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Motivation

This work came about when Rafael and I tried to understand this:

Theorem 6 (Banerjee et al., 2006)

There is a bijection between regular exponential families and regular
Bregman divergences.

The bijection was based on the convex duality between the cumulant of
the EF and the generator of the BD.

Our idea:

We are comfortable with Bregman divergences (BDs) and convexity

. . . but had little idea about exponential families (EFs)

Why not use the above result to understand EFs via BDs?

The rabbit hole: What does “regular” mean here?
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Preliminaries

Convexity:

Dual pair (V,V∗) with bilinear 〈·, ·〉 : V × V∗ → R
The convex conjugate of G : V → R is G ∗ : V∗ → R defined by
G ∗(v∗) := supv∈V 〈v , v∗〉 − G (v)

Fenchel-Moreau: For G : Ω→ R with Ω Hausdorff & locally convex
G ∗∗ = G ⇐⇒ G ≡ ±∞ or G convex, l.s.c. & proper

Uncertainty:

Distribution p ∈ ∆Ω over (possibly uncountable∗) outcomes in Ω
(i.e., densities with measure space (Ω,Σ) and reference measure λ)

Random variable or statistic φ : Ω→ V ⊆ Rd

These are a dual pair (W,W∗) with 〈p, φ〉 = Eω∼p [φ(ω)]

Connecting Two Dual Pairs:

〈Ep [φ] , θ〉V = 〈〈p, φ〉W , θ〉V = 〈p, 〈φ, θ〉V〉W = Ep

[
φ>θ

]
∗This is a depature from a similar treatement for finite outcome spaces by Sears (2010).
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A Quick Review

Exponential Family

For statistic φ : Ω→ Rd an exponential family (w.r.t. some measure λ) is
a set F = {pθ : θ ∈ Θ} of densities of the form

pθ(ω) := exp (〈φ(ω), θ〉 − C (θ))

with finite cumulant C (θ) := log
∫

Ω pθ(ω) dλ(ω). The parameters θ ∈ Θ
are natural parameters. The family F is regular if Θ is an open set.

Bregman Divergence

A (generalised) Bregman divergence on X is the function

DF ,dF (x , x) = F (x)− F (x ′)− dFx ′(x − x ′)

where its generator F : X → R is convex and dF ∈ ∂F a subgradient of F .
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Ω pθ(ω) dλ(ω). The parameters θ ∈ Θ
are natural parameters. The family F is regular if Θ is an open set.

Bregman Divergence

A (generalised) Bregman divergence on X is the function

DF (x , x) = F (x)− F (x ′)−
〈
∇F (x ′), x − x ′

〉
where its generator F : X → R is convex and differentiable.
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The Mystery

Exponential Families Bregman Divergences

regular regular

{pθ}

DF

Regularity is not such a strong constraint on EFs (= Θ is open)

Regularity for a BD DF requires its generator F to be strictly convex
and satisfy F (x) = log G ∗(x) where

G (θ) = log

∫
X

exp(〈x , θ〉) dν(x)

So what do all the other Bregman divergences correspond to?
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A Clue: Exponential Families via Maximum Entropy

Maximum Entropy

Define the Shannon entropy as the concave function

H(p) =

{
−
∫

Ω p(ω) log p(ω) dλ(ω) for p ∈ ∆Ω

−∞ otherwise

For a given mean value r ∈ Rd define the maximum entropy solution

pr = arg sup{H(p) : Ep [φ] = r}

Example [Grünwald & Dawid (2004)]:
Ω = {−1, 0, 1} with statistic φ(ω) = ω.

Each constraint Ep [φ] = r ∈ [−1, 1]
yields vertical slice of ∆Ω.

Choose p maximising H over slice.

40 P. D. GRÜNWALD AND A. P. DAWID

Fig. 2. Brier score, logarithmic score and zero–one loss: the probability simplex for
X = {−1,0,1}, with entropy contours and generalized exponential family (maximum en-
tropy distributions for the constraint E(X) = τ , τ ∈ [−1,1]). The set of distributions sat-
isfying E(X) = τ corresponds to a vertical line intersecting the base at τ ; this is displayed
for τ = −0.25 and τ = 0.75. The intersection of the bold curve and the vertical line corre-
sponding to τ represents the maximum entropy distribution for constraint E(X) = τ .

On varying β1 in (−∞,∞), we obtain the parametric curve (τ,h) displayed in
Figure 3; Figure 4 displays the correspondence between β1 and τ . It is readily
verified that dh/dτ = (dh/dβ1)/(dτ/dβ1) = β1, in accordance with (57).

In the terminology of Section 7.4, the above family {Pτ : τ ∈ (0,1)} con-
stitutes the natural exponential family associated with the logarithmic score
and the statistic T . It is also the usual exponential family for this problem.
However, the full exponential family further includes τ = ±1. The family
Γ1 consists of the single distribution P1 putting all its mass on the point 1.
Then trivially P1 is maximum entropy [with specific entropy h(1) = 0], and
p1 = (0,0,1), with loss vector L(·, p1) = (∞,∞,0), is unique Bayes against P1

and robust Bayes against Γ1. Clearly (59) fails in this case, but even though
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Exponential Families via Convex Duality

The dual of the maximum entropy problem gives an alternative definition:

Exponential Families via Convexity

For statistic φ : Ω→ Rd each pθ in the exp. family for φ can be written as

pθ = ∇(−H)∗(φ>θ)

and C (θ) = (−H∗)(φ>θ) where φ>θ ∈ W∗ denotes ω 7→ 〈φ(ω), θ〉.

Straight-forward to check that for any q : Ω→ R:

∇(−H∗)(q)ω =
exp(q(ω))∫

Ω exp (q(o)) dλ(o)
∈ ∆Ω

But! the Shannon entropy H is not so special: pθ are distributions because
∂F ∗(q) ⊂ dom(F ) ⊆ ∆Ω for any convex, l.s.c. F : ∆Ω → R

We will define an entropy to be a convex, l.s.c. function F : ∆Ω → R.
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Generalised Exponential Families

Generalised Exponential Family (GEF)

Let F : ∆Ω → R be an entropy and φ : Ω→ V ⊆ Rd be a statistic. Then

F := {pθ ∈ ∂F ∗(φ>θ)}θ∈Θ ⊆ ∆Ω

is an F -GEF with cumulant C (θ) := F ∗(φ>θ) and Θ := dom(C ).

Several properties of classical exponential families are easily recovered

Theorem 1: Subgradients Contain Means

A regular F -GEF with statistic φ has cumulant C s.t. Epθ [φ] ∈ ∂C (θ)
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Let F : ∆Ω → R be an entropy and φ : Ω→ V ⊆ Rd be a statistic. Then

F := {pθ ∈ ∂F ∗(φ>θ)}θ∈Θ ⊆ ∆Ω

is an F -GEF with cumulant C (θ) := F ∗(φ>θ) and Θ := dom(C ).

Several properties of classical exponential families are easily recovered

Theorem 3: Divergence Duality

For F -GEF F with statistic φ and cumulant C , for each pθ, pθ′ ∈ F

DF (pθ, pθ′) = DC (θ′, θ)

In the special case of classical EFs F = −H and DF (pθ, pθ′) = KL(pθ‖pθ′).
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The Bigger Picture

General Exponential Families

Exponential Families

Bregman Divergences

regular

regular

{pθ}

DF?
?

?

? ?

Theorem 2: Generalised Bijection

For each entropy F , the set of F -regular Bregman divergences is in
bijection with the set of regular F -GEFs.

Redefining regularity:

DG is F -regular if there is a statistic φ so that G is “F -MaxEnt”:
G (r) = infp{F (p) : Ep [φ] = r}
An F -GEF is regular if its cumulant C is itself an entropy
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The Bigger Picture

General Exponential Families

Exponential Families

Bregman Divergences

regular

regular

{pθ}

DF?
?

?

? ?

Theorem 2: Generalised Bijection (Legendre Refinement)

For each entropy F , the set of F -regular (Legendre) Bregman divergences
is in bijection with the set of regular (Legendre) F -GEFs.

Banerjee et al.’s bijection is recovered as a special case when F = −H.

Redefining regularity:

DG is F -regular if there is a statistic φ so that G is “F -MaxEnt”:
G (r) = infp{F (p) : Ep [φ] = r}
An F -GEF is regular if its cumulant C is itself an entropy
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Prediction Markets

Traders buy and sell contracts with payoff contingent on future outcomes
(e.g., Presidential elections, horse races, box office takings) and the prices
they are willing to trade at reveal their beliefs about the outcomes.

In a k-contract market with mutually exclusive outcomes Ω, the
payoff of contract i ∈ {1, . . . , k} on outcome ω ∈ Ω is φi (ω).

For the bundle r ∈ Rk of contracts the payoff is 〈r , φ(ω)〉
A market is complete if k ≥ |Ω| and φi linearly independent

An automated market maker (AMM) interacts with traders and adaptively
prices contract bundles to aggregate the market’s belief
Under some natural assumptions∗ AMMs must price bundle r as

Cost(r) = C (q + r)− C (q)

where C : Rk → R is a convex cost function and q is net contract position

∗Path independence, no arbitrage, information incorporation, expressiveness, instantaneous prices (Abernethy et al. (2012))
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Prediction Market Pricing Mechanisms

Thus, the net payoff for a trader to purchase bundle r in net position q is

〈r , φ(ω)〉︸ ︷︷ ︸
Payoff for r

−C (q + r)− C (q)︸ ︷︷ ︸
Cost to buy r

= V φ
ω (q + r)− V φ

ω (q)

where V φ
ω (q) = 〈q, φ(ω)〉 − C (q) is the trader “value potential”.

How does the potential V φ
ω for an incomplete market with cost function C

relate to Vω for the underlying complete market with cost function B?

Theorem 4 : Complete and Incomplete Markets

There is an bundle mapping f : Rk → RΩ s.t. Vω(f (q)) = V φ
ω (q) ∀ω, q

⇐⇒ C ∗ is B∗-regular for φ — i.e, C ∗(r) = infp{B∗(p) : Ep [φ] = r }

Interpretation: The incomplete AMM assigns “maximum entropy prices”
to underlying complete market based on trade in incomplete market.
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Conclusions

Several properties of (classical) exponential families can be obtained simply
and with much generality (i.e., for infinite outcomes) via convex duality:

Normalisation ∇(−H)∗(φ>θ) ∈ ∆Ω

Means as derivatives of the cumulant Ep [φ] = ∇C (θ)

Information geometry on natural parameters KL(pθ, pθ′) = DC (θ′, θ)

(Bijection between mean and natural parameterisations)

Moreover, the above properties all generalise to MaxEnt models (GEFs)
for alternative entropies (i.e., arbitrary convex, l.s.c. functions on ∆Ω).

Emphasising the convex foundations of these probabilistic families
highlights connections to Bregman divergences and prediction markets.

Thanks!
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