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The Many Faces of Elicitation

Applications to algorithmic economics, machine
learning, statistics, finance, engineering, ...

Formalism of elicitation used for model selection,
estimation, empirical risk minimization (ERM),
generalized regression, forecast evaluation / comparison
/ ranking, outlier detection, ...



Outline of Part II

Goal: survey property elicitation (asking for statistics
rather than full distributions), show how it applies to
machine learning in particular

1 Fundamentals of property elicitation
break

2 “Elicitation complexity” and indirect elicitation
3 Machine learning applications and open problems



II.1. Property Elicitation



Information Overload

How much rain do you believe will fall today?

Rainfall

A lot of bits to communicate. . .



Information Overload

How much rain do you expect will fall today?

Rainfall

. . . if we just need a single number.



Example properties

mean, variance, median, mode, moments of the
distribution
modal mass: what is the probability of the most
likely outcome?
confidence interval: an , b such that w.prob 0.9,
 ≤ X ≤ b.
p-norm of the distribution
. . .



Research program

Loss L(ŷ, y) Statistic 

Squared (ŷ − y)2 −→ mean
Absolute |ŷ − y| −→ median
Pinball (ŷ − y)(1ŷ≥y − α) −→ α-quantile

|1ŷ≥y − τ|(ŷ − y)2 −→ τ-expectile

Which statistics (properties) can we compute by
minimizing a loss (maximizing a score) over data?
What are all losses minimized by the same statistic?
How to construct losses for a statistic with good
properties?



Outline for II.1

1 Definitions and recap of proper scoring rule result

2 Basic geometry and tools for impossibility

3 Survey of known characterizations



Definitions

A property is a function  : ΔY → R.
A scoring rule S : R× Y → R elicits  if

(p) = rgmx
r∈R

E
p
S(r, Y).

“an agent with belief p maximizes expected score by
reporting r = (p).”

 is directly elicitable if there exists S eliciting it.



Part I: The Simplest Property

Recall/reinterpret: a proper scoring rule elicits the
property (p) = p.
We showed: any proper scoring rule can be constructed
from a convex G: How?



Part I: The Simplest Property

Recall/reinterpret: a proper scoring rule elicits the
property (p) = p.
We showed: any proper scoring rule can be constructed
from a convex G:

S(p,0)

G(q) = S(q;q)

0 1q p

G

S(p;q)
G(p) = S(p;p)



Theorem (Scoring Rule Characterization)

A scoring rule S is (strictly) proper if and only if there
exists a (strictly) convex G with

S(p, y) = G(p) + dGp · (1y − p).

S(p,0)

G(q) = S(q;q)

0 1q p

G

S(p;q)
G(p) = S(p;p)



Recall: level sets

The level set of r is {p : (p) = r}.

“the set of distributions all mapping to r”

1cloud 1sun

1rain

Here: We drew the simplex Δ{clouds,sun,rain}
(p) = “most likely outcome” (mode).



A three-outcome example

Level set of the mean: all p with equal expectation
Here: Y ∈ {−1,0,1}.
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Each line is a level set (e.g. distributions with mean 0).



Necessary geometry for elicitability

Theorem
If  is elicitable, then its level sets are convex.

Proof: Suppose (p) = (p′) = r. Let q = λp + (1 − λ)p′.

Then ∀r′,

E
p
S(r, Y) > E

p
S(r′, Y) and

E
p′
S(r, Y) > E

p′
S(r′, Y)

=⇒ E
q
S(r, Y) > E

q
S(r′, Y).



Necessary geometry for elicitability

Theorem
If  is elicitable, then its level sets are convex.

Proof by picture: Consider G(p) = expected utility.
If () = (b), they must lie on the same hyperplane.

a b



Necessary geometry for elicitability

Theorem
If  is elicitable, then its level sets are convex.

Proof by picture: Consider G(p) = expected utility.
If () = (b), they must lie on the same hyperplane.
But G is convex; must be flat between  and b.

a b



Obtaining Negative Results

Theorem
Variance is not directly elicitable.

Proof:
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Each curve is a level set – not convex sets!



Survey of what we know

Cases that have been settled:
(p) ∈ R, finite “multiple-choice”

(p) = Ep ϕ(Y) linear properties

(p) ∈ R scalar/one-dimensional

Others and general principles



Recall: finite properties

Finite properties are elicitable ⇐⇒ they are power
diagrams; can construct scoring rule from diagram.



Linear properties

Theorem
Suppose (p) = Ep ϕ(Y). Then  is elicitable.

And:  is elicited by and only by S of the form

S(r, y) = G(y) + dG(y) · (ϕ(y) − r) + Cy

for some convex G.

Connections to:

exponential families (ϕ is a sufficient statistic)

prediction markets (ϕ ≡ the securities)

[Frongillo and Kash 2015]



One-dimensional properties

Identification function:  : R→ unit vectors in RY such
that, for all p, (p) = r ⇐⇒ p · (r) = 0.

Theorem
A continuous property  : ΔY → R is elicitable if and
only if it has an identification function .
Furthermore, any scoring rule eliciting it has the form

S(r, y) = Cy +
∫ r

r0

λ(t)(t)ydt

for some positive λ(t).

[Lambert et. al 2008]



Proof idea

1 Consider the constraint (p) = r. Can show: this is a
linear constraint, and since it’s one constraint and
|Y | − 1 degrees of freedom, solutions lie on a |Y | − 2 -
dimensional subspace.
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No! OK!



Proof idea

1 Consider the constraint (p) = r. Can show: this is a
linear constraint, i.e. solutions lie on an |Y | − 1 -
dimensional subspace.

2 These level sets are ordered.
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

(p) small −→ (p) large
(direction given by , the normal vector!)



Proof idea

1 Consider the constraint (p) = r. Can show: this is a
linear constraint, i.e. solutions lie on an |Y | − 1 -
dimensional subspace.

2 These level sets are ordered.

3 Can integrate along this direction with any given
weighting λ. (“gold argument” of Savage 1971).

S(r, y) = Cy +
∫ r

r0

λ(t)(t)ydt



The “gold argument”

Ask an agent to report her true value of gold in
dollars/ounce, r.

Sell her a piece of gold at price 0/ounce. Another at
price 1/ounce, . . . , up to r/ounce.

Truthful! She is happy with each transaction; reporting
lower leaves money on the table and higher gives some
undesirable transactions.

And: The pieces of gold could be any size! Could sell
λ(t) ounces of gold at each price t; still truthful.



Recap: state of knowledge

Known:
(p) ∈ R, finite “multiple-choice”

(p) = Ep ϕ(Y) linear properties

(p) ∈ R scalar/one-dimensional

(p) = Ep ϕ(Y)/ Eψ(Y) ratio of expectations

Additionally:
Tools for proving non-elicitability, e.g. convex level
sets
General principles (expected utility G must be
convex, etc.)

Not known: general multidimensional properties.



II.2. Elicitation Complexity



Back to Variance

Vr not elicitable with only one R-valued report
But what if you are allowed more?

One idea: (p) =
�

Ep[Y], Ep[Y2]
�

∈ R2

Then Vr(p) = Ep[Y2] − Ep[Y]2 = (p)2 −
�

(p)1
�2

Idea: ec() := min # of reports before you know 
elicitation complexity of 

Thus, ec(Vr) = 2



Indirect Elicitation

belief p

or

(r1, r2, …,rk)
“link” f

Γ(p)

elicitation complexity

Γ’

dataset

S



Competing Definitions

 is k-elicitable (i.e. ec() ≤ k) if...
1 There exist k elicitable properties ′


: ΔY → R and

link ƒ such that  = ƒ ◦ (′1, . . . ,
′
k
). [Lambert et al. 2008]

2 There exists elicitable ′ : ΔY → Rk such that  = ′


[Fissler & Ziegel 2015]

3 There exists elicitable ′ : ΔY → Rk and link ƒ such
that  = ƒ ◦ ′ [F & Kash 2015]

Separating examples:
(p) = Vr(p) ec = 1 2 2 2 3 2
(p) = Ep[Y]2 ec = 1 1 2 2 3 1

(p) =mxy p(y) ec = 1 |Y | − 1 2 2 3 2



The “Right” Definition

Problem: bijections from Rn to R!
Solution: impose further structure.
I := {identifiable props}. ∃  s.t. (p) = r ⇐⇒ p · (r) = 0.

ecI() =min{k : exists elicitable ′ : ΔY → Rk in I
and link ƒ such that  = ƒ ◦ ′ }

“First elicit ′, then apply ƒ to get ”

Note: could choose any class C of “nice” properties.
ecC() =min{k : exists elicitable ′ : ΔY → Rk in C

and link ƒ such that  = ƒ ◦ ′ }



Basics of Complexity

Every continuous  has ecI() ≤ countable ∞

“Full rank” linear  : ΔY → Rk has ecI() = k

 = k distinct quantiles has ecI() = k

ecI({1,2}) ≤ ecI(1) + ecI(2)



A Cool Trick: Modal Mass

(p) =mxy p(y)

Let S(r, y) = 2r11{r2 = y} − r21 .

Then Ep S(r, Y) = 2r1p(r2) − r21 .

For any r1 > 0, best r2 is rgmxy p(y) =: mode(p).

=⇒ r1 = p(r2) = p(rgmxy p(y)) =mxy p(y) = (p).

Hence, S elicits (mode(p),(p)) =⇒ ec() = 2.



An Upper Bound

Let W(p) =mx
∈Rk

Ep(, Y) where  : Rk × Y → R

In general, W is not elicitable...
Let ∗(p) = rgmx∈Rk Ep(, Y)

Note: ∗ is a property elicited by !

Theorem [F & Kash 2015]

If ∗ ∈ I, then ecI(W) ≤ k + 1

Proof:

S((r, ), y) = G(r) + dGr · ((, y) − r)

elicits (W,∗) as long as dGr > 0 everywhere.
So G(r) = r2 works on R+ , like prev slide.



A Lower Bound

Theorem [F & Kash 2015]

If ecI(∗) = k, then ecI(W) ≥ k + 1

So ecI(W) = k + 1 for all such W! Except when it’s k...



Back to Modal Mass

(p) =mx Ep 1{ = y}

Take (, y) = 1{ = y}
elicits the mode!

(p) =W(p), so ecI() = 2

More generally,
β(p) =mx Ep 1|−Y |<β



Aside: risk measures



Banks and Risk

Sometimes banks invest your money...
...and take on risk

What could possibly
go wrong?



Quantifying & Regulating Risk

US law: banks can only take on so much risk

How to quantify? Financial risk measures.

Let p be distribution of believed financial losses Y
Risk measure is some ρ : P → R

Introduced by [Artzner et al. 1998] Cited by 5600+
Various kinds: convex, coherent, distortion, spectral, ...



Which Risk Measure?

Most common: “value-at-risk” VRα, the α-quantile of p
I.e. the amount y giving an α probability of losing ≥ y

As of 2005: US banks required to calculate and report their
VR0.01 estimates, over a 10 day horizon

New measure w/ better properties: “expected shortfall”
ESα(p) =min∈R

¦

Ep
�

1
α ( − Y)1≥Y − 

�©

Only problem: not elicitable [Gneiting 2011]
Needed for estimation, evaluation, “back-testing”, ...



Rescuing ES

Cannot elicit ES, but it has low elicitation complexity

ec(ES) ≤ 2 [Fissler & Ziegel 2015]
more generally: spectral risk measures
“Superquantile regression” of [Rockafellar et al. 2014]

Special case of bounds we just gave:
dim(A) = dim(R) = 1 =⇒ ecI(ES) = 2

Punch line: elicitation complexity can save lives banks!
Other risk measures?



Recap, Open Questions

Defined elicitation complexity: min # of
reports/parameters until you have enough info to
compute 
Some tight bounds and examples

Many open questions. Complexity of:
The mode when Y = R?? We think ecI(mode) =∞

Risk measures: distortion, spectral w/ cts support, ...
Any non-elicitable statistic!
ecC for other C (stay tuned)



II.3. Machine Learning



ML Overview

Loss functions L(r, y) used all over ML...

Unsurprisingly, property elicitation is a useful way to
view some ML techniques/results.

1 Direct elicitation and regression
2 Indirect elicitation and classification

Note: many more intersections that we won’t cover!



Empirical Risk Minimization

(for regression, or more generally)

h∗ = rgmin
h∈H

∑

(,y)∈data

L( h(), y ) +Reg(h)

Note: regularization won’t really matter...



h∗ = rgmin
h∈H

∑

(,y)∈data

L( h(), y )

The Loss Matters

(h() − y)2

|h() − y|



Elicitation

Property  : ΔY → R (“statistic”)

L elicits  when

(p) = rgmin
r∈R

E
p
L(r, Y)

. . . for p = the empirical distribution p̂ . . .

= rgmin
r∈R

∑

y∈data set

L(r, y)

Mean: Ep[Y] = rgmin
r∈R

E
p
(r − Y)2

Median: med(p) = rgmin
r∈R

E
p
|r − Y |



mean
median

h∗ = rgmin
h∈H

∑

(,y)∈data

L( h(), y )

Elicitation is Key

(h() − y)2

|h() − y|



Theorem
If the function h∗ :  7→ (Y |X = ) is in H, then:

L elicits  =⇒ ERML(X, Y) = h∗

I.e., if your class H has a model h∗ hitting the
conditional statistic  (mean,median,etc) for every ,
then ERM for any loss eliciting  will give h∗.

Takeaway:

“If H is expressive enough, elicitation tells all”



II.3.2. Indirect elicitation and
classification



The Story

Optimal classification is hard
Many ML algorithms are like convex relaxations
Still need asymptotic/statistical “consistency”
Can view consistency as indirect elicitation



Classification

Input: Feature vectors  ∈ Rn, labels y ∈ Y
Input: Here Y is a finite set, for now {+,−}.

Output: Classifier h : X → Y from some class H
Output: E.g. H = linear classifiers, h() = sgn( ·+ b).



Direct Solution?

Natural objective: find the best model in H
(fewest classification errors)

Corresponds to ERM with 0-1 loss L(r, y) = 1{r 6= y}.

h∗ = rgmin
h∈H

∑

(,y)∈data

1{h() 6= y}

Problem: NP-hard! [Arora et al. 1997] (Also overfits...)
Solution: approximate 0-1 loss with a convex loss

logistic regression, SVMs, boosting, ...



Support Vector Machines (SVM)

Idea: find hyperplane with max margin, allowing errors



SVM Optimization

[HD]

Can write as ERM! For hinge loss L(r, y) =mx(0,1− ry):

(∗, b∗) = rgmin
∈Rn,b∈R

∑

(,y)∈data

mx(0,1−y(·+b)) + 1
2C‖‖

2



Logistic Regression

Idea: fit a model h to the log-odds ratio log Pr[Y=+|X=]Pr[Y=−|X=] .

[FH]

Then prediction y = sgn(h()) is the most likely label.

ERM for logistic loss L(r, y) = log(1 + exp(−ry)).

(∗, b∗) = rgmin
∈Rn,b∈R

∑

(,y)∈data

log
�

1 + exp(−y( ·  + b))
�



AdaBoost

Idea: focus more on what you got wrong, and iterate

[KG]

Each step, use exp weights to update data distribution
Then combine: h() = sgn(α1h1() + α2h2() + α3h3())

Suprisingly, ERM for exponential loss L(r, y) = exp(−ry).
Each iteration is a coordinate descent step



Margin Losses, Calibrated

All these are margin losses: L(r, y) = ϕ(ry).

[KW]

Theorem (Bartlett, Jordan, McAuliffe 2006)

Let ϕ be convex. Then L is classification-calibrated if
and only if ϕ is differentiable at 0 and ϕ′(0) < 0.



Calibrated → Indirect Elicitation

Def. L is classification-calibrated if

sgn(′(p)) = + ⇐⇒ mode(p) = +
min
r>0

E
p
L(r, Y) >min

r<0
E
p
L(r, Y) ⇐⇒ p(+) > p(−)

Indirect elicitation:  = ƒ ◦ ′
What are , ƒ here?  = mode, ƒ = sgn

Alternate Def. L is classification-calibrated if it
indirectly elicits the mode via link ƒ = sgn



Indirect Elicitation in ML

Recall: ecC() =min{k : exists elicitable ′ in C
and link ƒ such that  = ƒ ◦ ′ }

General program: C = properties with “nice” losses
Approximate NP-hard objective with a nicer one
Elicitation keeps “calibration”

Here: C = properties elicited by convex margin losses.

Next: C = linear properties.



Another Application: Rankings

Given L : {possible rankings} × {relevant docs}→ R

Still hard to optimize for  := rgminEL directly...

Look for surrogate: want  = ƒ ◦ ′ for ′ linear.
How big does ′ need to be? I.e. what is eclinear()?

Theorem (Agarwal, Agarwal 2015)

eclinear() = ffdim(L). Think affdim = rank.

Proof sketch (upper bound):

Write L = BA + c so that L(r, y) = (BA)ry + c.

Let ′(p) = Ep A·,Y = Ap, ƒ () = rgminr(B)r.

Then (ƒ ◦ ′)(p) = rgminr(BAp)r = rgminr Ep L(r, Y) = .



Takeaway

1 In clasification, need to approximate a hard discrete
problem, often with a continuous convex objective.

2 Elicitation keeps the limiting behavior the same.

3 Lots of open questions.



(I + II). Recap



Main questions:
What properties can be elicited?
or, how many reports does it take to elicit them?
How to characterize all loss functions (scoring rules)
eliciting a given property?
How to construct loss functions in a principled way?



Known characterizations:
proper scoring rules

S(p,0)

G(q) = S(q;q)

0 1q p

G

S(p;q)
G(p) = S(p;p)



Known characterizations:
linear properties, finite properties, continuous
1-dimensional properties



Known principles:
convexity, scoring rules as subgradients, . . .
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Applications outside elicitation:

Mechanism design: characterizing and constructing
truthful mechanisms

Machine learning: characterizing and constructing
useful loss functions

[KW]



Open problems and research
directions:

Characterizations and constructions for more
properties
Mechanism-design applications with complex type
spaces
Elicitation complexity with efficiently-optimizable
surrogate loss functions (ML motivation)
More ML: general program to select (surrogate)
losses in principled way using elicitation
. . .



Uiteinde.

Thanks for coming!
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