Past and Current Projects

Achieving human expertise without training

Acquiring perceptual expertise is slow and effortful. However, untrained novices can accurately make difficult classification decisions (e.g., skin-lesion diagnosis) by reformulating the task as similarity judgment. Given a query image and a set of reference images, individuals are asked to select the best matching reference. When references are suitably chosen, the procedure yields an implicit classification of the query image. To optimize reference selection, we develop and evaluate a predictive model of similarity-based choice. The model builds on existing psychological literature and accommodates stochastic, dynamic shifts of attention among visual feature dimensions. We perform a series of human experiments with two stimulus types (rectangles, faces) and nine classification tasks to validate the model and to demonstrate the model's potential to boost performance. Our system achieves high accuracy for participants who are naive as to the classification task, even when the classification task switches from trial to trial.

probe and references

Students

Brett Roads (Computer Science, Colorado)