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Information Elicitation

Contracts to exchange information for money/goods.
Scoring rules, peer prediction, prediction markets,
mechanism design, ...



A Challenge

Want to know chance of rain tomorrow.

Approach meteorologist Bob, need a contract:
If he says p: paid S(p,1) if rain & S(p,0) if snow.

How should you choose S?
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S(p, y) = 2py − p2



Questions Raised

Generalization to > 2 outcomes? Yep.

Are there other truthful functions?
Here’s one: S(p, y) = logp(y)

Statistics or properties?
Avg inches of rain? Variance?

Multiple-choice questions?
A hypothesis about future data points?

Also: how does all this relate to mechanism design?



Goals for you

Part I: proper scoring rules + mechanism design
Role of convexity
MD applications
Set up Part II

Part II: property elicitation + machine learning
Role of convexity
Known results / frontiers
ML applications



Outline

Part I
1 Convex analysis primer
2 Scoring rule characterization
3 Common AGT applications

break

4 Mechanism design and general truthfulness
5 Truthful multiple-choice quizes

Part II
1 Eliciting properties: advanced
2 Connections to machine learning



Historical Aside

1931: de Finetti
“Probability does not exist”
Subjective probability as defined by fair price of
a gamble, like a prediction market.
I.e., define probability via “scoring rule”

1660: Pascal and Fermat
Foundation of probability via fair splitting of
tournament prizes.

Takeaway: link between scoring rules and subjective
probability is as old as probability itself.



I.1. Convex Analysis Primer



Convex Set

Def. S ⊆ Rn is convex if, for any , b ∈ S, the line
segment between  and b lies in S.

S’
S

Not convex Convex



Convex Function

Def. G : Rn → R is convex if its epigraph is convex

equivalently: if for all , y ∈ Rn and all α ∈ [0,1]
αG() + (1 − α)G(y) ≥ G(α + (1 − α)y)



Subgradient

Def. A vector dG ∈ Rn is a subgradient to G at  if

∀z ∈ Rn G(z) ≥ G() + dG · (z − )



Bregman Divergence

Def. The Bregman divergence of a convex G is

DG(, z) = G() −
�

G(z) + dGz · ( − z)
�

“difference between G() and its linear approx from z”.

DG(, z)G


z

DG(, z) ≥ 0 by definition of subgradient (or by picture).



Pointwise Supremum

Prop. A pointwise supremum of convex functions is
convex



The simplex

ΔY = set of probability distributions on Y.

1

1

1

1

 1

Note: will often draw the line or triangle; keep in mind
that really they live in 2d and 3d.



I.2. Scoring Rule
Characterization



Scoring rule foundations

Goal 1: Understand geometry of proper scoring rules.

Goal 2: Characterize the full set of proper scoring rules.

Goal 3: Develop tools for constructing them.



Scoring Rules

Outcome space Y e.g. weather

Private belief p ∈ P set of distributions

Scoring rule S : P × Y → R
S(p, y) = “score for report p when outcome is y”

Let S(p;q) := E
q
[S(p, Y)]

“expected score for report p with belief q”



Properness

S is proper if for all p, q,

S(q;q) ≥ S(p;q).

S is strictly proper if for all p 6= q,

S(q;q) > S(p;q).

Why consider strict properness?
Otherwise, use rule S(p, y) = 1.
Can allow for costs of reporting: S(·, ·) is (strictly)
proper ⇐⇒ S(·, ·) + b is.



Geometry of scoring rules

Question: What does S(p;q) look like as a function of q?
Linear! S(p;q) = S(p, ·) · q.
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S(0.2, rain)

S(0.2, no rain)



Geometry of scoring rules

Question: What does S(p;q) look like as a function of q?
Linear! S(p;q) = S(p, ·) · q.
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Geometry continued

What can we say about the expected truthful score
function

G(q) = S(q;q)?

Properness: G(q) = spp S(p;q).

G is a pointwise maximum of linear functions
=⇒ G is convex!



Picturing G
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Picturing G
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How does S relate to G?

S(p; ·) is:
a linear function,
equal to G at p,
everywhere below G.

In other words, a linear approximation to G at p.

Hence, S(p; ·) can be written

S(p;q) = G(p) + dGp · (q − p).

where dGp is a subgradient of G at p.



S is a linear approximation to G

S(p,0)

G(q) = S(q;q)

0 1q p

G

S(p;q)
G(p) = S(p;p)



Theorem (Scoring Rule Characterization)

A scoring rule S is (strictly) proper if and only if there
exists a (strictly) convex G with

S(p, y) = G(p) + dGp · (1y − p).

1y is the distribution putting probability 1 on y.
Note S(p;1y) = S(p, y).
[McCarthy 1956, Savage 1971, Gneiting and Raftery 2007]



Proof

(→) done! (check: strictness)

(←) Given G(p), let S(p, y) = G(p) + dGp ·
�

1y − p
�

.

Note that S(p;q) = G(p) + dGp · (q − p).

Proper:

S(q;q) − S(p;q) = G(q) −
�

G(p) + dGp · (p − q)
�

= DG(q, p)
≥ 0

by the nonnegativity property of Bregman divergence.



Proof by picture

DG(q, p) = “with belief q, difference in expected utility
between truthfulness and misreporting p”

DG(q, p)G

q
p



Picturing Strictness

What’s happening to this scoring rule between  and b?

a b

All reports in this region map to the same scores!
→ Agent is indifferent between any reports in [, b]
→ DG(p, q) = 0 for all p, q ∈ [, b].



Discussion

Previous goals for scoring rules:

1) Geometry: S(p; ·) is a linear approximation to G(p).

2) Characterize full set: exact correspondence with
set of convex functions.

3) Tools for constructing: build a convex function
with the desired shape.

e.g. incentive not to deviate is Bregman divergence.
linear segments represent indifference regions
(useful later).



I.3. Scoring Rule Applications in
AGT



AGT applications

1. Peer prediction [Miller, Resnick, Zeckhauser
2005].

Suppose two agents receive private, correlated signals
s, sj from a known prior distribution.
How can we incentivize both agents to truthfully report
without knowing any ground truth?

Ask  for signal, compute posterior probability
distribution q over signals of j. Pay S(p, sj).
Meanwhile for j, pay S(pj, s).



AGT applications continued

2. Complexity theory [Azar, Micali 2012].

What is the complexity of solving problems given access
to an infinitely powerful, but rational, self-interested
oracle?

e.g., #P problems can be solved in one round of
interaction (how?).

Hint: a #P-complete problem is “what fraction of inputs
to this circuit produce output 1?”



AGT applications continued

3. Prediction markets [Hanson 2003, . . . ].

How to generalize a proper scoring rule to both elicit
and aggregate beliefs of multiple agents?

1 Market designer chooses initial prediction p(0).
2 Agent 1 arrives, updates market prediction to p(1).

...
Agent  arrives, updates market prediction to p().

...
3 Outcome y is observed.
4 Each agent  is paid S(p(), y) − S(p(−1), y).



AGT applications continued

4. Mechanism design.

Many opportunities, esp. involving both valuations and
beliefs.

Example: Bidders in an ad auction know their own
click-through rates.
Truthfully elicit CTR (prediction of click) and valuation,
run an auction to assign ad slots.



Outline

Part I
1 Convex analysis primer
2 Scoring rule characterization
3 Common AGT applications

break ⇐
4 Mechanism design and general truthfulness ⇐
5 Truthful multiple-choice quizes

Part II
1 Eliciting properties: advanced
2 Connections to machine learning



I.4. Mechanism Design and
General Truthfulness



Mechanism Design

Outcome space Y possible allocations

Private type t : Y → R ∈ T valuation ftn

Allocation rule ƒ : T → ΔY

Payment rule π : T → R

Let: U(t′, t) = E
y∼ƒ (t′)

�

t(y)
�

− π(t′)

Truthfulness condition

∀t, t′ ∈ T U(t′, t) ≤ U(t, t)



Scoring Rule ≈ Mechanism?

p ∈ ΔY Private type t ∈ T ⊆ RY

S(p′, p)≤

S(p, p)
Truthfulness

U(t′, t)≤

U(t, t)

Ey∼p
�

S(p′, y)
�

Utility? Ey∼ƒ (t′)
�

t(y)
�

− π

= =

¬

S(p′, ·), p
¶

Affine!
¬

ƒ (t′), t
¶

− π



Generalized Model: Affine Score

1 Type space T ⊆ vector space

2 Utility/score S(t′, t) is affine in t

3 Truthfulness: ∀t, t′ ∈ T S(t′, t) ≤ S(t, t)

Characterization Theorem [F & Kash 2014]

Char. affine scores in terms of convexity / subgradients.

Scoring rules: recovers characterization
Mechanism design: implementability, revenue equiv

subgradient = allocation

Combinations of the two!



Implementability Conditions

Implementable

Subgradient

Thm 1

WMON
+ PI

Thm 3

LWMON + VF

Cor 6

WL Subgradient

Thm 4

CMON
Thm 2



Other Application Domains

Decision scoring rules
Othman & Sandholm 2010, Chen & Kash 2011

Proper losses for partial labels
Cid-Suero 2012

Responsive lotteries
Feige & Tennenholtz 2010

Mechanisms with partial allocation
Cai, Mahdian, Mehta, Waggoner 2013

Crowdsourcing mechanisms for data labeling
Shah and Zhou 2015



Ex: Decision scoring rules

Principal must choose some action  ∈ {1, . . . ,m}
After choosing the action, she will face some
outcome y ∈ Y
Wants to know the conditional distributions Pr(y|)
Decides to ask an agent...

Agent reports values P,y = Pr(y|) for all , y
Principal then chooses action distribution dP ∈ Δm
Agent paid S(P, , y) upon action  and outcome y



Ex: Decision scoring rules

Expected score of report P′ is

E
∼dP′

E
y∼P,∗

S(r, , y) =









P1,∗

type

P2,∗
...

Pm,∗









·









dP′(1) S(P′,1, ·)
dP′(2) S(P′,2, ·)

...
dP′(m) S(P′,m, ·)









Affine (here linear) in type!
Recover previous characterization.
Same type for crowdsourcing example.



Duality

Back to mechanisms and scoring rules...

Mechanism: ƒ : RY → ΔY
Scoring rule: S : ΔY → RY

Swap type and allocation!

Via convex conjugate duality, connection goes deeper:

Theorem
A mechanism’s consumer surplus function is conjugate
to its price function, which is the G of a scoring rule.



  

scoring rules

affine scores

menu auctions

direct-revelation
mechanisms

prediction
markets

financial risk measures

(generalized) exponential families

DUALITY



I.5. Eliciting Answers to
Multiple-Choice Questions

AKA “finite properties”
Part II (after lunch): more general properties



Asking a Multiple Choice Question

Tomorrow, will it:
Rain?
Not rain, but be sunny?
Not rain, but be cloudy?

Question: What is “truthfulness”?

Answer: Explicitly specify the truthful answer for each
belief.



Truthfulness example

Let  : Δ{rain,sun,cloud} → {rain,sun,cloud}.
(p) = the “truthful” report for belief p.

Probability simplex on 3 outcomes: C = set of
distributions that should report “clouds”, etc

1rain 1sun

1cloud

R S

C

“If you believe __ is most likely, report __.”



Some Definitions

outcome space Y same as before

report space R a finite set

property  : ΔY → R
(generalized) scoring rule S : R× Y → R
S(r, y) = “score for report r when outcome is y”

S elicits  if
(p) = rgmx

r∈R
E
p
S(r, Y).

If there exists such an S, then  is elicitable.

Here Y is distributed according to p.



Key Concept: Level Sets

A level set is a set of distributions that have the same
“right answer”, i.e. the level set of r is {p : (p) = r}.

Observe: For elicitation, suffices to consider level sets.
(The label of each level set is irrelevant.)

1rain 1sun

1cloud

R S

C



Example properties

Which do you think are elicitable?



Theorem (Finite prop. characterization)

 is elicitable ⇐⇒  is a power diagram.

Power diagram = weighted Voronoi diagram.

[[Lambert et al. 2008], [F & Kash 2014]]



Key Intuition

For incentives, always think about expected utility as
a function of type (here, belief p).

The expected score for truthfully reporting given belief p
is some convex function:

G(p) = E
p
S ((p), Y) .

Note: If we constructed a proper scoring rule S from G,
agents would be indifferent between beliefs in the same
level set.
=⇒ G is flat (matches a hyperplane) on the level set.



Picture for binary outcome

When Y = {0,1}:

G

Can elicit any finite collection of intervals!



Proof by picture(s)

Claim:  is elicitable ⇐⇒ it is a power diagram:

[Image credit: Pooran Memari]



Revisiting property examples

Can elicit all but top right. Try to see this by picturing
the G constructed from hyperplanes for each picture.



Example Applications

Mechanism design: Saks, Yu (2005) showed that an
allocation rule over a finite set of allocations is truthful
if it satisfies “weak monotonicity”.

Simplified proof using finite property characterization.

Peer prediction: Characterizations and constructions
of minimal peer prediction mechanisms by viewing them
as finite properties. [[F & Witkowski]]



End of Part I.
Don’t miss the Nobel Lecture!
Come back for Part II @ 13:00!


