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Abstract

A property or statistic of a distribution is said to be elicitable if it can be expressed
as the minimizer of some loss function in expectation. Recent work shows that
continuous real-valued properties are elicitable if and only if they are identifiable,
meaning the set of distributions with the same property value can be described
by linear constraints. From a practical standpoint, one may ask for which such
properties do there exist convex loss functions. In this paper, in a finite-outcome
setting, we show that in fact every elicitable real-valued property can be elicited
by a convex loss function. Our proof is constructive, and leads to convex loss
functions for new properties.

1 Introduction

Property elicitation is the study of statistics, or properties, of probability distributions which one
can incentivize an expected-utility-maximizing agent to reveal. In a machine learning context, this
“agent” is an algorithm following the principle of empirical risk minimization (ERM), wherein a
hypothesis is fit to the data by minimizing its error on a training data set, as judged by some loss
function. The interest in property elicitation in the economics, statistics, and machine learning
communities is reflected in the literature, with important results appearing in all three.

A central thread of this literature, weaving between all three communities, asks which continuous
real-valued properties are elicitable, and which loss functions elicit them. Building on earlier work
of Osband [16] and Lambert [12], Steinwart et al. [22] show that a property is elicitable if and only
if it is identifiable, a concept introduced by Osband which says that the set of distributions sharing
the same property value can be described by a set of linear constraints. Moreover, these papers give
characterizations of the loss functions eliciting these identifiable properties, showing that every loss
can be written as the integral of a positive-weighted identification function.

A question of practical interest remains, however: for which properties do there exist convex loss
functions eliciting them? Convex losses give concrete algorithms to solve ERM problems, and
are also useful more broadly in statistical and economic settings (see § 6). At first glance, the
answer to this question might appear to follow immediately from the comprehensive loss function
characterizations of Lambert [12] and Steinwart et al. [22]. Unfortunately, it is far from clear in
these characterizations whether there exists a weight function rendering their construction convex.

In this paper, we address this question of convex elicitability in the finite-outcome setting. Surpris-
ingly, we find that, under somewhat mild smoothness assumptions, every identifiable real-valued
property is convex elicitable. Our proof proceeds by pinpointing a few key attributes of identifica-
tion functions, and then solving the following abstract problem: given a set of functions F from R
to R, when does there exist a weight function λ : R → R making λf increasing for all f ∈ F? We
give a constructive solution to this problem under certain conditions, and show that identification
functions happen to satisfy these conditions.
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After reviewing the relevant prior work in more detail (§ 2), we give our main result (§ 3). We then
give intuition for our key technical proposition, the solution to the abstract problem mentioned above
(§ 4), followed by examples illustrating the constructive nature of our approach (§ 5). We conclude
with a discussion of applications to information elicitation, and future work (§ 6). See the Appendix
for all omitted proofs.

Notation. We will use the following notation throughout the paper. Let R>0 := {r : r ∈ R, r > 0}
denote the positive reals. For an interval I, let I̊ denote the interior of I. We let Y denote the
outcomes space, here taken to be finite, and ∆(Y) denote the set of probability distributions over Y .

2 Setting and Background

In property elicitation, we aim to learn some distributional property by minimizing a loss function. A
property is simply a function Γ : P → R, which assigns a desired reportR ⊆ Rk to each probability
distribution in a convex set P ⊆ ∆(Y). Without loss of generality, we often restrict R = Γ(P),
but this does not affect the result. Common properties include moments, quantiles, and expectiles.
Throughout the paper we will assume that Γ is a continuous real-valued function, implying R ⊆ R
is an interval. We also restrict to the finite outcome setting, where |Y| <∞, and consider P ⊂ R|Y|,
meaning we identify each distribution with the corresponding vector of probabilities.

We are interested in when properties are elicitable, meaning they can be expressed as the minimizer
of expected loss for some loss function. In the present paper, we will additionally ask when the loss
function can be convex.
Definition 1. A loss function L : R×Y → R ∪ {∞} elicits a property Γ if for all p ∈ P ,

{Γ(p)} = arg min
r

EY∼pL(r, Y ) . (1)

In this case, we say Γ is elicitable. If L(·, y) is convex for every y ∈ Y , we say Γ is convex elicitable.

A central notion in property elicitation is that of identifiability, where the level sets {p : Γ(p) = r}
can be expressed as a linear constraint.
Definition 2. Let property Γ : P → R be given, where R = Γ(P). A function V : R × Y → R
identifies Γ if

EY∼p [V (r, Y )] = 0 ⇐⇒ r = Γ(p) (2)

for all r ∈ R̊ and p ∈ P . In this case we say Γ is identifiable. We say V is oriented if we additionally
have EY∼p [V (r, Y )] > 0 ⇐⇒ r > Γ(p), for all r ∈ R̊ and p ∈ P .

Note that by the terminology of Steinwart et al. [22], an identification satisfying eq. (2) on all of R̊
is called strong, as otherwise it must only be satisfied outside a set of measure 0. We can loosely
think of an identification function as a derivative of a loss; if L is differentiable and elicits Γ, then
roughly speaking, we expect d

drEY∼pL(r, Y ) = 0 ⇐⇒ Γ(p) = r.

Finally, we will often assume our properties to possess two important qualities: continuity, and being
nowhere-locally-constant.
Definition 3 (Lambert [12]). A continuous property Γ : P → R is nowhere-locally-constant if there
does not exist any open neighborbood U of P such that Γ(p) = r for all p ∈ U .

Intuitively, restricting to nowhere-locally-constant properties is merely to ease bookkeeping, as one
could always collapse separate report values together afterwards.

It is known that for continuous, nowhere-locally-constant, real-valued properties, identifiability im-
plies elicitability. In this paper, we show that under slightly stronger assumptions, identifiability
implies convex elicitability. To place this result in the proper context, we now briefly tour the history
of property elicitation.

2.1 Relevant prior work

While Savage [20] studied the elicitation of expected values, the literature on the elicitation of gen-
eral properties began with Osband [16], who gave several important results. One of Osband’s ob-
servations is that the level sets {p : Γ(p) = r} of an elicitable property Γ must be convex [16,
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Proposition 2.5]. He also introduced the notion of an identification function, and the so-called Os-
band’s principle, which states that (under a mild regularity assumption) every loss function eliciting
a given property can be written as the integral of a weighted identification function [16, Theorem
2.1]. He also gave several other results, such as the separability of loss functions jointly eliciting
quantiles.

Independent of Osband, Lambert et al. [14, 15, 12] provide a geometric approach to both continuous
and finite properties (that is, properties taking values in a finite setR) when the set of outcomes Y is
finite. They represent the identification function as a vector, and relating finite-valued properties to
power diagrams in computational geometry. They rediscover several results of Osband for the real-
valued case, such as convexity of level sets and a one-dimensional version of Osband’s principle.
Moreover, the proof of [12, Theorem 5] shows the following. (Steinwart, et al. [22] extend this result
to the case of infinite Y .)

Theorem 1 (Lambert [12]). Let Γ : P → R be a continuous, nowhere-locally-constant property. If
the level sets {p ∈ P : Γ(p) = r} are convex, then Γ is elicitable, and has a continuous, bounded,
and oriented identification function.

None of the above-mentioned papers address the question of when the loss eliciting the property in
question is convex. This question has arisen in the context of surrogate risk minimization, where
unlike our setting, one seeks to indirectly elicit a given finite-valued property (such as the mode, or
most likely label) by first eliciting a real-valued property, and then applying a link function [5, 23].
For example, support vector machines (SVMs) commonly use hinge loss and then apply the sign
function, a combination which indirectly elicits the mode [21]. This literature is related to elicitation
complexity, where one asks how many dimensions of the surrogate property are needed so that the
desired property can be computed via the link function [14, 7, 9]. This relationship was perhaps first
identified by Agarwal and Agarwal [3], who restate prior work in terms of property elicitation, and
specifically focus on convex losses. Finally, Reid, Vernet, and Williamson [18, 24] consider losses
which indirectly elicit the full distribution, and consider convexity of the composite loss.

In contrast to this line of work, we seek the direct elicitation of continuous properties. While convex
losses are well-known for several continuous properties of interest, including the mean and other
expected values (squared loss), ratios of expectations (weighted squared loss), and the median and
other quantiles (pinball loss), to our knowledge, to date there have been no results on the direct
convex elicitation of general continuous properties.

3 Main Result

We will show that, under mild conditions, every elicitable real-valued property is also convex elic-
itable. Let us first give some intuition why one might suspect this statement to be true. From a
geometric perspective, the level sets {p : Γ(p) = r} of continuous elicitable properties are hyper-
planes intersected with P . As one changes r, the level sets may be locally parallel, in which case the
property is locally a link of a linear property (expected value), or the level sets may not be parallel,
in which case the property locally resembles a link of a ratio of expectations. In fact, the second
case also covers the first, so we can say that, roughly speaking, every continuous property looks
locally like a ratio of expectations. The following proposition states that if the property can actually
be written as a finite piecewise ratio of expectations, it is convex elicitable. Hence, taking the limit
as one approximates a given property better and better by ratios of expectations, one may suspect
that indeed every continuous property is convex elicitable.

Proposition 1. Continuous piecewise ratio-of-expectation properties are convex elicitable.

Proof. First, we formalize the statement. Let φi : Y → R and ψi : Y → R>0 for i = 1, . . . , k, and
let γi(p) = EY∼pφi(Y )/EY∼pψi(Y ). Assume that we have a0 < · · · < ak such that for all p ∈ P ,
there is a unique i ∈ {1, . . . , k} such that either γi−1(p) ∈ (ai−1, ai) or γi−1(p) = γi(p) = ai−1.
Call this i(p), and by extension i(r) where r = γi(p) for this i. We will show that Γ(p) := γi(p)(p)
is convex elicitable with respect to the full probability simplex P = ∆(Y).

Observe that by construction, for each i ∈ {1, . . . , k − 1} the level sets for ai coincide: Si = {p :
Γ(p) = ai} = {p : γi(p) = ai} = {p : γi−1(p) = ai}. Moreover, for all such i, these level sets are
full-dimensional in P , i.e., (n−2)-dimensional affine sets which are the intersection of a hyperplane
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and P . Now let Vi(r, y) = ψi(y)r − φi(y), which identifies γi, and is strictly increasing in r as
ψi(y) > 0 for all y. We now see that the hyperplane which is the span of Si in Rn is orthogonal to
the vectors Vi−1(ai, ·) ∈ Rn and Vi(ai, ·) ∈ Rn, by the definition of identifiability. We conclude
that there is some coefficient αi−1 such that Vi−1(ai, y) = αi−1Vi(ai, y) for all y ∈ Y . (In fact,
αi−1 > 0, as the coefficient of r must be positive.) We then construct βi(r) =

∏i(r)
j=0 αj and write

the identification as V (r, y) = βi(r)Vi(r)(r, y).

Moving now to the formal result, let I ⊆ R be an interval. Our main technical ingredient shows,
given a collection F of functions f : I → R satisfying certain conditions, how to construct a
multiplier λ : I → R>0 making λf strictly increasing on I̊ for all f ∈ F . In our proof, the family
F will be the set of identification functions {V (·, y)}y∈Y , and λ will play the role of the weight
function in previous work ([16, Theorem 2.1], [11, Theorem 2.7], [14, Theorem 3]) showing that
L(r, y) =

∫ r
r0
λ(r′)V (r′, y)dr′ elicits Γ. As λf is increasing, L will additionally be convex.

Therefore, the conditions below are only mildly stronger than what Lambert shows to be true of the
desired properties. We begin with our three conditions; the first we will assume, and the second and
third we will prove hold for any oriented identification function.

Condition 1. Every f ∈ F is continuous on I̊, continuously differentiable on I̊ except on a finite
set Sf ( I̊. When f is differentiable, d

dxf(x) is finite. Additionally, if x ∈ I̊ and f(x) = 0, then for
all z in some open neighborhood U of x, d

dz f(z) ≥ 0 whenever f is differentiable.

Condition 2. Every f ∈ F is bounded and has at most one zero xf ∈ I̊ so that if xf exists,
f(x) < 0 for x < xf and f(x) > 0 for x > xf . If f does not have a zero on I̊, then either
f(x) < 0 or f(x) > 0 for all x ∈ I̊. For all x ∈ I̊, at least one function f ∈ F is nonzero at x.

Condition 3. For all f, g ∈ F and all open subintervals I ′ ⊆ I̊ such that f > 0 > g on I ′, the
function g

f is strictly increasing on I ′.

Our main technical tool follows; we sketch the proof in § 4 and defer the full proof to the Appendix.
Proposition 2. If F satisfies Condition 1, 2, and 3, then there exists a function λ : I → R>0 so that
λf is increasing over I̊ for every f ∈ F .

With this tool in hand, we are ready to prove our main result.
Theorem 2. For P = ∆(Y), let Γ : P → R be a continuous, nowhere-locally-constant property
which is identified by a bounded and oriented V : R × Y → R. If F = {V (·, y)}y∈Y satisfies
Condition 1, then Γ is convex elicitable.

Proof. We have assumed all f ∈ F = {V (·, y)}y∈Y are bounded, oriented, and satisfy Condition 1,
and thus to apply Proposition 2 we need only establish Conditions 2 and 3. A fact we use throughout
is that V (r, y) = EY∼δyV (r, Y ), where δy is the point distribution on y ∈ Y .

To establish Condition 2, we procede in order. First, boundedness of each f ∈ F follows by
assumption. Second, we show that each f has at most one zero on R̊. As V identifies Γ, note that
V (r, y) = 0 ⇐⇒ Γ(δy) = r when r ∈ R̊. As Γ is single-valued, there can be at most one such
r ∈ R̊. Third, we must show that if f has a zero on R̊, it changes sign from negative to positive at
that zero, and if not, f never changes sign on R̊. The first case follows from the fact that Γ(δy) = r

and that V is oriented. For the second case, V (·, y) has no zero on R̊, and thus by continuity of V ,
cannot change sign on R̊. Fourth, to see that F has at least one nonzero function for all r ∈ R̊, note
that if V (r, y) = 0 for all y ∈ Y , then EY∼pV (r, Y ) = 0 for all p ∈ P . Thus, as V identifies Γ and
r ∈ R̊, we would have Γ(p) = r for all p, contradicting nowhere-locally-constancy.

For Condition 3, consider V (·, y0), V (·, y1) ∈ F and open interval I ′ = (a, b) such that V (r, y0) >
0 > V (r, y1) for all r ∈ I ′. We define pα = (1 − α)δy0 + αδy1 and γ(α) = Γ(pα) for α ∈ [0, 1].
Since Γ is continuous and nowhere-locally-constant, [22, Cor. 9] implies that Γ is quasi-monotone,
which in turn implies that γ is nondecreasing on [0, 1].

We first show I ′ ⊆ γ([0, 1]) = [γ(0), γ(1)]. By definition of I ′, we know r ∈ I ′ =⇒ V (r, y1) <
0 < V (r, y0) and the orientation of V then implies Γ(δy1) > r > Γ(δy0). Thus, Γ(δy1) = γ(1) ≥
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b > a ≥ Γ(δy0) = γ(0), with the strict inequality since I ′ is nonempty. We then see that r ∈
(a, b) =⇒ r ∈ [Γ(δy0),Γ(δy1)] = γ([0, 1]), and therefore I ′ ⊆ γ([0, 1])

Next, we show that γ is not only nondecreasing but strictly increasing on A = γ−1(I ′). Note
that A is itself an open interval as γ is continuous. Let α, α′ ∈ A, and suppose for a contradic-
tion that γ(α) = γ(α′) = r ∈ I ′ ⊆ R̊. Then Γ(pα) = Γ(pα′) = r, and as V identifies Γ,
we have EY∼pαV (r, Y ) = EY∼pα′V (r, Y ) = 0. Thus, EY∼p0V (r, Y ) = (α′EY∼pαV (r, Y ) −
αEY∼pα′V (r, Y ))/(α′ − α) = 0, and similarly for p1. By identifiability again, we must now have
Γ(p0) = Γ(p1) = r, contradicting Γ(p0) < Γ(p1) as observed above.

Since V identifies Γ, we have for α ∈ A,

0 = EY∼pαV (γ(α), Y ) = (1− α)EY∼δy0 [V (γ(α), Y )] + αEY∼δy1 [V (γ(α), Y )]

= (1− α)V (γ(α), y0) + αV (γ(α), y1) ,

from which we conclude the function F (α) = V (γ(α), y1)/V (γ(α), y0) = (α− 1)/α = 1− 1/α,
which is strictly increasing in α. Observe that as γ is strictly increasing on A, its inverse is strictly
increasing on I ′. Thus V (r, p1)/V (r, p0) = F (γ−1(r)) = 1 − 1/γ−1(r) is strictly increasing on
I ′, as desired.

As we have now established thatF satisfies Conditions 1-3, Proposition 2 gives us a weight function
λ : R → R>0 such that for all y ∈ Y , the map r 7→ λ(r)V (r, y) is strictly increasing on R̊. Thus,
fixing r0 ∈ R̊, the loss L(r, y) =

∫ r
r0
λ(r′)V (r′, y)dr′ is convex in r for each y ∈ Y , as noted by

Rockafellar [19, Theorem 24.2]. Moreover, as λ > 0, L elicits Γ by Lambert [12, Theorem 6].

While we defer discussion of future work to § 6, it is worth noting here that the argument establishing
Condition 3 immediately extends to infinite outcome spaces. Beginning with p0, p1 being arbitrary
distributions, Γ(p0) 6= Γ(p1), one simply observes that V (γ(α), p0)/V (γ(α), p1) = 1−1/α by the
same logic. The central challenge to such an extension therefore lies in the proof of Proposition 2.

Loosely speaking, when combining Theorem 2 with the existing literature, we conclude that every
“nice” elicitable property is additionally convex elicitable. We formalize this in two corollaries, one
stated as an implication, and the other given in the style of Steinwart et al. [22, Cor. 9].

Corollary 1. Let Γ : P → R be continuous, nowhere-locally-constant, and elicited by a loss
L with bounded and continuous first and second derivatives. Suppose also, for all p ∈ P , that
d
drEY∼pL(r, Y ) = 0 for at most one r ∈ R̊. Then Γ is convex elicitable.

Proof. As L(r, y) elicits Γ and is differentiable, for all r ∈ R̊, and all p with Γ(p) = r, we must
have d

drEY∼pL(r, Y ) = 0. By our assumption on the critical points of L, we see that V (r, δy) =
d
drL(r, δy) is a bounded and oriented identification function for Γ, and is continuously differentiable
with bounded derivative. Thus, F = {V (r, δy)}y∈Y satisfies Condition 1, and the result follows
from Theorem 2.

Corollary 2. Let P = ∆(Y) be the probability simplex over n outcomes, and let Γ : P → R
be a nowhere-locally-constant property with a bounded and nowhere vanishing first derivative, a
bounded second derivative, and a differentiable right inverse.1 Then the following are equivalent:

1. For all r ∈ R, the level set {p : Γ(p) = r} is convex.
2. Γ is quasi-monotonic.
3. Γ is identifiable and has a bounded and oriented identification function.
4. Γ is elicitable.
5. There exists a non-negative, measurable, locally Lipschitz continuous loss function eliciting Γ.
6. Γ is convex elicitable.

Proof. We essentially reduce to a similar result of Steinwart et al. [22, Corollary 9]. First, note
that the definition of nowhere-locally-constant from Lambert et al. [14] coincides with the definition
of Steinwart et al. [22, Definition 4] in finite dimensions. Second, as our assumptions are stronger

1We may identify P with {v ∈ R|Y|−1
+ :

∑|Y|−1
i=1 vi ≤ 1} so that the derivatives are well defined. In the

proof, for ease of notation, we will still write dot products in R|Y|.
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than theirs, the equivalence of the first five conditions follows. As convex elicitability implies convex
level sets (by the same argument of Lambert [12, Theorem 5], which follows even if L can be infinite
on the boundary ofR), it then suffices to show that identifiability implies convex elicitability.

By standard arguments, the convexity of the level sets {p : Γ(p) = r} for r ∈ R̊ imply that each
level set must be a hyperplane intersected with P . (See e.g. Theorem 1 of [14].) Letting p̂ be the
right inverse of Γ, so that Γ(p̂(r)) = r for all r ∈ R, we may define

V (r, y) = ∇p̂(r)Γ · (δy − p̂(r)) , (3)

a form taken from Frongillo and Kash [8, Proposition 18].

Now for any p with Γ(p) = r, as the level set is a hyperplane intersected with P , we must have
Γ(αp + (1 − α)p̂(r)) = r, and we conclude ∇p̂(r)Γ · (p − p̂(r)) = 0. (Simply take the derivative
with respect to α.) Thus, as ∇Γ 6= 0, the vector ∇p̂(r)Γ − ∇p̂(r)Γ · p̂(r)1 defines the same hy-
perplane as {p : Γ(p) = r}, and thus V identifies Γ. (Here 1 ∈ R|Y| denotes the all-ones vector.)
That V is also bounded and oriented follows easily from our assumptions. As V has a bounded
derivative everywhere by assumption, it satisfies Condition 1, and convex elicitability then follows
from Theorem 2.

4 Proof Sketch and Intuition

We now give a sketch of the construction of the weight function λ in Proposition 2. See the Appendix
for the full proof. For the purposes of this section, let us simplify our three conditions as follows:

Condition 1’. Every f ∈ F is continuously differentiable.
Condition 2’. Each f ∈ F has a single zero, and moves from negative to positive.
Condition 3’. When f > 0 > g, the ratio g/f is increasing.

Two function case. To begin, let us consider two functions satisfying Conditions 1’, 2’, and 3’, such
that f > 0 > g on the interval I. We wish to find some λ : I → R>0 making both λf and λg
strictly increasing. By Condition 3’, we know g/f is increasing on I̊. Let us choose λ as follows,

λ(r) := (−f(r)g(r))−1/2 . (4)

As −fg > 0 on I, we have λ > 0 as well. Moreover, one easily checks that λf =
√
−f/g and

λg =
√
−g/f , which are both increasing as monotonic transformations of g/f .

General case. More generally, we wish to find a λ such that for all x ∈ R̊, d
dx (λf)(x) > 0.

When f > 0, this constraint is equivalent to d
dx log(λf)(x) > 0, which is in turn equivalent to

− d
dx log λ(x) < d

dx log f(x). Similarly, if f(x) < 0, then we need− d
dx log λ(x) > d

dx log(−f(x)).
Finally, the case f(x) = 0 follows easily from Condition 2’, as d

dxf(x) > 0 and λ > 0. Combining
these constraints, we see that for all f > 0 and all g < 0, we must have

d
dx log(−g(x)) < − d

dx log λ(x) < d
dx log f(x) . (5)

In order for these constraints to be feasible, we must have d
dx log(−g(x)) < d

dx log f(x) for all
f < 0 < g, which is seen to be equivalent to Condition 3’ after some manipulation.

Perhaps the most natural way to satisfy constraint (5) is to simply take the midpoint between the
maximum lower bound m : R → R and minimum upper bound m : R → R defined as follows:

m(x) := − sup
g∈F :g(x)<0

d
dx log(−g(x)) m(x) := − inf

f∈F :f(x)>0

d
dx log(f(x))

This yields the following construction (where r0 ∈ R̊ is arbitrary),

h(x) = −1

2
(m(x) +m(x)) , λ(x) = exp

(∫ x

r0

h(z)dz

)
, (6)

where one notes h(x) = d
dx log λ(x). Provided our three conditions hold, we now have a positive

weight function λ satisfying the constraint (5), and we conclude that λf is increasing for all f ∈ F .
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Let us observe that our general construction in eq. (6) really is a generalization of the two-function
case in eq. (4). That is, we are primarily concerned with the “most decreasing” and “least increasing”
functions, which allows us to focus on two functions instead of the entire set F . When we only have
two functions f > 0 > g, eq. (6) reduces to h(x) = − 1

2

(
d
dx log(−g(x)) + d

dx log f(x)
)
, whence

λ(x) = exp
(
1
2 log(−g(x)f(x))

)
= 1/

√
−g(x)f(x).

Hurdles and technicalities. As stated, the above construction has two issues, which we now
briefly identify and describe how our proof circumvents. First, in general our functions f will pass
through 0, making h and therefore λ unbounded. Recall that we only needed to satisfy eq. (5), and
thus rather than taking the midpoint of the lower and upper bounds as in eq. (6), which will diverge
whenever one of the bounds diverges, we can always choose h in a slightly more clever manner to
be closer to the smallest magnitude bound. See the Appendix for one such construction.

The second problem is that our actual Condition 1 allows for nondifferentiability, which arises in
settings of interest, like Proposition 1. Fortunately, in the finite-outcome setting, it is essentially
without loss of generality to consider continuous f ∈ F (see Theorem 1). We can therefore address
the finite nondifferentiabilities using continuity arguments, allowing us to focus on the set Ic ⊆ I
where every f ∈ F is continuously differentiable.

5 Examples

To illustrate the constructive nature of Theorem 2, we now give two examples. The first is the Beta
family scoring rule found in Buja et al. [6, §11] and Gneiting and Raftery [11, §3], which we use
to illustrate the construction itself. The second is a simple elicitable property for which the obvious
identification function does not give a convex loss; we show how to convexify it.

1. Beta families. Consider the Beta family of loss functions discussed in Buja et al. [6], which
elicit the mean over outcomes Y = {0, 1}, withR = [0, 1]. After some manipulation, one can write
the loss and identification function as follows, for any α, β > −1,

L(r, y) =

∫ r

0

zα−1(1− z)β−1(z − y)dz V (r, y) = rα−1(1− r)β−1(r − y) .

While some choices of the parameters yield convex losses, such as α = β = 0 (log loss) and
α = β = 1 (squared loss), not all do, e.g. α = 1/5, β = −1/2.

Applying the two-function construction from Section 4, we choose λ(r) = r1/2−α(1 − r)1/2−β ,
giving the identification function V ′(r, y) = r1/2(1−r)1/2(r−y), which is itself in the Beta family
with α = β = 1/2. Intergrating V ′ yields the following convex loss,

L′(r, y) =

∫ r

0

z1/2(1− z)1/2(z − y)dz = arcsin(
√
|y − r|)−

√
r(1− r) , (7)

also discovered by Buja et al., which serves as a intermediary between log and squared loss.

2. A quadratic property. Let Y = {1, 2, 3}, and Γ(p) =
1−
√

1−4p1p2+2p22
2p2

, where Γ(p) = p1
when p2 = 0 for continuity (from L’Hôpital’s rule). Here py denotes the probability outcome y
is observed. A very natural choice of identification function for Γ is V (r, 1) = r − 1, V (r, 2) =
1
2 + r − r2, V (r, 3) = r, as one can easily verify. Yet we see that V (·, 2) is not strictly increasing
(Figure 1), so the loss given by integrating V will not be convex.

The family F = {V (·, y)}y∈Y does satisfy Conditions 1–3, however, and thus we may use our
construction to obtain a positive λ for which L(r, y) =

∫ r
r0
λ(x)V (x, y)dx elicits Γ while be-

ing convex in r. Unfortunately, for this particular example, the construction given in the proof
of Proposition 2 produces a somewhat unwieldy function λ. Nonetheless, we may take h to be
any simple function between the two bounds m and m; in this case h(x) = 4x − 1 will do,
giving us the simple form λ(r) = exp(2x2 − x). This gives V ′(r, 1) = exp(2r2 − r)(r − 1),
V ′(r, 2) = exp(2r2 − r)((1/2) + r − r2), and V ′(r, 3) = r exp(2r2 − r), which we can integrate
to obtain a convex loss.
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Figure 1: The functions V (·, y) are not always increasing for all y ∈
Y , but our function λ “monotonizes” them, as shown in (d)–(f).
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6 Conclusion and future work

We have shown that all finite-outcome real-valued properties, which are identified by a mostly-
smooth continuous identification function, are convex elicitable. Beyond natural relevance to ma-
chine learning, and statistical estimation more broadly, these results bring insights into the area
of information elicitation. For example, a generalization of a common prediction market frame-
work, the Scoring Rule Market, is well-defined for any loss function [14, 10]. Yet it is not clear
whether practical markets exist for any elicitable property. Among the practical considerations are
axioms such as Tractable Trading (TT), which states that participants can compute their optimal
trade/action under a budget [2], and Bounded Trader Budget (BTB), which states that traders with
arbitrarily small budgets can still fruitfully participate [10]. Our results imply that essentially every
continuous real-valued elicitable property over finite outcomes has a market mechanism which satis-
fies these axioms. There are likely also implications for wagering mechanisms [13] and forecasting
competitions [25], among other settings in information elicitation.

There are several avenues for future work, which we outline below.

Relaxing our conditions. We believe one could allow V to be smooth almost everywhere. One
may still be able to use the fact that g/f is strictly increasing to have an almost-everywhere defined
derivative, but again, there are several challenges to this approach.

Infinite outcomes. A challenging but important extension would be to allow infinite Y , for ex-
ample, Y = [0, 1] ⊆ R. As discussed following Theorem 2, many pieces of our argument extend
immediately, such as the argument establishing Condition 3. We believe the key hurdle to such an
extension will be in Proposition 2, as several quantities become harder to control. As one example,
the definition of h in eq. (6) involves a maximum and minimum which may not be obtained. Extend-
ing to infinite outcomes requires the relaxation of our continuity assumption, as many properties of
interest have discontinuous identification functions in the infinite-outcome space, like the median.

Strongly convex losses. Just as convex loss functions are useful so that empirical risk minimization
is a tractable problem, strongly convex losses are even more tractable. Roughly speaking (ignoring
the log transformation), if the gap in eq. (5) is bounded away from zero, λf will be increasing at
least as fast as some linear function for all f , meaning its integral will be strongly convex. It is not
clear what meaningful conditions on Γ suffice for this to hold, however, and a full characterization
is far from clear. Characterizations for exp-concave losses would also be interesting.

Vector-valued properties. Finally, we would like to extend our construction to vector-valued
properties Γ : P → Rk. In light of our results, this question is only interesting for properties which
are not vectors of elicitable properties: if the k components of Γ are themselves elicitable, we may
construct a convex loss for each, and the sum will be a convex loss eliciting Γ. Unfortunately, we
lack a characterization of elicitable vector-valued properties, so the question of whether all elicitable
vector-valued properties are convex elicitable seems even further from reach.
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A Proving the Proposition

Let I ⊆ R be an interval, and F a finite set of functions f : I → R. As a reminder, we designate
R>0 := {r : r ∈ R, r > 0}.
In Theorem 2, the family F will be the set of functions {V (·, y)}y∈Y identifying Γ. For ease of
exposition, given any F , we define F+(x) = {f ∈ F : f(x) > 0} to be the subset of functions
strictly positive at x and F−(x) = {f ∈ F : f(x) < 0} strictly negative. For any function
f : I → R, let f+(x) = limu→x+ f(u) and f−(x) = limu→x− f(u) denote the right and left limits
of f at x, respectively.

For convenience, we recall our three conditions, and the statement to be proved.

Condition 1. Every f ∈ F is continuous on I̊, continuously differentiable on I̊ except on a finite
set Sf ( I̊. When f is differentiable, d

dxf(x) is finite. Additionally, if x ∈ I̊ and f(x) = 0, then for
all z in some open neighborhood U of x, d

dz f(z) ≥ 0 whenever f is differentiable.

Condition 2. Every f ∈ F is bounded and has at most one zero xf ∈ I̊ so that if xf exists,
f(x) < 0 for x < xf and f(x) > 0 for x > xf . If f does not have a zero on I̊, then either
f(x) < 0 or f(x) > 0 for all x ∈ I̊. For all x ∈ I̊, at least one function f ∈ F is nonzero at x.

Condition 3. For all f, g ∈ F and all open subintervals I ′ ⊆ I̊ such that f > 0 > g on I ′, the
function g

f is strictly increasing on I ′.
Proposition 2. If F satisfies Condition 1, 2, and 3, then there exists a function λ : I → R>0 so that
λf is increasing over I̊ for every f ∈ F .

Define SF =
⋃
f∈F Sf to be the set of all “problem points” in I̊, where one or more functions

fail to be differentiable. Note that SF is finite, as F is finite, and Sf is finite for every f ∈ F by
Condition 1. Let Ŝ = SF

⋃
∂I, where ∂I denotes the (possibly empty) boundary of interval I.

Additionally, define Ic := I \ Ŝ ⊆ I̊, which is an open set as the union of open sets.

We define the functions m : Ic → R and m : Ic → R

m(x) := − sup
g∈F−(x)

d
dx log(−g(x)) m(x) := − inf

f∈F+(x)

d
dx log(f(x))

m′(x) := max

(
m(x)− 1,

m(x) +m(x)

2

)
m′(x) := min

(
m(x) + 1,

m(x) +m(x)

2

)
,

and finally define h : I → R and λ : I → R>0 as below.

h(x) := min (max (m′(x), 0) ,m′(x)) (8)

λ(x) := exp

(∫ x

0

h(u)du

)
, (9)

where we let h(x) = 0 for x ∈ Ŝ.

We will show that the product λf increasing on I̊ for every function f ∈ F . We begin with three
claims and then turn to the proof, interspersing technical lemmas which we prove afterwards.
Lemma 1. If Condition 3 for F is satisfied on the interval (a, b) ⊆ Ic then for all x ∈ (a, b) and
all f ∈ F+(x), g ∈ F−(x) we have d

dx log(−g(x)) ≤ d
dx log f(x), where Z = {x ∈ (a, b) :

d
dx log(−g(x)) = d

dx log f(x)} is totally disconnected.

Lemma 2. Let F satisfy Conditions 1 and 2, and let δ > 0 be given. Let I ′ refer to any compact
subinterval of I̊. For all f ∈ F and ε sufficiently small, there exists an M > 0 such that for
all x ∈ Ic ∩ I ′, the following two conditions hold: (i) if |f(x)| ≥ ε, | ddx log |f(x)|| < C, (ii) if
|f(x)| < ε, d

dxf(x) ≥ 0.

The previous statement allows us to conclude that either m or m is bounded by M := C/ε on I ′.
Claim 1. The function h : I → R defined by eq. (8) satisfies
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1. h is continuous on Ic.
2. m(x) ≤ h(x) ≤ m(x) for all x ∈ Ic.
3. m(x) < h(x) < m(x) for all but a totally disconnected set of x ∈ Ic.
4. h is bounded on any compact subinterval I ′ of I̊.

Proof. Statement 1: As h is defined as the max and min of finitely many continuous functions on
Ic, it is continuous on Ic.

Statement 2: We give the function h(x) = max(min(m′(x), 0),m′(x)), consider m′(x) ≤ m(x)
and m′(x) ≥ m(x).

If m′(x) > 0, 0 ≤ h(x) ≤ m′(x) ≤ m(x), and we can then say that h(x) ≤ m(x). Similarly, if
m′(x) < 0, then 0 ≥ m(x) ≥ m′(x) = h(x) by definition of h. If m′(x) = 0, then lastly we see
m(x) ≥ m′(x) = h(x) = 0.

Therefore, m(x) ≥ m′(x) ≥ h(x). It remains to be seen thatm(x) ≤ m′(x) ≤ h(x). Ifm′(x) > 0,
then we can see m′(x) = h(x) ≥ m(x) since m′(x) ≤ m′(x) for all x ∈ I. If m′(x) < 0, we can
see that 0 ≥ h(x) ≥ m′(x) ≥ m(x). Thus, we observe that h(x) ≥ m′(x).

Statement 3: By Lemma 1, for all g, f ∈ F so that g < 0 < f on the interval I ′ ⊆ Ic, Z =
{x ∈ I ′ : d

dx log(−g(x)) = d
dx log(f(x))} is totally disconnected. By definition of m and m, we

conclude m(x) < m(x) on all but a totally disconnected set. By inspection, h(x) = m(x) if and
only if h(x) = m(x), as this is the only way that m(x) = m′(x) and m(x) = m′(x), which are
used to construct h. Thus, m(x) < h(x) < m(x) for all x ∈ Z, which is totally disconnected.

Statement 4: Let I ′ be a compact subinterval of I̊. By Lemma 2, for every f ∈ F we have εf and
Mf such that for every x ∈ I ′∩Ic, if (i) |f(x)| ≥ εf , | ddx log |f(x)|| < Mf , and (ii) if |f(x)| < εf ,
d
dxf(x) ≥ 0. Note that similar to the proof of Lemma 2, for ε′ sufficiently small, we will have for all
x ∈ I ′ that there is at least one f ∈ F such that |f(x)| > ε′. (This uses the uniqueness of roots by
Condition 2 and continuity of each element of F by Condition 1.) Finally, let ε = min(ε′,minf εf )
and M = maxf Mf .

Now suppose |f(x)| < ε. If f(x) > 0, then d
dx log f(x) = d

dxf(x)/f(x) ≥ 0 as d
dxf(x) ≥ 0 by (i).

Similarly, if f(x) < 0, then d
dx log−f(x) = d

dxf(x)/f(x) ≤ 0. We conclude that for any x ∈ Ic,
either |m(x)| < M or m(x) ≤ 0, by definition of m. Similarly, for any x ∈ Ic, either |m(x)| < M
or m(x) ≥ 0. Moreover, as ε ≤ ε′, for all x ∈ I ′ ∩ Ic at least one function f ∈ F has |f(x)| ≥ ε,
and we must have |m(x)| < M or |m(x)| < M .

Let us then consider three cases:

• |m(x)| < M and |m(x)| < M . By definition of h, it is clear that |h(x)| < M + 1.

• |m(x)| < M andm(x) ≤ 0. Here |m′(x)| < M+1 and eitherm′(x) ≤ 0 or 0 ≤ m′(x) ≤
m(x) ≤ m(x) (by Lemma 1, we have m ≥ m), and in both cases 0 ≤ h(x) ≤M + 1.

• m(x) ≥ 0 and |m(x)| < M . Symmetrically, we have −M − 1 ≤ h(x) ≤ 0.

We conclude that |h(x)| < M + 1 on I ′. As I ′ is arbitrary, we then observe |h(x)| < M + 1 on
any compact subinterval of I.

Claim 2. The function h constructed in eq. (8) is integrable and λ constructed in eq. (9) is continu-
ously differentiable for all x ∈ Ic. Moreover, λf is continuous on I̊ for all f ∈ F .

Proof. Observe that the function h is bounded on every compact subinterval I ′ of I̊ by Statement
(4) of Claim 1, and is continuous on Ic by Statement (1). As Ic = I \ Ŝ has full Lebesgue
measure over I̊, h is continuous almost everywhere on I̊. Moreover, for every compact subinterval
I ′ ⊆ I̊, the Riemann integral

∫
I′ h(z)dz exists and is bounded. Thus, the improper Riemann

integral limr→a−
∫ r
r0
h(z)dz exists for a ∈ ∂I and is equal to the Lebesgue integral

∫ a
r0
h(z)dz, as

shown by Apostol [4, Theorem 10.33]; note however that we may have
∫ a
r0
h(z)dz =∞.
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As Pouso [17] shows the Fundamental Theorem of Calculus can be applied to Lebesgue integrals
and h is Lebesgue integrable on I̊, ϕ(r) =

∫ r
r0
h(z)dz is differentiable where h is continuous, shown

in Abbott [1, Theorem 7.5.1]. By statement (1) of Claim 1, we also know h is continuous on Ic, so
we know ϕ is differentiable on Ic, and additionally observe d

dxϕ(x) = h(x). Thus we can say λ is
differentiable for all x ∈ Ic, and d

dxλ(x) = h(x)λ(x). Therefore, at every x ∈ Ic, λf is the product
of two differentiable functions, and is therefore differentiable on Ic.

Moreover, as the set of discontinuities of h is finite as Ŝ is finite, so we know ϕ is then continuous
on I̊. λ is then continuous on I̊ as it is the exponent of a continuous function. As f is assumed
continuous in Condition 1, the product λf is continuous on I ′.
(We note that any function h satisfying the statements in Claim 1 would be Lebesgue intregrable on
I̊, but the proof in Claim 1 is only provided for h as constructed in Equation 8.)

Claim 3. For every x ∈ Ic and every f ∈ F , the derivative of λf at x is nonnegative, and 0 at a
totally disconnected set of values.

Proof. We observe d
dxλ(x) = λ(x)h(x) for any x ∈ Ic given the construction of λ in Equation (9).

By substitution, we now have

d
dx (λf)(x) = d

dxλ(x)f(x) + λ(x) d
dxf(x) = λ(x)h(x)f(x) + λ(x) d

dxf(x) . (10)

As λ(x) > 0, it therefore suffices to show h(x)f(x) + d
dxf(x) ≥ 0 for any f ∈ F .

Recall from Condition 1 that if f(x) = 0, then there is some open neighborhood U around x where
d
dz f(z) ≥ 0 for all z ∈ U . By Claim 1, Statement 2, and the definitions of m and m, for all x ∈ Ic,
g ∈ F−(x), and f ∈ F+(x), we have

− d
dx log(−g(x)) ≥ m(x) ≥ h(x) ≥ m(x) ≥ − d

dx log(f(x)) , (11)

where the inequalities involving h are strict at all but a totally disconnected set by Statement 3.

Writing d
dx log(f(x)) as

d
dxf(x)

f(x) , we can see that for any f ∈ F+(x), h(x)f(x) ≥ − d
dxf(x) by

some mild maniupulation of Statement (2) of Claim 1. Similarly, for g ∈ F−(x), as g is negative,
we can see that h(x)g(x) ≥ − d

dxg(x). Therefore, for all f ∈ F and x ∈ Ic, we observe that
h(x)f(x) ≥ − d

dxf(x), with equality only at a totally disconnected set of points by Statement (3) of
Claim 1, as for all f ∈ F , h(x)f(x) > − d

dxf(x) ⇐⇒ m(x) > h(x) > m(x) at all but a totally
disconnected set. We stated earlier that it sufficed to show h(x)f(x) > − d

dxf(x) for all f ∈ F in
order to conclude d

dx (λf)(x) ≥ 0 for all x in Ic.

We now have the groundwork we need to prove the Proposition.

Proof of Proposition 2. We see in Claim 2 that λf is continuous on I̊ and continuously differen-
tiable on Ic. Claim 3 shows d

dx (λf)(x) ≥ 0 with d
dx (λf)(x) = 0 at a totally disconnected set

of x ∈ Ic. As Ŝ is finite, note that Ic is then the disjoint union of open intervals I1, . . . , Ik. By
Lemma 3, we have that λf is strictly increasing on each Ii. As λf is continuous on I̊, we further
conclude that λf is strictly increasing on the closure of each Ii except on the boundary of I; that
is, λf is strictly increasing on cl(Ii) \ ∂I. Finally, writing I̊ = ∪ki=1cl(Ii) \ ∂I, we see that λf is
strictly increasing on all of I̊.

This concludes the proof of Proposition 2. We now prove our technical lemmas.

Proof of Lemma 1. Since f and g have well-defined, bounded derivative at x ∈ Ic (and f(x) 6= 0),
the function g

f has a well-defined derivative at x, and strictly increasing on (a, b) by Condition 3, as

(a, b) ⊆ Ic. By Lemma 3, as g
f is strictly increasing on (a, b), we must have d

dx

(
g(x)
f(x)

)
≥ 0 ∀x ∈

(a, b) where Z = {x : d
dx ( g(x)f(x) ) = 0} is totally disconnected.
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We can see that

0 < d
dx

(
g(x)

f(x)

)
=

d
dxg(x)f(x)− d

dxf(x)g(x)

(f(x))2

⇐⇒ 0 < d
dxg(x)f(x)− d

dxf(x)g(x)

⇐⇒
d
dxg(x)

g(x)
<

d
dxf(x)

f(x)

⇐⇒ d
dx log(−g(x)) < d

dx log(f(x)) .

Similarly, we conclude d
dx log(−g(x)) ≤ d

dx log(f(x)) for all f ∈ F+(x), g ∈ F−(x), and
Lemma 3 shows that Z is totally disconnected.

Proof of Lemma 2. Let f ∈ F be given. If f(x) 6= 0 for all x ∈ I ′, then by continuity of f from
Condition 1, we have some ε1 > 0 such that |f(x)| > ε1 for all x ∈ I ′. We know that | ddxf(x)| ≤ C
by Condition 1 whenever x ∈ Ic, implying | ddx log |f(x)|| = | ddxf(x)/f(x)| ≤ C/ε1 =: M . Thus,
our condition (i) holds for any ε < ε1, and condition (ii) never occurs.

On the other hand, if f has some zero xf ∈ I̊, then by Condition 1, we have some open neighbor-
hood U of xf such that d

dz f(z) ≥ 0 for all z ∈ U ∩ Ic. On the closed set W = I ′ \ U ⊂ I̊, we
have |f | > 0 by Condition 2, and by continuity of f , we moreover have ε2 such that |f | ≥ ε2 on W .
Note that for any ε < ε2, we have {x ∈ I ′ : |f(x)| < ε} ⊆ U . Now for any x ∈ Ic we have: (i)
|f(x)| ≥ ε =⇒ | ddx log |f(x)|| = | ddxf(x)/f(x)| ≤ C/ε =: M by the above argument, and (ii)
|f(x)| < ε =⇒ x ∈ U =⇒ d

dxf(x) ≥ 0.

Lemma 3. Let ϕ : (x, y)→ R be continuously differentiable and nondecreasing. Then d
dzϕ(z) ≥ 0

for all z ∈ (x, y). Moreover, ϕ is strictly increasing if and only if Z = {z ∈ (x, y) : d
dzϕ(z) = 0}

is totally disconnected.

Proof. The first part of the statement follows from invoking the Mean Value Theorem.

The converse of the statement is more nontrivial. Assume the differentiable function ϕ is strictly
increasing. As we know increasing =⇒ non-decreasing =⇒ nonnegative derivative, it remains to
be seen that the derivative is not 0 on any subinterval of (x, y). Suppose there was some subinterval
(a, b) ⊆ (x, y) so that φ had zero derivative on (a, b). By Mean Value Theorem, we could then see
ϕ is locally constant on (a, b); a contradiction. Therefore, the set of points where ϕ has 0 derivative
must be totally disconnected.

Now assume d
dzϕ(z) is strictly positive except for a totally disconnected set Z where φ has 0 deriva-

tive, and recall d
dzϕ is continuous on (x, y). As the set Z is totally disconnected, the derivative of ϕ

is not zero on any interval (a, b) ⊆ (x, y). As Z is totally disconnected, we then see that for some
z ∈ (a, b), d

dzϕ(z) = ϕ(b)− ϕ(a)/(b− a) > 0 by Mean Value Theorem, and therefore ϕ is strictly
increasing as we can see ϕ(a) < ϕ(b). Therefore, ϕ is strictly increasing on (x, y).
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