
and log(c1,t0 −max(log(c2,t0), log(c3,t0)) < −12k. After another 2.1k timesteps, ei-
ther r1 > .999, and c1 < .001 or c2,t0+2.1k > .1, in which case after an additional 2.1k
timesteps, c2 > .999 and r2 < .001.

The remaining case when log(r1/c1) > 13k and log(r3/c3) < −13k, is identical,
as can be seen by switching the players and permuting the rows and columns of the
matrix. ut

The following lemma completes our proof of Theorem 1.

Lemma 3. Given initial distributions r0 = (r1,0, r2,0, r3,0), c0 = (c1,0, c2,0, c3,0),
such that for some i, ri,0 > .999 and ci,0 < .001, the cumulative distributions defined
by

Ri,t =

∑t
j=0 ri,j

t
, Ci,t =

∑t
j=0 ci,j

t
do not converge, as t→∞.

Proof. As above, for the sake of clarity we present the proof in the case that εR = εC =
ε. Throughout the following proof, all logarithms will be taken with base 1 + ε.

Assume without loss of generality that r1,0 > .999 and c1,0 < .001. First note
that if c2,t < 1/2 then r1 will must increase and c1 will decrease, and thus without
loss of generality, we may assume that r1,0 ≥ .999, c1,0 < .001, and c2,0 ≥ 1/2. For
some k ≤ log 10, it must be the case that after k timesteps we have c2,k ≥ .9, and
log(r1,k)− log(ri,k) ≥ log 999− k, for i = 2, 3. At this point log(c2/c3), log(c3/c1),
and log(r1/r2), log(r3/r2) will all continue to increase until r3 ≥ 1/3 − .001. Let t1
denote the number of steps before r1 < .9, and note that

t1 ≥ log 999− k − log 10.



At this point, we must have

log(r1/r2) ≥ .9t1, log(c2/c3) ≥ .9t1, log(c3/c1) ≥ .9t1.

After another at most log 10 steps, r3 > .9, and r3 will continue to increase until
c2 < .9. Let t2 denote the time until c2 ≤ .9, which must mean that c1 ≈ .1 since c3 is
decreasing, and note that

t2 ≥ 1.8t1 − 2 log 10,

where the last term is due to the steps that occur when neither r1 nor r3 were at least .9.
At this time point, we must have that

log(c2/c3) ≥ .9t2, log(r3/r1) ≥ .9t2, log(r1/r2) ≥ .9t2.

After another at most k3 steps, c1 > .9, and we can continue arguing as above, to yield
that after another t3 ≥ 1.8t2 − 2 log 10 steps, r3 < .9, r2 ≈ .1, and log(c1/c2) ≥
.9t3, log(c2/c3) ≥ .9t3. Inductively applying these arguments shows that the amount
of time during which the weight of a single strategy is held above .9, increases by a
factor of at least 1.8 in each iteration, and thus the cumulative distributions

∑t
j=1 ri/t

cannot converge. ut

4 Stochastic Setting

In this section we prove an analog of Theorem 1 for the multiplicative weights learning
algorithm in the stochastic setting. We show that in this setting, no matter the initial
configuration, with probability tending towards 1, the cumulative distributions of the
row and column player will be far from the Nash equilibrium. To show this, we will
make use of the same potential function (1) as in the proof of Theorem 1, and analyze
its expected drift. Although the expectation operator doesn’t commute with the appli-
cation of the potential function (and thus we cannot explicitly use the monotonicity of
the potential function as calculated above), unsurprisingly, in expectation the potential
function increases. While the drift in the potential function vanished at the equilibrium
in the distribution payoff setting, in this setting, the randomness, together with the non-
negativity of the potential function allow us to bound the expected drift by a positive
constant when the distributions are not near the boundary of the unit cube. Given this,
as in the previous section we will then be able to show that for any constant, with prob-
ability 1 after a sufficiently long time the value of the potential function will be at least
that constant. Given this, analogs of Lemmas 2 and 3 then show that the cumulative dis-
tributions tend away from the equilibrium with all but inverse exponential probability.
Our main theorem in this setting is the following.

Theorem 2. If the row player uses multiplicative updates with update parameter (1 +
εR), and the column player uses multiplicative updates with update parameter (1+εC),
then from any initial pair of distributions, after t time steps, either the dynamics have
left the simplex ri, ci ∈ (1/3 − .2, 1/3 + .2) at some time step t0 ≤ t, or with all but
inverse exponential probability will be at distance exp(Ω(t)) from the equilibrium.



To prove the theorem, we need the following lemma –whose proof is deferred to the
full version– that establishes the desired drift of potential (1).

Lemma 4. If ri, ci ∈ (1/3− .2, 1/3 + .2), then

E[Φ(rt+1, ct+1)|rt, ct] ≥ Φ(rt, ct) + max
(
Φ(rt, ct) log(1 + εR)

240
,
(log(1 + εR))2

24000

)
.

We are now prepared to finish our proof of Theorem 2. We do so by analyzing
the one-dimensional random walk defined by the value of the potential function over
time. As long as our pair of distributions has probability values in (1/3− .2, 1/3 + .2),
there is a constant (a function of εR) drift pushing us away from the equilibrium (which
corresponds to the minimum of the potential function). Using martingale arguments we
can show then that with all but inverse exponential probability the value of the potential
function will be γt for some constant γ, independent of t, unless we have exited the ball
of radius 0.2 around the equilibrium.
Proof of theorem 2: We wish to analyze the random walk (r0, c0), (r1, c1), . . . , where
the evolution is according to the stochastic dynamics. To do this analysis, we’ll consider
the one dimensional random walkX0, X1, . . . ,whereXi = Φ(rt, ct), assuming that the
walk starts within the ball ri, ci ∈ (1/3− .2, 1/3 + .2). Note first that |Xt+1 −Xt| ≤
4 log(1 + εR). Next, from the Xi’s, we can define a martingale sequence Y0, Y1, . . .
where Y0 = X0, and for i ≥ 1, Yi+1 := Yi +Xi+1 − E[Xi+1|Xi].

Clearly the sequence Yi has the bounded difference property, specifically |Yi+1 −
Yi| ≤ 8 log(1 + εR), and thus we can apply Azuma’s inequality4 to yield that with
probability at least 1− 2 exp(−t2/3/2), Yt ≥ Y0 − t5/68 log(1 + εR).

Notice next that, from our definition of the martingale sequence {Yt}t and Lemma 4,
it follows that, as long as the distributions are contained within the ball ri, ci ∈ (1/3−
.2, 1/3 + .2), Xt ≥ Yt + t · (log(1+εR))2

24000 .
Let us then define T to be the random time where the distributions exit the ball

for the first time, and consider the sequence of random variables {Yt∧T }t. Clearly, the
new sequence is also a martingale, and from the above we get Xt∧T ≥ Yt∧T + (t ∧
T ) · (log(1+εR))2

24000 , and, with probability at least 1 − 2 exp(−t2/3/2), Yt∧T ≥ Y0 −
t5/68 log(1 + εR). Hence, with probability at least 1− 2 exp(−t2/3/2), Xt∧T ≥ Y0 −
t5/68 log(1 + εR) + (t ∧ T ) · (log(1+εR))2

24000 and the theorem follows. �

5 Multi-armed Setting

Perhaps unsurprising in light of the inability of multiplicative weight updates to con-
verge to the Nash equilibrium in the stochastic setting, we show the analogous result
for the multi-armed setting. The proof very closely mirrors that of Theorem 2, and, in
fact the only notable difference is in the calculation of the expected drift of the potential
function. The analogous of Lemma 4 can be easily shown to hold and the rest of the
proof follows easily; we defer details to the full version.

4 Azuma’s inequality: LetX1, X2, . . . be a martingale sequence with the property that for all t,
|Xt −Xt+1| ≤ c; then for all positive t, and any γ > 0, Pr[|Xt −X1| ≥ cγ

√
t] ≤ 2e−γ

2/2.



6 Conclusions and Open Problems

We showed that simple learning approaches which are known to solve zero-sum games
cannot work for Nash equilibria in general bimatrix games; we did so by considering
the simplest possible game. Some of our non-convergence proofs are rather daunting; it
would be interesting to investigate whether considering more complicated games results
in simpler (and easier to generalize to larger classes of algorithms) proofs. In particular,
Shapley’s game has a unique Nash equilibrium; intuitively, one algorithmically nasty
aspect of Nash equilibria in nonzero-sum games is their non-convexity: there may be
multiple discrete equilibria. Zinkevich [14] has taken an interesting step in this direc-
tion, defining a variant of Shapley’s game with an extra pure Nash equilibrium. How-
ever, after quite a bit of effort, it seems to us that a non-convergence proof in Zinkevich’s
game may not be ultimately much easier that the ones presented here.

Despite the apparent difficulties, however, we feel that a very strong lower bound,
valid for a very large class of algorithms, may ultimately be proved.
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