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a b s t r a c t

Many cortical disorders are associated with memory problems. In schizophrenia, verbal

memory deficits are a hallmark feature. However, the exact nature of this deficit remains

elusive. Modeling aspects of language features used in memory recall have the potential to

provide means for measuring these verbal processes. We employ computational language

approaches to assess time-varying semantic and sequential properties of prose recall at

various retrieval intervals (immediate, 30min and 24 h later) in patients with schizophrenia,

unaffected siblings and healthy unrelated control participants. First, we model the recall

data to quantify the degradation of performance with increasing retrieval interval and the

effect of diagnosis (i.e., group membership) on performance. Next we model the human

scoring of recall performance using an n-gram language sequence technique, and then with

a semantic feature based on Latent Semantic Analysis. These models show that automated

analyses of the recalls can produce scores that accurately mimic human scoring. The final

analysis addresses the validity of this approach by ascertaining the ability to predict group

membership frommodels built on the two classes of language features. Taken individually,

the semantic feature is most predictive, while a model combining the features improves

accuracy of group membership prediction slightly above the semantic feature alone as well

as over the human rating approach. We discuss the implications for cognitive neuroscience

of such a computational approach in exploring the mechanisms of prose recall.

ª 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Humanmemory is to a large extent genetically controlled, and
thus it is considered to be a heritable, polygenic trait. In

schizophrenia impaired cognitive function is a core feature of
the illness (Elvevåg & Goldberg, 2000) and some of the most
prominent deficits are in verbal episodic memory (Aleman,
Hijman, de Haan, & Kahn, 1999; Barch, 2005; Cirillo & Seidman,
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2003; Kalkstein, Hurford, & Gur, 2010). The disproportionate

impairment in verbal episodic memory relative to visual
episodicmemorymay suggest that a useful endophenotype is a
deficit inverbalprocessing, rather thanmemory impairmentper
se (Skelley, Goldberg, Egan, Weinberger, & Gold, 2008). In this
paper, we use recalls from a widely used prose recall test to
explore the usefulness of an automated scoring methodology
that has the potential to provide equivalent or more sensitive
scoring metrics to that of human raters, as well as a more
detailed characterization of recall performance over time.1

Measures of verbal episodic memory typically include the
learning and subsequent recall of word lists or prose passages

(stories), and one of the most comprehensive, popular and
enduring scales is the Wechsler Memory Scale (WMS;
Wechsler, 1945, 1987, 1997, 2009), currently in its 69th year and
fourth revision. With minor modifications over time, the
LogicalMemory subtest has remained a core component of the
battery, and is one of the most widely-usedmeasures of prose
recall in the research literature (Rabin, Barr, & Burton, 2005).

The Logical Memory task requires participants to repeat
back two orally-presented short stories, both immediately
after presentation, and following a 30 min delay.2 The scoring
criteria, or rubric, generally specifies that one point is awarded

for each key word or narrowly defined concept correctly
recalled, with a maximum of 25 points per story, summed for
a total raw score out of 50. A measure of forgetting [“percent
retained” (Russell, 1988) or “saving score”3 (Munro Cullum,
Butters, Tröster, & Salmon, 1990)] can also be calculated as
the total number of items recalled following the delay interval,
divided by the total number recalled immediately after initial
presentation. Prose recall tasks such as Logical Memory likely
rely heavily upon multiple cognitive and memory systems,
including language comprehension, conceptual organization,
schema formation, working memory, and episodic and se-

mantic memory (Baddeley & Wilson, 2002; Dunn, Almeida,
Barclay, Waterreus, & Flicker, 2002). Since performance on
this task relies upon hippocampal memory systems (Ho et al.,
2006; Lim et al., 2006; O’Driscoll et al., 2001), it is a sensitive
assay of verbal episodic memory dysfunction in a variety of
neuropsychiatric conditions, including schizophrenia and
Alzheimer’s disease (Egan et al., 2003; Matsui et al., 2007;
Vassos et al., 2010). Importantly, it demonstrates a genetic
load effect in schizophrenia, with unaffected siblings typically
performing intermediary between patients with schizo-
phrenia and healthy controls (Goldberg et al., 1995; Skelley

et al., 2008; Toulopoulou, Rabe-Hesketh, King, Murray, &

Morris, 2003). While Logical Memory has proven a useful
clinical measure of verbal episodic memory, there are several
limitations. Early versions (WMS, Wechsler, 1945; Wechsler
Memory Scale-Revised (WMS-R), Wechsler, 1987) relied
heavily upon the recall of salient words from the story, known
as “story units”, yet prose recall is rarely verbatim (e.g.,
Kintsch, 1998). Rather, it is filled with approximate renderings
of the passage that may include substitutions, omissions,
additions and elaborations, and shifts in the story’s sequence
(Lezak, Howieson, & Loring, 2004). These common deviations
in recall are not adequately captured by the relatively

simplistic “story units” measurement. More recent revisions
of the test (e.g., WMS-III, Wechsler, 1997) have introduced
“thematic” scoring units in addition to story units, wherein
larger chunks of discourse pertaining to a theme are sought
rather than the verbatim recall of select key words, presum-
ably to better capture gist recollection. However, Dunn et al.
(2002) contend this measure is merely a subset of story units
and adds no additional information. The approach further
relies on the subjective judgment by the scorer about the de-
gree of match of recall to themes. For these reasons, in this
study only the story unit rubric was used.

A few studies illustrate how departing from the constraints
of standard administration and scoring can provide compli-
mentary information on verbal episodicmemory function. For
example, when Skelley et al. (2008) examined episodic mem-
ory function in patients with schizophrenia, their unaffected
siblings and healthy unrelated controls, they utilized the
“savings score” calculation on total raw scores on Logical
Memory at three different time points (immediate, 30 min,
and 24 h). They reported that both patients and siblings dis-
played the greatest impairment in initial learning (from im-
mediate to 30min) and little impairment in long-delay savings

(from 30 min to 24 h).
An alternative approach to obtain further information

from prose recalls is to assay the effect of the underlying
cognitive processes integral to prose recall e the sequential
construction of the words and semantic processes e but this
approach may introduce a level of subjectivity potentially
compromising reliability and validity (Dunn et al., 2002).
However, a way to obviate this concern is to employ auto-
mated language analysis methods. The first question we
address is whether automated methods can perform as well
as humans in the scoring task, and then having established
a baseline performance, whether features arising from

automated analysis might actually outperform the existing
rubric in predicting group membership (i.e., diagnosis). We
have previously shown that departing from global scoring
techniques and employing a data-driven methodology can
provide useful information concerning cognitive strategies
that individuals use in order to remember lists of words
(Longenecker, Kohn, et al., 2010). In the case of prose recall,
given the “story unit” rubric’s strong emphasis on capturing
exact words and phrases,4 a language sequential categori-
zation algorithm based on natural language processing
techniques may be able to capture much of how humans

1 Although we illustrate this method with a test from theWMS-
R (Wechsler, 1987), the techniques can naturally be applied to
other verbal memory tests.

2 A third recall at 24 h was added to the protocol for this study.
3 For clinical purposes, the raw score may be converted to a

standardized scaled score (0e19) based on the normative tables
published in the test manual. The concept of “saving score” has a
long history (e.g., Ebbinghaus, 1885/1913). Robinson and Heron
(1922) define “saving score” in the context of memorizing lists,
though in their case practice over time improved performance, so
instead of directly reporting the fraction presented here, the
fraction was first subtracted from 100. This metric is reportedly
less vulnerable than standardized scaled scores to the well-
documented declines in performance on the Logical Memory
test with advancing age (Lezak et al., 2004), and also differentiates
cortical from subcortical dementias (Tröster et al., 1993).

4 Especially in the WMS-R which is the test version we
employed.
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score this task. In a number of text categorization tasks, the

language sequence scoring method based on a text’s char-
acter n-gram frequency profile (Cavnar & Trenkle, 1994) has
been successfully applied. The next two techniques we
employed attempt to measure more general characteriza-
tions of the recalls than specified by the rubric. The first
technique again uses the character n-gram frequency, but in
this case compares the recall to the expected frequency of
standard English. The second technique, Latent Semantic
Analysis (LSA), has recently been employed to better char-
acterize performance on the Logical Memory task (Dunn
et al., 2002; Lautenschlager, Dunn, Bonney, Flicker, &

Almeida, 2006) by allowing semantic comparisons at a
meaning (thematic) level. In brief, LSA is an automated
mathematical procedure that uses corpus-based informa-
tion to perform semantic comparisons on words and units
of text (Deerwester, Dumais, Landauer, Furnas, &
Harshman, 1990; Landauer & Dumais, 1997; Landauer,
Foltz, & Laham, 1998). Due in part to its automaticity and
consistency, LSA has the advantage over traditional scoring
methods of not only being objective and reliable (Landauer
et al., 1998) but also potentially more sensitive to elements
of recall missed by standard scoring methods (Dunn et al.,

2002). Indeed, in a proof of concept study, Dunn et al.
(2002) demonstrated the utility of LSA as an alternative to
standard scoring on the WMS-III version of Logical Memory
(Wechsler, 1997) by contrasting the two scoring systems in
groups of both cognitively-intact and impaired older in-
dividuals. They used LSA to measure the similarity of recall
to the original text by calculating the cosine of the angle
between a recall attempt and the original text. They re-
ported that LSA was at least as valid and sensitive in
detecting an effect of cognitive impairment, demonstrating
that the three variables (LSA, thematic scoring units and

story units) were highly correlated for both immediate and
delayed recall of the Logical Memory stories, with correla-
tions ranging from .69 to .94.

We sought to examine the sensitivity of measurement of
these computational sequential and semantic similarity
metrics on prose recall and how they might modulate per-
formance at increasing retrieval intervals and as a function of
diagnosis (namely in patients with schizophrenia, unaffected
siblings and unrelated healthy control participants).

2. Methods

2.1. Participants

Patients with schizophrenia (N ¼ 28), unaffected siblings
(N ¼ 18), and unrelated healthy control participants (N ¼ 76)
between the ages of 18 and 60 years with an estimated pre-
morbid IQ greater than 70were included. All participants were
recruited as part of the Clinical Brain Disorders (NIMH)

Schizophrenia Sibling Study (D.R. Weinberger, PI) (Egan et al.,
2000), and completed a battery of neuropsychological tests
assessing multiple cognitive domains. The results of these
tests are not reported here, aside from two tests used to index
current intellectual function (an abbreviated form of the
Wechsler Adult Intelligence Scale-Revised (WAIS-R); Missar,

Gold, & Goldberg, 1994) and an estimate of premorbid intel-

lectual function (Wide Range Achievement Test-Revised
(WRAT-R); Jastak &Wilkinson, 1984; Wiens, Bryan, & Crossen,
1993). All participants provided written informed consent to
participate (according to the NIMH Institutional Review Board
guidelines and the regulations and ethical guidelines of the
National Institutes of Health Office of Human Subjects
Research) in the NIMH Schizophrenia Sibling Study, which is
an ongoing U.S. investigation of neurobiological abnormalities
related to the genetic risk for schizophrenia. All participants
were screened by two board-certified psychiatrists using
semi-structured psychiatric interviews, third-party in-

formants, toxicology screening, and cognitive testing exclu-
sions previously described (Egan et al., 2000, 2001).
Participants were also excluded if they had a history of sig-
nificant medical or neurological disorders, such as epilepsy or
traumatic brain injury. All patients met DSM-IV criteria (First,
Spitzer, Gibbon, & Williams, 1997) for schizophrenia or
schizoaffective disorder, depressive type, and 68% were on
antipsychotic medication at the time of study. Psychoactive
medications influence verbal memory (e.g., Baitz et al., 2012;
Brébion, Bressan, Amador, Malaspina, & Gorman, 2004; Mori,
Nagao, Yamashita, Morinobu, & Yamawaki, 2004), but

further considering or controlling for these effects in this
context was neither a goal nor practical due to sample size for
this study. All siblings were free from schizophrenia spectrum
disorders. All control participants were free from DSM-IV
lifetime psychiatric illness or current substance abuse.

Groups did not differ significantly in age at time of testing
(see Table 1 for demographic data). However, therewere group
differences in gender distribution [X2(2,N¼ 122)¼ 6.47, p¼ .04]
(and indeedwomen are often underrepresented in research in
schizophrenia e see Longenecker, Genderson, et al., 2010). As
is typically reported when comparing patients with schizo-

phrenia to healthy controls (Weickert et al., 2000), groups
differed significantly in terms of educational attainment
[F(2,121) ¼ 10.04, p < .001] and current IQ [F(2,121) ¼ 17.69,
p < .001]. Post-hoc contrasts revealed that for both education
and current IQ, patients exhibited significantly lower levels
than both siblings and controls (p < .05), but that siblings and
controls did not differ from each other. Between-group dif-
ferences were also seen in terms of a measure of estimated
premorbid IQ [F(2,121) ¼ 5.07, p < .01] with patients exhibiting
significantly lower levels than siblings (p < .05) and controls,
the latter two whom did not differ from one another.

2.2. Prose recall, transcript preparation and inter-rater
reliability

All participants completed a test of episodic memory function
(the Logical Memory subtest of the WMS-R e Wechsler, 1987).
As noted above, the Logical Memory test consists of two brief
stories read to the participant by an examiner. The participant
is asked to recall as much of the story as they can (immediate

recall), and following a delay of 30 min the participant is again
asked to recall asmuch of each story as possible (as ameasure
of short-delay recall). We also added a 24 h delayed recall con-
dition (a measure of long-delay recall). Following immediate
encoding, participants were told that they would be asked
about the task again later (30 min recall); in contrast, no
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warning was provided about the long-delay (24 h) recall task.

Dependent variableswere raw recall scores at each time point,
for each story (max¼ 25 points each) and combined (max¼ 50
points), as well as savings scores for the short (30 min) delay
(immediate to 30min) and long delay (30min to 24 h) intervals.

We generated two streams of scores. First, as each recall
was spoken by a participant, the audio of the recall was
recorded and WMS-R scores were generated by the experi-
menters for each story in real-time. These individual story
unit scores were summed for each participant at each recall-
time, and the individual story unit scores were not retained.
We refer to this summed score (max ¼ 50) as the original

combined score. The recorded audio from the recalls was also
transcribed. For the automated text analysis of the transcripts,
only the content of the participant recall was used. All tran-
scriber meta-comments [such as “(pause)” or “(equipment
noise)”], any experimenter speech including experimenter
meta-data (such as “Participant number one hundred. Um.
Logical Memory Immediate recall”) and any experimenter
prompting of the participant (such as “Anything else you
remember from that story?”) were excluded from the tran-
scripts. The final data set included the cleaned transcripts for
353 recalls for each of Story 1 and Story 2 with an additional
353 original summed scores.

We chose to rescore the transcripts to allow analysis at
the individual story level and to allow the production of
human scores that were blind to group membership (i.e.,
patients, unaffected siblings, unrelated controls) and recall-
time (i.e., immediate, 30 min or 24 h later). With the orig-
inal summed scores, the experimenters had access to a
myriad of information sources implicit in a face-to-face
setting, which goes well beyond the text of the recall. Due
to issues of subjectivity and evidence that thematic units
provide no additional information (Dunn et al., 2002), only
the story unit rubric was considered. Two human raters were

recruited5 to provide WMS-R scores from the transcribed re-
calls to provide a comparable condition to that faced by
automated analysis. Scorer 1 was presented with all the re-
calls from Story 1 in a random order followed by all the re-
calls from Story 2 also in a random order. Scoring proceeded
by entering scores for each participant at each recall-time
into a spreadsheet version of the standard WMS-R story unit

form. For Scorer 2, who served as one of the sources to

measure inter-rater reliability, a stratified random sample
was taken of six recalls at each combination of recall-
time " group for a total of 54 recalls for each story. The
correlation between the score for Scorer 1 and Scorer 2 for
Story 1 was r(52) ¼ .99, p < .001 and the correlation for Story 2
was r(52) ¼ .97, p < .001. Since scores are typically reported as
the sum of scores from the stories, the correlation between
the summed scores from Scorer 1 and Scorer 2 was
r(52) ¼ .99, p < .001. Comparing the original summed scores to
the summed scores for Scorer 1 yielded a correlation of
r(351) ¼ .98, p < .001 and for Scorer 2 r(52) ¼ .98, p < .001 (with

n ¼ 353 and n ¼ 54 respectively). Since the correlations be-
tween the blind and original summed scores are practically
identical, concerns over bias in this case under the story unit
rubric do not seem justified.

2.3. Computational language features

2.3.1. Character n-gram
The story unit rubric, by focusing almost exclusively at the
level of exact key word recall in distinction to paraphrases
or recalling main ideas, may allow automated scoring via
methods based on sequential language order. Character and
word sequences capture aspects of word choice, syntactical

word ordering as well as language fluency and grammatical
flow. One of the most parsimonious, though quite powerful
syntax scoring methods is based on a text’s character n-
gram frequency profile (Cavnar & Trenkle, 1994). This mea-
sure compares character patterns between texts.6 Briefly, n-
grams are segments of length n drawn from a text. The unit
of analysis of a text string can be at the level of characters or
words, with unigrams (or equivalently 1-gram) being all the
individual components of that string, whereas, 5-grams
encompass all combinations of five characters in a row
encompassing the flow of one word, its punctuation or

spaces and the next word. The counts of n-grams of a text
typically follow a Zipf distribution (Zipf, 1935). Cavnar and
Trenkle’s insight was that a reasonably small portion of the

Table 1 e Demographic data for patients, siblings and healthy controls.

Patients (n ¼ 28) Siblings (n ¼ 18) Controls (n ¼ 76) p-Valuea

Age (years) 30.82 (#9.19) 33.61 (#11.81) 32.25 (#9.80) .642
Education (years) 13.86 (#2.32) 15.94 (#1.59) 16.11 (#2.43) <.001
Gender (M/F) 20/8 7/11 35/41 .04
Current IQ (WAIS-R) 89.06 (#13.62) 112.44 (#8.76) 106.38 (#16.44) <.001
Estimated “premorbid” IQ (WRAT-R) 101.30 (#12.04) 110.89 (#6.36) 107.93 (#11.55) .008
CPZEb 559.85 (#660.48)c e e e

a ANOVAs for all continuous variables, and chi-square for gender.
b CPZE: Chlorpromazine equivalents.
c Range 0e2700.

5 One rater had a PhD and 12 years of relevant experience, and
the other rater had a Masters and 5 years of relevant experience.

6 The technique of Cavnar and Trenkle (1994) should not be
confused with n-gram statistical language models (see e.g.,
Jurafsky & Martin, 2009; Chapter 4), in that their categorization
technique requires relatively small data structures and is quite
fast.
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distribution representing the most frequent n-grams could

be used as a text’s profile (they used the 300 most frequent
n-grams) and then appropriately defining a metric over pairs
of profiles allows the production of a sequential similarity
measure.

In our current study, a profile for each of the two original
stories was generated and then the distances from the pro-
files of each recall to the profile of the original story
computed. Our expectation is that the less well a recall profile
matches the profile of the original story (a larger distance) the
lower the human recall score should be. How well the profile
distances (negatively) correlate to the human scores will

provide a measure of the accuracy of this automated mea-
sure. A second method in which the n-gram profile measure
can assess text is via a model of the “English likeness” of the
n-gram sequences of a text. For this measure, an English
profile built on a publically available English corpus is con-
structed and then compared to the profiles of the recalls.
Notice that this measure is independent of the original story
and is entirely based on how similar the recall is to standard
English as encoded in the English profile. Our expectation is
that the less well a recall profile matches the profile of
“standard English” (the greater its profile distance to the

English profile), the lower should be the human scoring for
the recall. It is possible that with an increasing severity level
in the clinical presentation of the illness, the further the
recall will drift from standard English, and that siblings will
exhibit an intermediate level of closeness to standard En-
glish. It is also possible that this feature would be useful in
measuring progression of a disease (such as dementia) where
language increasingly deviates from the ‘norm’. The infor-
mation theory and statistics literature contain numerous
measures to compare frequency distributions (see Jurafsky &
Martin, 2009). In previous unpublished work, we found that

using the KullbackeLeibler divergence (Kullback & Leibler,
1951) as the comparison metric outperforms the “out-of-
place” distance metric of Cavnar and Trenkle and the Kull-
back-Leibler metric is applied using textcat (Hornik, Rauch,
Buchta, & Feinerer, 2012). Although this metric is not
strictly speaking a “distance” (for instance KullbackeLeibler
is not symmetric), in this context the metrics behave intui-
tively like distances, so we refer to the output of the metric as
a distance. Since we wished to potentially include word level
frequency comparisons, character n-grams of sizes ranging
from 1 to 5 were used. The “English like” profile was built
from the English corpus provided as part of the European

Corpus Initiative Multilingual Corpus I (ECI/MCI) (Armstrong-
Warwick, Thompson, McKelvie, & Petitpierre, 1994).

2.3.2. LSA
Across many task domains, LSA (Deerwester et al., 1990) has
been shown to capture semantics in ways that can be use-
fully applied in similarity comparisons. LSA is a corpus-based
statistical modeling method based on computing a reduced
dimension singular value decomposition of a reference
corpus (see Landauer et al., 1998 for a technical description).
Vectors in this reduced dimensional “semantic space”
represent words and text passages. Computing the cosine

between two vectors in this space generates a semantic

similarity measure, which can be computed even if the two
units of text share no words in common. This technique has
been widely used in such fields as information retrieval
(Deerwester et al., 1990), automated essay scoring (Foltz,
Laham, & Landauer, 1999), analyzing prose recall (Dunn
et al., 2002), and in the analysis of prose from patients with
schizophrenia (Cabana, Valle-Lisboa, Elvevåg, & Mizraji, 2011;
Elvevåg, Foltz, Weinberger, & Goldberg, 2007; Elvevåg, Foltz,
Rosenstein, & DeLisi, 2010).

For our current study, vectors representing the original
story were compared with vectors from each of the recalls.

The expectation was that less semantically similar recalls
would receive lower human recall scores. Our LSA analysis
was conducted using our own LSA software. The semantic
space was built from the TASA corpus (Zeno, Ivens, Millard,
& Duvvuri, 1995) with dimension reduction to 300
dimensions.

2.4. Analysis approach

To analyze the performance of the sequential and semantic
features, we used two statistical modeling techniques,
linear mixed-effects models and proportional odds logistic
regression. Although these models are less widely used in
the analysis of recall data, we argue below that they provide
a more unified view of the data and better capture its un-

derlying structure than some of the existing analysis
methods, especially with data based on repeated measures
and with potential individual and family effects.

2.4.1. Statistical method e linear mixed-effects model
To accurately tease out the effect of group membership and
recall-time on the recall score, it is critical to recognize and
attend to the covariance structure of the data. There is
potentially both an individual effect exposed through a
repeated measures design and a family component. That
these data cannot be treated as independent observations is
clearly demonstrated in Table 2, which shows the correla-
tions between scores measured at different recall-times for
Story 1 and Story 2 for the control group. We chose the

control group to avoid confounding individual with group
correlation, but this pattern of correlations is nearly iden-
tical for the entire data set (though slightly higher than
evidenced by the control group). The smallest correlation for
the control group is .85 and all correlations are significant
with p < .001. These results clearly indicate a strong indi-
vidual effect in this task, which unless handled correctly

Table 2 e Correlation of human recall scores at different
recall-times for control group.

Immed.
to 30 min

Immed.
to 24 h

30 min
to 24 h

Story 1 .90 .86 .94
Story 2 .85 .90 .93

c o r t e x 5 5 ( 2 0 1 4 ) 1 4 8e1 6 6152



Author's personal copy

can distort standard error estimates and possibly bias

parameter estimates.
A linear mixed-effects model was used to describe the

relation between human recall score as response with group
and recall-time as explanatory fixed effects. In addition, the
model provides a random effect for individuals and a
random effect for families. The model further allows the
conservation of observations in that observations at all
three recall-times are not required, so participants with
some missing observations can still be included in the
analysis. An advantage of this approach over for example
the one taken in Skelley et al. (2008) is the ability to directly

estimate effects. A disadvantage is that it will not directly
estimate “saving scores”. Instead, additive differences (the
effects) for group and recall-time are estimated including
potential interactions.

To fix notation, Fig. 1 shows the potentially most complex
model considered. Y is the response, the human score, which
is assumed to be generated by the fixed effects (subscripted
“b”), the random effects (subscripted “z”) and an error term e.
The fixed effects are estimated, as are the standard deviation
for the random effects, which are constrained to have means
of zero. The control group is the baseline level for the group

factor, and immediate recall serves as the baseline level for
the recall-time factor.

All modeling was conducted using the lme4 package
(Bates, Maechler, & Bolker, 2012) in the R statistics environ-
ment (R Core Team, 2012). The results of modeling comprise
estimates for the standard deviation of the random effects as
well as parameter estimates for the fixed effects and their
standard errors. The confidence intervals for these estimates
are typically not symmetric, so in addition to reporting t-
values, we profile the likelihood to obtain a 95% confidence
interval for the standard deviations and parameter estimates.

If the 95% confidence interval does not include zero, we
conclude the estimate is significant at the .05 level. From an
estimated model, the random effects provide information
about how much variability is attributable to individual dif-
ferences, while the fixed effects will account for the impact of
the levels of group and recall-time, as well as any effects of
their interactions.

The model selection strategy starts with a base model and

adds features, so that a series of nestedmodels are generated.
This allows the use of a likelihood ratio test to determine if the
improved model is worth the added complexity. We also
present the Akaike Information Criterion (AIC) (Akaike, 1974)
and the Bayesian Information Criterion (BIC) (Schwarz, 1978),
which are both model selection criteria that utilize model
likelihood, but penalize model complexity, with BIC penal-
izing complexity more heavily. With both criteria, a lower
value is better.

2.4.2. Statistical method e proportional odds logistic
regression
In the case of diagnosing schizophrenia, there is currently no
single biological or neurocognitive test that will alone or
conclusively confirm a diagnosis of schizophrenia. Rather it is
a descriptive process based onmany aspects derived from the
clinical examination. Thus, in terms of the current study the
‘gold standard’ for any automated classification is how the
patients were originally classified clinically (i.e., without the
help of extensive analysis of speech). Therefore, for current
purposes we have chosen to use the ability to predict group
membership in evaluating the usefulness of the language

features. This appraisal requires the use of a statistical clas-
sification technique. For classification tasks involving only two
groups, logistic regression (e.g., see Agresti, 2007) is a common
and powerful technique to estimate the group membership
probability. For this data with its three ordered groups, a cu-
mulative probabilitymodel, where the probability of being in a
given group increases in an ordinal fashion from patient to
sibling to control as the “closeness” of the recall to the stim-
ulus as measured by the features increases.7 Concretely, we
specify a proportional odds logistic regression model
(McCullagh, 1980) with group category as the response and

recall-time and various features as the explanatory variables.
The procedure we followed used a standard proportional

odds estimation, to compare how well the different models
predict group membership. The measure that best predicts
groupmembership is the one that better captures the putative
“schizophrenia signal” in the text. However, since the
covariance structure is not being accounted for, we need to be
cautious in interpreting standard errors and estimates from
the models.

For this analysis, we used the polr function in the MASS
package (Venables & Ripley, 2002) in the R statistics envi-
ronment (R Core Team, 2012). Since the confidence interval

for proportional odds models may not be symmetric, we
present a confidence interval based on the profile of the log-
likelihood function (Venables & Ripley, 2002). While the
modeling is in terms of odds (or more accurately log of odds),
our discussion will be primarily in terms of group member-
ship probability. As with previous modeling, the model se-
lection strategy starts with a simple model, adds features and
then uses the likelihood ratio test along with AIC and BIC to
base decisions on whether improved prediction justifies the
added complexity.

Yit = b0 + bg + bt + bgt + zi + zf + ei       

where individual i is a member of group g and belongs to family f

Yit – the response, the recall score for individual i at recall-time t

b0  – the intercept, in this case the expected score at immediate time and control group

bg – the effect on recall of group g with respect to control group

bt – the effect on recall score at recall-time t with respect to immediate recall-time

bgt – interaction term between group g at time t

zi – a random effect for individual i

zf – a random effect for the family f of individual i

ei – the residual error

Fig. 1 e Specification of a linear mixed-effects model of
recall score predicted by group and time.

7 For character n-gram profile, which is a distance instead of a
similarity, the order of groups is reversed, hence our use of
“closeness”.
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3. Results

First we present the analysis with traditional measures of

prose recall, and then present the analysis of the computa-
tional approach.

3.1. Traditional human scored measures of prose recall

3.1.1. Immediate and delayed recall performance as a
function of group
As shown in Fig. 2, between-group differences were seen
across all three time points in Logical Memory recall total raw
score [immediate: F(2,121) ¼ 24.31, p < .001; 30 min delay:
F(2,121) ¼ 26.80, p < .001; 24 h delay: F(2,121) ¼ 28.05, p < .001].
Performance of the patient group was significantly lower on
raw recall scores than both healthy controls and the sibling
group across all three groups [patients vs controls:

t(102) ¼ $6.60, $7.02, $7.17 for immediate, 30 min and 24 h
recall respectively; patients vs siblings8: t(44) ¼ $4.23, $4.37,
$4.63 for immediate, 30 min and 24 h recall respectively; all
p < .0001]. In contrast to patients, the sibling group did not
differ from controls across any of the three recall points
[t(92) ¼ $1.24, $1.29, $1.12 for immediate, 30 min and 24 h
recall respectively].

3.1.2. Short and long-delay savings as a function of group
As seen in Fig. 3, between-group differences were found in
short-delay savings scores (30 min recall/immediate

recall " 100) on the Logical Memory task [F(2,121) ¼ 20.67,
p < .0001], but not in long-delay savings scores [24 h recall/30
min recall " 100; F(2,121) ¼ .33, p ¼ .72]. In the patient group,
short-delay savings scores were significantly lower relative to
both controls [t(102)¼ 6.08, p< .0001] and siblings [t(44)¼ 3.84,
p < .001], who did not differ from each other.

3.2. Modeling human score

3.2.1. Modeling human score as a function of group and
recall-time
Equation (1) is the initial model, which is based on our un-
derstanding of the literature indicating that both group and
recall-time are important determinates of overall recall

score. The model also includes a random effect for indi-
vidual ability on this task. We first elaborate this model and
then compare the more complex models with each simpler
model to see if the added complexity significantly improves
the model.

Yit ¼ b0 þ bg þ bt þ zi þ ei (1)

The first alternative model was designed to gauge whether
a family random effect improved the model. Since there are

significant issues with the family composition of the data,
these results are delegated to the Appendix. Briefly, the results
do not indicate that adding a family effect significantly

improved the model for human scores for either Story 1 or
Story 2, though there was just a hint of family cohesion in

modeling LSA cosine scores, results which are all elaborated
in the Appendix. The fixed effects estimates for equation (1)
are given in Table A2 and the random effects for Story 1 are
presented in Table A3. The lower bound for the 95% confi-
dence interval for the standard deviation of the family effect is
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Fig. 2 e Mean recall performance on combined Story 1 and
Story 2 (maximum [ 50 points) of the Logical Memory
subtest of the WMS-R, as a function of time and group.
Error bars represent standard error.
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Fig. 3 e Saving scores for the Logical Memory subtest of the
WMS-R, as a function of group. Short delay is computed as
mean 30 min score/immediate score and long delay is
mean 24 h score/30 min score. Error bars represent
standard error.

8 This analysis follows Skelley et al. (2008), but as noted in the
description of this data, the sibling and patient groups are not
independent samples, making the t-test standard errors poten-
tially problematic.
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undefined (the equivalent of the confidence interval contain-

ing zero, for a parameter that is not defined for values less
than zero), so we dropped the family effect as not statistically
significant.

The next alternative model considered adding interac-
tion terms. Table 3 shows the estimates for the random
effects for Stories 1 and 2 for the model including interac-
tion terms. The standard deviation for the individual effect
(labeled ID in the Groups column) is about 4 in both models
and the 95% confidence intervals for the estimates are well
away from zero, so both are statistically significant. Since
the potential score range is 0e25, with an observed range of

0e21 for Story 1 and 0e22 for Story 2 in this data, the range
of plus or minus one standard deviation of the individual
random effect covers a bit more than a third of the score
range. This strengthens the recall-time correlation evidence
indicating that individual effects are a significant proportion
of performance. The magnitude of this individual variability
should be kept in mind as we examine the fixed effects in
Table 4. The standard deviation of the residual distribution
(the variation not explained by the model) presented in the
rows labeled Residual in Table 3 is 1.48 in Story 1 and 1.40 in
Story 2.

Table 4 shows the estimates, standard errors, and 95%
confidence intervals for the fixed effects for Story 1 and Story
2. The baseline for the contrasts is the control group and im-
mediate time-recall. For Story 1 all the main effects are sig-
nificant as are the two patient " recall-time interactions.
Interactions are shown in rows labeled with group " recall-
time. The sibling group and recall-time interactions are not
significant, though the likelihood ratio test result shown in
Supplemental information (Table S1) strongly rejects that the
models have equal predictive power (p ¼ .0074). The AIC
concurs with a decrease from 1676.70 to 1670.70 for the more

complexmodel, while BIC increased.We chose to examine the
more complex interactionmodel as the best description of the
data generating process, whichwewill now examine in detail.

One interpretation of the Story 1 model is to start with an
average participant and then note the changes as group and
recall-time are varied. Thismodel indicates that on average an
individual will have a recall score of 14.84. That person draws
from a normal distribution with mean zero and standard de-
viation of 4.06 and the drawn value, their individual ability, is

added to the starting mean score of 14.84. If that person is in
the control group (the baseline), their recall score is this value,
if they are in the sibling group, their score drops on average
2.22, and if in the patient group their score drops on average
5.73. For immediate recall (the baseline), there is no change in

the recall score, while at 30min there is a 2.42 drop and at 24 h
there is a 2.75 drop. There are statistically significant in-
teractions for the patient groupwith recall-time, so there is an
additional penalty for patients added to the previous drops at
the 30 min recall of 1.07 and at 24 h of 1.20. This analysis is
comparable to the saving score analysis reported by Skelley
et al. (2008), where the statistically significant drop of 5.73
plus the additional interaction drops strongly indicates pa-
tients recall less than controls. Fig. 4 plots both the mean
values from the data, and the model predictions. The inter-
action effect as evidenced by differing slopes per group for

patient versus control (with patients’ slope being steeper than
controls) is quite evident especially between immediate and
30 min recall. While the differences between the model pre-
dictions and the data means are all small, in fact less than a
score point, the model allows quantifying the interaction ef-
fects, isolating and estimating the standard deviation of the
individual ability distribution, and, at least for this data, to be
able to rule out a family effect all with more accurate confi-
dence interval estimates.

For Story 2, the main effect on the sibling group is not
significant, so in this case there is no statistically significant

penalty between the control and sibling groups. The mean
score for the control group and immediate recall is 13.31,
which is over a point below the value for Story 1. The patient
drop is 4.95 and the 30min recall drop is 1.00 and 24 h is .94, all
below the Story 1 values. Except for the absence of a signifi-
cant sibling main effect, the relationships are very similar to

Table 3 e Random effects for interactionmodels for Stories
1 and 2.

Groups Name Var. Std. dev. 2.5% 97.5%

Story 1
Random effects:
ID Intercept 16.50 4.06 3.53 4.60
Residual 2.18 1.48 1.34 1.60
Number of obs: 353; ID: 122

Story 2
Random effects:
ID Intercept 15.19 3.90 3.39 4.41
Residual 1.96 1.40 1.26 1.52
Number of obs: 353; ID: 122

Table 4 e Fixed effects for interaction models for Stories 1
and 2.

Estimate Std. err. t Value 2.5% 97.5%

Story 1
Fixed effects:
Intercept 14.84 .50 29.87 13.87 15.80
Sibling $2.22 1.13 $1.96 $4.43 $.02
Patient $5.73 .96 $5.99 $7.59 $3.86
30 min $2.42 .24 $9.91 $2.89 $1.94
24 h $2.75 .25 $11.15 $3.23 $2.27
Sibling " 30 min. .86 .55 1.57 $.20 1.93
Patient " 30 min. $1.07 .47 $2.28 $1.99 $.16
Sibling " 24 h .88 .56 1.57 $.21 1.97
Patient " 24 h $1.20 .48 $2.49 $2.13 $.26

Story 2
Fixed effects:
Intercept 13.31 .48 27.98 12.38 14.24
Sibling $.48 1.08 $.44 $2.59 1.64
Patient $4.95 .92 $5.41 $6.74 $3.17
30 min $1.00 .23 $4.33 $1.45 $.55
24 h $.94 .23 $4.05 $1.40 $.49
Sibling " 30 min. .33 .52 .64 $.68 1.35
Patient " 30 min. $.94 .44 $2.12 $1.81 $.08
Sibling " 24 h $.22 .53 $.41 $1.25 .81
Patient " 24 h $1.43 .46 $3.13 $2.31 $.54
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Story 1. To statistically compare the relation between the
models for Story 1 and Story 2 requires explicitly representing
the story in the model to see if they were significantly
different. With this model of how group and recall-time affect
the human score, we next turn to automatically predict the

human score from computational language features of the
recalls.

3.2.2. Modeling human score using language sequence
features
We first examine how well a character n-gram sequential
feature can predict human scores.

Table 5 contains descriptive statistics for the word and
character counts for the two stories and averages for the re-
calls. Both stories contained the same number of words, while
Story 2 contains about 10%more characters, which is reflected

in Story 1 having 4.09 characters per word, while Story 2 has
4.46 characters per word. Selecting n-gram sizes from 1 to 5
captures most of the information from the average sized
word.

For each of the Story 1 recalls the KullbackeLeibler dis-
tance to Story 1 was generated and also to the reference En-
glish profile. For each Story 2 recall the distance to Story 2 and
the English profile were generated9 (Additional details in
Supplementary information n-gram analysis).

Table 6 shows the correlations between the human scores
and the sequence distances. Since the character n-gram

sequential measure is a distance, it gets larger the further
profiles are apart, which explains the negative correlation
with the human ratings. The first striking result from Table 6
is that the distance between the recall profile and the story

profile and human ratings of prose recall are very highly
correlated at $.92 for Story 1 and $.93 for Story 2. This mea-
sure captures a large fraction of the human score variation,
indicating that much of the human scores could be auto-
matically scored. These high correlations suggest that the

sequential measure performs very similarly to the human
scorers. The n-gram “English-like” measures have lower cor-
relation to the human scores, with correlations for Story 1 of
$.69 and for Story 2 $.65. While these correlations are lower
than the other type of recall measure, this does not preclude
this measure accounting for other differences in the recalls
not captured by the story unit rubric. Since the correlations of
the distance between the recall profile and the story profile are
quite close to human performance, we also explored using
regression to put the profile distance on the same scale as the
human scores to explore agreement (see Supplementary in-

formation Additional Measures).

3.2.3. Modeling human score using semantic features
LSA vectors were computed for each of Story 1 and Story 2 and
for all the recalls. To represent the semantic distance of a
recall to the original story, the cosine between the vector for
the source story and the recall was computed. The correlation
between the scores Scorer 1 adjudged for Story 1 recalls to the
cosine between the text vector for Story 1 and the Story 1 re-
calls was r(351) ¼ .83, p < .001 and for Story 2 was r(351) ¼ .79,
p < .001. For Scorer 2 the correlation for Story 1 recalls was

r(52) ¼ .84, p < .001 and for Story 2 was r(52) ¼ .80, p < .001.
Since our goal in computing semantic similarity was to cap-
ture information beyond that specified in the rubric, it was not
unexpected that just as the sequence feature scores did not
fit human scores exactly for the “English-like” measure, it is
also not surprising given the emphasis of the story unit rubric
on key wordmatching that these correlations are below those
for sequence. What is more interesting in is how well these
different features predict group membership (i.e., diagnosis).
We examine this question next.

3.3. Comparing features by predicting group
membership

The previous analysis examined how well automated mea-
sures could replicate human scores.

However, a significant assumption underlying that
approach is that the existing rubric underpinning the
scoring of the recalls optimally uses the information avail-
able within the recalls. In this last set of analyses, we
examine that claim. As mentioned earlier, in the case of
diagnosing schizophrenia the gold standard is the clinical

Table 5 e Summary of text statistics for stories and recalls.

Type Story Mean
chars (SD)

Mean
words (SD)

Mean
chars/word (SD)

Story 1 278 68 4.09
Story 2 303 68 4.46
Recalls 1 203.81 (81.45) 52.59 (21.29) 3.88 (.28)
Recalls 2 225.49 (82.86) 56.58 (21.28) 4.00 (.31)

Fig. 4 e Mean human scores and model predictions for
Story 1.

9 We also generated profiles using the default metric
from Cavnar and Trenkle’s (1994) paper, but those distances did
not perform as well so are not presented.
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exam. For our current purpose a continuous metric (e.g.,
severity of illness) would provide stronger evidence in a
comparison among the human scores, the LSA cosine sim-
ilarity measures and the character n-gram profiles to that
standard, but diagnosis is currently the best measure
available. Thus the analysis evaluates whether these new
measures can be as, or more sensitive than the human
ratings of recall. What this data set does provide is the

categorical variable that accurately distinguishes among the
three groups, namely of controls, siblings, and patients. We
model this categorical variable on a single dimension rep-
resenting the probability of group membership and the
performance on predicting group will allow a comparison
across the features. Before explicit modeling, we first visu-
alize the proportions of group membership as the features
vary.

The resulting change in the group membership probabili-
ties as a feature varies allows investigating the ability of a
feature to utilize characteristics of the recall text as a link to
schizophrenia. Fig. 5 shows conditional density plots

(Hofmann & Theus, 2005) for each of the features under
consideration. This type of plot reveals from the data the
varying proportion in each group as the feature value is varied.
Each row presents a single feature chosen from the set: the
human score, the LSA cosine distance and the character n-
gram profile, where the left column presents recalls from
Story 1 and the right column from Story 2.

The conditional density plot applies a kernel density
function to smooth the group proportions to generate these
plots. Shading indicates groupmembershipwith control being
darkest to patient being lightest. Panel A shows the condi-

tional density plot for human score on Story 1. For participants
achieving the lowest score, the group with the largest pro-
portion is patients, the next largest is controls and the
remainder consists of siblings. As score increases the pro-
portion of controls and siblings increases. At the highest levels
of score, the patient proportion drops to nearly zero and the
sibling proportion has decreased from its peak size achieved
at intermediate score levels. These plots are a visual expres-
sion of the expected outcome that at low scores patients will
dominate, while at high scores controls will dominate and
most siblings will be located along a range of intermediate

scores.
This overall pattern is repeated in all the panels, but there

are noticeable differences as well. Panel B shows human
scores for Story 2. Unlike the other panels, the increase in
control membership with increase in score atypically does not
exhibit a mostly monotonic increase, but instead displays a

plateau for controls at intermediate scores. The “island” of
siblings at intermediate scores is present as it is in most of the
other plots. In Panel B, there is a decrease in proportion of
control membership at the very highest scores, which reflects
two patients scoring quite well (immediate recall above 20) on
Story 2, who likely regressed toward the mean in Story 1.
(With a larger sample, it might be revealed that Story 2 is not
quite as discriminating as Story 1.) Panels C and D show the

conditional density plots for the LSA cosine similarity for
Stories 1 and 2. For very low values of cosine, the membership
in the sibling group is empty, allowing a clean separation be-
tween groups. A similar effect, but evidenced at larger dis-
tances is seen in Panel E for the character n-gram profile
measure for Story 1. The plots in Panels E and F show a
decreasing proportion in the control groupmembership as the
profile distance increases, which is as expected since a larger
distance indicates the recall is less similar to the original
story. The differences evidenced in these plots motivate a
modeling approach to quantify the different behaviors of the
features.

The conditional density plots from Fig. 5 are consistent
with the claim of siblings being ‘intermediate’ between
controls and patients (e.g., Egan et al., 2001, 2003). This
ordering of the categories suggests modeling groups (pa-
tients, siblings, controls) as an ordinal categorical variable
and specifically supports a model based on a proportional
odds logistic regression (Agresti, 2007; Venables & Ripley,
2002). Equation (2) provides a concrete example of a pro-
portional odds model with human recall as an explanatory
variable where log odds (the logit of the cumulative proba-
bility) of being in group j or below for individual i is a

function of the group intercept aj and parameters for recall-
time t and the human score xi on the Story 1 recall (Inter-
ested readers are referred to the references for details of
estimation of this class of models.).

Logit½PðYit <¼ jÞ) ¼ aj þ bt þ bh1 " xi þ ei (2)

Notice that this model can predict the group probabilities
for each of the groups as differences between the appro-
priate cumulative probabilities. It follows that to predict the
group with the best fit, requires selecting the group with the
highest probability at these values of the parameters.
Referring back to Fig. 5, we should not expect to predict

members of the sibling group using a single variable, since
for all of the variables, there is no value where sibling is the
group with the largest proportion (which is the group that a
prediction algorithm will choose). It is possible that a

Table 6 e Correlation between human and sequential measures of recalls.

Profile recall
1 to Story 1

Profile recall
1 to English

Profile recall
2 to Story 2

Profile recall
2 to English

Human score
Story 1

Human score
Story 2

Profile recall 1 to Story 1 1.00 .78 .72 .49 $.92 $.69
Profile recall 1 to English .78 1.00 .62 .61 $.69 $.56
Profile recall 2 to Story 2 .72 .62 1.00 .74 $.70 $.93
Profile recall 2 to English .49 .61 .74 1.00 $.46 $.65
Human score Story 1 $.92 $.69 $.70 $.46 1.00 .71
Human score Story 2 $.69 $.56 $.93 $.65 .71 1.00
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combination of variables will predict some siblings, and
thus models with multiple explanatory variables are
explored. For the sibling group, what will be of interest from
the modeling is the location of the region where siblings are
relatively more probable and how that reflects the sibling
regions shown in Fig. 5. As with the previous analysis, the
model contains a factor for recall-time with levels of im-
mediate, 30 min and 24 h recall, with immediate recall being

the baseline level.
The approach examines each feature individually to see

if models containing both stories improve on models with
only a single story. We then examine models with multiple

explanatory features and compare them to the single
feature models. The initial model predicts group based on
the human score for Story 1 and recall-time. The co-
efficients, standard errors, t-value and profiled confidence
intervals for this model are presented in the upper panel of
Table 7.

The estimates containing a vertical bar are the intercepts
for the group boundaries, and are generally only of interest in

computing the group probabilities. Since zero is not contained
in the 95% confidence interval for any of the non-intercept
parameter estimates, we conclude that the parameters are
statistically significant. Fig. 6 illustrates the effects of this
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Fig. 5 e Panels AeF. Conditional density plots of probability of group membership based on values of features derived from
recalls. Each row shows data from one of the features: human scores, LSA cosine similarity and character n-gram profile
distance, while the columns show data from Story 1 and Story 2 respectively. Shading differentiates diagnosis.
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model’s parameter estimates by plotting the group probability
predictions for the three different recall-times as human score
varies for Story 1.

This Figure provides a model-based view of the same data
displayed in Fig. 5, but now represented with many fewer pa-
rameters, and the impact of recall-time explicitly represented.
Color is used to indicate group and line type is used to indicate
recall-time. Consider the three group curves for the immediate
recall-time. For the predictions of the patient group, as the
human score increases the probability of membership in the
patient group decreases. The point where this curve intersects
the increasing probability prediction curve for the control
group occurs at a human score between 9 and 10, and divides

the optimal prediction for a participant’s group from patient

with human scores in the range 0e9 to control for human
scores 10 and above for the immediate recall-time. The plot
clearly shows that the sibling group, while starting low and
reaching its maximum probability of about .23 between
human scores 10 and 11, is nevermore probable than the other
two groups, the patient group below score 10 and then the
control group for scores above 10.

With respect to recall-time, this model confirms the re-
sults of the linear mixed-effects models. In contrast to the
immediate recall-time curve, the two longer recall curves are
shifted to the left allowing similar probability of membership

at lower scores. The vast majority of this shift occurs be-
tween immediate recall and 30 min for all three groups10.
There is an interesting asymmetry to the plot. At the highest
score levels the probability of membership in the control
group is almost 1.0, while at the low end there is still some
diversity in group membership probabilities. There is a
probability of about .85 for the patient group, .08 for sibling
and .07 for control. This may indicate an issue with the story
so that the human score range could not extend quite low
enough.

The next more complex model adds the human score for

Story 2 as an explanatory variable. The coefficients for that
model are shown in the lower panel of Table 7. All the co-
efficients are significant, which indicates that recalls on the
second story add to the explanatory power of the model. It is
noteworthy that the coefficients on the human scores for the
two stories differ by over 50%. In thismodeling format, it is not
possible to determine if this is a statistically significant dif-
ference. In addition, these coefficients are odds ratios making
interpretation slightly more complex, but it maymerit further
research to determine if the final WMS-R Logical Memory
score, which is currently the sumof the human scores on each

story is optimal in that aweighted scoremight provide a better
measure. The likelihood ratio test (Table S5) is highly signifi-
cant with p ¼ .0026, and both AIC and BIC decrease with the
more complex model indicating a strong preference for the
model with explanatory human scores from both Stories 1
and 2.

The analyses are now repeated for the other two features,
LSA cosine similarity and the character n-gram profile
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Fig. 6 e Model predictions by recall-time and group for
human score for Story 1. Line type distinguishes recall-
time and color distinguishes group. Human score ranges
from 0 to 25.

Table 7 e Upper Panel: Modeling group on human score
and recall-time, Story 1 only. Lower Panel: Modeling group
on human score and recall-time, Stories 1 and 2.

Estimate Std. err. t Value 2.5% 97.5%

Story 1 only
Human Story 1 $.24 .03 $8.67 $.30 $.19
30 min $.63 .29 $2.13 $1.21 $.06
24 h $.79 .30 $2.61 $1.39 $.20
ControljSibling $2.65 .40 $6.59
SiblingjPatient $1.73 .39 $4.46

Story 1 & 2
Human Story 1 $.18 .04 $5.03 $.25 $.11
Human Story 2 $.11 .04 $3.01 $.18 $.04
30 min $.59 .30 $1.98 $1.18 $.01
24 h $.74 .30 $2.44 $1.35 $.15
ControljSibling $3.08 .43 $7.11
SiblingjPatient $2.13 .42 $5.14

10 These same results can be derived from the parameter esti-
mates, which are log odds ratios. The coefficient estimate on
parameter Human Story 1 is $.24 (Table 7), which when expo-
nentiated is .79, and can be interpreted that for a given recall-
time, the higher the human score, the less are the odds to fall
in the sibling or patient group in comparison to the control group.
Similarly, the estimate on 30 min recall is $.63, which when
exponentiated is .53. This indicates that the odds of being in the
sibling or patient group is about 1/2 compared to the odds of
being a control when moving from immediate recall to 30 min
recall, which just indicates that at 30 min recall there is less
difference in human scores between controls and the other two
groups. In probability terms, refer to Fig. 6. For example, with a
human score of 10, the probability of being in the control group is
about .45 for immediate recall, but increases to .60 for 30 min
recall. Converting from probability to odds ratio is [.45/(1 $ .45)]/
[.60/(1 $ .60)] ¼ .55 which is the exponentiated estimated
parameter for 30 min recall, as expected (note there is rounding
error due to only displaying two digits of accuracy).
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distance as explanatory variables. Table 8 shows the co-
efficients for the models including both Story 1 and Story 2.
For both features, all the coefficients are significant as are the
likelihood ratio tests (see Table S6).

The counterpart plot for cosine similarity to Fig. 6 is shown
in Fig. 7. The overall story is much the same, though the
curves aremore symmetric with respect to the range of cosine
similarity. The leftward shifts for the 30 min and 24 h recall-
times significantly separate those curves (as evidenced by

their significant coefficient estimates) from the immediate

recall, but for all groups these two curves are quite similar to
each other. The trade-off between predicting the patient
versus the control group occurs at a cosine similarity between
.50 and .55.

At this point, we have established that for each feature
using information from both stories yields a better model.

The last step is to compare the predictive ability of each of
these features and examine a model that combines the
features. Predictions based on the same observations that a
model is trained on yields biased (optimistic) results (see for
instance Hastie, Tibshirani, & Friedman, 2009), therefore the
predictive performance is evaluated using 10-fold cross
validation. Breaking out observations by group, there were
220 for controls, 53 for siblings and 80 for patients, and thus
any performance should be judged against just predicting
the largest group namely, the control group, for all obser-
vations, which yields an accuracy of 62.3%. Assuming an

equal penalty for any incorrect group prediction, this accu-
racy is the prediction performance to match or exceed.
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Fig. 7 e Model predictions by recall-time and group for
cosine similarity measure for Story 1. Line type
distinguishes recall-time and color distinguishes group.
Cosines range from .0 to 1.0.

Table 9 e Confusion matrices. Upper Panel: Human scores
model; Middle Panel: LSA Cosine similarity model; Lower
Panel: n-gram Similarity model.

Human scores model
Actual Group Predicted Group

Control Sibling Patient
Control 199 0 21
Patient 43 0 37
Sibling 45 0 8

LSA Cosine similarity model
Actual Group Predicted Group

Control Sibling Patient
Control 206 0 14
Patient 36 0 44
Sibling 50 0 3

n-gram Similarity model
Actual Group Predicted Group

Control Sibling Patient
Control Group 195 0 25
Patient 33 0 47
Sibling 51 0 2

Table 10 e Potential variables for stepwise model
selection. The last two variableswere only available for the
model including human scores.

Recall-time
Cosine Story 1
Cosine Story 2
n-gram Story 1
n-gram Story 2
n-gram English Story 1
n-gram English Story 2
Human Story 1
Human Story 2

Table 8 e Upper Panel: Modeling group on LSA cosine
similarity and recall-time, Stories 1 and 2. Lower Panel:
Modeling group on character n-gram profile distance and
recall-time, Stories 1 and 2.

Estimate Std. err. t Value 2.5% 97.5%

LSA cosine similarity
Cosine Story 1 $5.49 .95 $5.77 $7.43 $3.69
Cosine Story 2 $3.96 .87 $4.56 $5.69 $2.28
30 min $.65 .30 $2.18 $1.24 $.07
24 h $.66 .30 $2.21 $1.25 $.08
ControljSibling $5.90 .76 $7.74
SiblingjPatient $4.95 .74 $6.68

Character n-gram to Story
n-gram Story 1 .61 .11 5.33 .39 .84
n-gram Story 2 .30 .13 2.38 .05 .55
30 min $.75 .30 $2.50 $1.34 $.17
24 h $.91 .31 $2.98 $1.52 $.32
ControljSibling 4.23 .53 8.00
SiblingjPatient 5.16 .55 9.30
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Table 9 shows the results of running cross-validated models
for human scores, LSA cosine similarity and the n-gram
measure. The upper panel contains the confusion matrix
from the model using human scores as explanatory vari-

ables and we see for instance from the first row that of the
220 controls, 199 are correctly predicted as controls, 0 are
predicted as siblings and 21 are incorrectly predicted as
patients. The middle panel shows the confusion matrix
from the model using LSA cosine similarities as the
explanatory variables, where now the first row shows that
now 206 of the controls are correctly predicted and only 14
are incorrectly predicted as patients and the lower panel
shows the predictions from the n-gram model.

The model with human scores as the explanatory variable
has an accuracy of 66.9%,which is above the baseline guessing
accuracy of 62.3%, while the semantic model prediction ac-

curacy was 70.8%. The n-grammodel prediction accuracy was
68.5%, but tended to classify patients more accurately than
either humans or the semantic model, though also classified
manymore controls as patients than the other twomodels. As
noted earlier in discussing the conditional density plots (see
Fig. 5), we did not expect (and so it turned out), that no

participant was predicted in the sibling group from either

model. This confirms that these simple models are not able to
distinguish the siblings group. To improve the quality of the
estimates, the cross-validation runs were repeated and the
estimates of the accuracy were averaged for all the models.
Before discussing improving estimates, we first discuss issues
involved in the construction of models combining the
features.

To combine these features into a single model we used a
stepwise model selection based on AIC, since that fits in well
with the use of cross-validation prediction to validate the
choices. Though there are issues with stepwise model selec-

tion in stability of feature choice with collinear features and
with bias in the standard errors, it is still valid to make in-
ferences over the model predictions.

Two stepwise models were generated based on slightly
different initial variable sets. The first did not include the
human scores as potential features using only the auto-
mated features, and the second included human scores as
potential features. The performance of these two models
allows judging if there is any additional predictive power in
predicting group remaining in the human scores after ac-
counting for the semantic and character n-gram sequential

features. We use the stepAIC function from the MASS
package (Venables & Ripley, 2002) of R to perform the
stepwise model selection. Table 10 shows the starting vari-
able set, and Table 11 shows the models (the variables and
their coefficient estimates) resulting from the stepwise se-
lection for the variable set without human scores, and
including human scores.

The results indicated that the model that included human
scores amongst its potential predictors swapped the character
n-gram recall to Story 1 with the human score on Story 1,
which is another indication of how closely the character n-

gram modeled human scores. The model with human score
had a smaller AIC at 542.87 in contrast to 547.501 for the
previousmodel. We next performed a 10-fold cross-validation
prediction repeated 1000 times for each of the models. The
mean exact agreement and standard deviation are shown in
Table 12.

Despite the high correlation to human scores, the char-
acter n-gram to the story predicts least well with exact
agreement of 66.82%. Next best is the character n-gram to the
English profile at 67.93%. Next are the human scores at
68.21%. The LSA semantic measures are at 70.11%. Finally,
the stepwise model that includes both types of language

features is slightly better at 70.31% and including a human
score brings the best model up to 70.43%, so there is a very
small part of the human variance not captured by the other
automated measures, though the model based on just the
semantic and sequential features does quite well. Given the
large number of repetitions, all the differences between these
models are statistically significant. For instance the t-test
contrasting the combined model and combined model plus
human scores is highly significant, t(999) ¼ 5.90, p < .001, as is
the difference between the character n-gram to recall versus
the character n-gram to English profile with t(999) ¼ $49.92,

p < .001.

Table 11 e Stepwise models. Upper Panel: model without
human scores and Lower Panel:modelwith human scores.

Model without human scores Estimate

ControljSibling .35
SiblingjPatient 1.34
30 min $.73
24 h $.84
n-gram Story 1 .45
Cosine Story 2 $4.38
n-gram English Story 1 .60
n-gram English Story 2 $.38

Model with human scores Estimate

ControljSibling $2.84
SiblingjPatient $1.84
30 min $.66
24 h $.79
Human Story 1 $.14
Cosine Story 2 $4.15
n-gram English Story 1 .66
n-gram English Story 2 $.38

Table 12 e Prediction performance of models with varying
feature sets.

Model features Mean accuracy Std. dev.

n-grams to Story 66.82 .61
n-grams to English 67.93 .59
Human scores 68.21 .65
Cosines 70.11 .64
Combined 70.31 .69
Combined þ human 70.43 .69
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4. Discussion

Consistent with previous reports (e.g., Egan et al., 2003;

Skelley et al., 2008), patients with schizophrenia per-
formed significantly more poorly than healthy controls on a
widely-used and well-respected measure of verbal episodic
memory function, with siblings performing intermediary
between the two groups. The largest drop in performance
across all three groups was seen from immediate to short-
delay (30 min) recall, with a much smaller decline from 30
min to 24 h. This is consistent with theories of memory
consolidation, and in the main replicates previous findings
(e.g., Skelley et al., 2008). However, there are differences in
that the study of Skelley et al. (2008) found siblings’ per-

formance to be poorer than controls, whereas we found a
significant difference only for Story 1 and the difference was
not strong enough to survive in the summed score. In terms
of savings scores, we also found a slightly different pattern
to Skelley et al. (2008) at both short and long delays.
Although we also (not surprisingly) found patients’ perfor-
mance was poorer than controls at short delay, we also
found they recalled significantly less than siblings [which
Skelley et al. (2008) did not, although they did find siblings’
performance poorer than controls at short delay]. Further-
more, we did not uncover any differences at long delay,

whereas Skelley et al. (2008) reported worse performance in
patients relative to controls at long delay. Interestingly, both
our and Skelley et al.’s (2008) patient group performed
remarkably well in terms of long-delay savings [our study e

89%; Skelley et al. (2008) e 87%] compared with short delay
[our study e 58%; Skelley et al. (2008) e 66%]. Demographic
differences between the samples do not seem to be large
enough to account for observed differences (although we
note that our sample is considerably smaller and younger),
and thus it is possible that the observed differences across
studies reflect power issues in our sample (as it is consid-

erably smaller). It is also possible that some of these dif-
ferences (specifically the saving score differences) are an
artifact of not dividing both 30 min and 24 h by immediate
recall. Given our results, there are large individual differ-
ences. One way to compensate is to divide through by the
immediate score and hope that one is removing the indi-
vidual component. The alternative approach is the one we
have adopted in this paper; namely of using a linear mixed
model.

Beyond these differences across studies, our modeling
revealed robust correlations between the human raters and

both the language sequential features and LSA-based se-
mantic similarity features. This suggests that the automated
computational approach is both valid and reliable as a
complimentary scoring method to humans on this task.
Despite a high correlation of human rating scores with our
measures of sequential features, we conclude that LSA
performed better (than humans or syntax alone) at detect-
ing diagnostic group differences. While the human inter-
rater reliability values were marginally stronger than the
LSA-human inter-rater reliability values, they were none-
theless uniformly high, and it is important to keep in mind

that the two methods (human and machine) were employ-

ing different scoring strategies to achieve the same end.
Human raters in essence matched specific words, whereas
the LSA cosine matched passages based on overall meaning,
without regard to the presence of key words or word order.
A rating task like matching words, because it is so con-
strained, can drive high levels of consistency in human
raters even if that consistency is not always measuring the
construct of interest. More important to note, while the
computational model performed qualitatively similarly to
the human raters, it was in fact significantly better able to
predict group membership across three time points (i.e.,

immediate recall, 30 min later and 24 h later) based on
participants’ test scores. This demonstrates that LSA vari-
ables can be used interchangeably with human ratings, and
may well provide both more accurate and detailed infor-
mation. Further research is needed to examine other as-
pects of recall (e.g., omissions and tangentiality) to
determine how well LSA variables can capture these vari-
ables that are not recognized under current scoring rubrics.
While logistic regression has a number of useful features, in
future work for predicting group, more sophisticated ma-
chine learning classification techniques, such as support

vector machines (Cortes & Vapnik, 1995) can also be
considered. In addition, we note that in this paper we have
only used the sequential features as scalars. Just as with the
semantic measures, one could consider using a k-near
measure (namely find the nearest n-gram neighbors and
select the group as the majority group among the k-near
set).

In this paper, we have employed recalls from a widely
used prose recall test to evaluate a framework that incor-
porated analyses of both semantic and sequential language
features that may be implicated in verbal recall. The

framework permitted the exploration of the usefulness of
an automated scoring methodology that has the potential to
provide similar or better scoring metrics to that of human
raters, as well as a more detailed characterization of recall
performance over time. The strong predictions of the
models in this framework indicate that these language
features can be closely implicated in differences in language
from people in different clinical states. Concerning this
latter issue, we suggest that the framework we have pre-
sented may help in the much needed enterprise of defining
the behavioral phenotype that may relate more directly to
underlying neurobiology and how genes effect neural sys-

tems and behavior. Indeed, a core premise underlying the
current computational approach to prose recall is that a
more fine-grained framework with which to parse the
components of prose recall e in this case especially its
language sequences and semantic parts e will be of use in
unraveling some of the hallmark deficits of episodic verbal
memory in schizophrenia, and thereby contribute to a
greater understanding of the underlying cognitive and
neural mechanisms.

A complementary approach exploiting computational
models can provide additional insights into the sources of

language disruption. Hoffman et al. (2010) utilized models
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based on neural networks and in concordance with the re-

sults seen here, found evidence of memory consolidation
failures attributable for language patterns found in schizo-
phrenia. The promise of these computational models,
especially with the recent advances in developing emergent
features from “deep” networks (Hinton, Osindero, & Teh,
2006), may help uncover new, potentially more diagnostic
phenotypes. Although interesting, a discussion of this area
is beyond the scope of this paper, but serves to emphasize
the complex and intertwined nature of episodic memory
and the semantic and sequential aspects of language. Put
differently, the framework that we have presented illus-

trates a way in which the actual words that are uttered
may be used as a critical tool with which to explore the
neurocognitive mechanisms and systems underlying prose
recall.
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Appendix. Family random effect

Both human score and cosine similarity responses were
modeled using group and recall-time as fixed effect explana-

tory variables within a linear mixed effects framework. The
impact of adding a random effect for family to a baseline
model with an existing individual random effect was inves-
tigated to determine if the more complex model generated a
more predictive model. The hypothesis is that some of the
ability in the recall task coheres within families (e.g., Egan
et al., 2001, 2003), and it would improve the quality of the es-
timates to correctly account for the variance between indi-
vidual and family effects if that proves necessary.
Unfortunately there are issues with this data set that nega-
tively impact the ability to discriminate family effects. The
control group, which constitutes the largest group, has no

siblings in the study and families withmore than onemember
are fairly rare among the other two groups including 17 pa-
tients without siblings and five siblings without patients.
There are 122 unique individuals comprising 109 families.
Table A1 shows the family IDs (FID) (randomly assigned for
this analysis) and the counts for the 11 families that are

represented by more than one individual. Two families are

composed of two siblings and one patient, and the rest with
one sibling and one patient. This shortage of multi-member
families provides the statistical machinery with less infor-
mation on family performance so likely will have increased
difficult in allocating variance between individual effects and
family effects.

Using notation described in Methods section, we will
compare the models specified in equation (A1) with only an

individual random effect and (A2), which adds a family
random effect, zf. A likelihood ratio test as well as AIC and BIC
will guide the comparison of the models. We will separately
test the response Y with human scores and cosine similarities
with fixed effects for group (g) and recall-time (t), and a
random effect for individual zi. The fixed effects for equation
(A1) for both Stories 1 and 2 are presented in Table A2. See the
description for Table 5 formore details on how to interpret the
fixed effects. Remodeling adding a family random effect yields
nearly identical fixed effects, which are not repeated here.

Yit ¼ b0 þ bg þ bt þ zi þ ei (A1)

Yit ¼ b0 þ bg þ bt þ zi þ zf þ ei (A2)

Table A2 e Fixed effects modeling human scores for
Stories 1 and 2 without a family random effect.

Estimate Std. err. t Value 2.5% 97.5%

Story 1
Fixed effects:
Intercept 14.92 .49 30.53 13.96 15.87
Sibling $1.65 1.09 $1.52 $3.77 .47
Patient $6.45 .92 $7.03 $8.24 $4.66
30 min $2.53 .20 $12.89 $2.92 $2.15
24 h $2.88 .20 $14.45 $3.28 $2.49

Story 2
Fixed effects:
Intercept 13.48 .47 28.77 12.56 14.39
Sibling $.43 1.04 $.41 $2.46 1.60
Patient $5.70 .88 $6.48 $7.42 $3.98
30 min $1.16 .18 $6.29 $1.53 $.80
24 h $1.30 .19 $6.89 $1.66 $.93

Table A1 e Family member counts for families with more
than one member.

FID C S P

8A3 0 2 1
8A4 0 1 1
8A8 0 2 1
8A9 0 1 1
8B3 0 1 1
8B9 0 1 1
8C3 0 1 1
8D5 0 1 1
8D7 0 1 1
8D8 0 1 1
8F2 0 1 1
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Table A3 shows the random effects for the two models

with and without a family effect for Story 1. Between the
two models, the residual variance remains the same, so in
the family model the variance explained by the random
effects is just reallocated between individual and family.
The 95% confidence interval for the standard deviation for
the family random effect includes zero (represented as a
lower bound of undefined denoted by NA) so it is not sig-
nificant (Since standard deviation cannot assume values
less than zero, the lower bound becomes undefined, hence
the NA). Story 2 was also modeled without and with family,
and the fixed effects were nearly identical between models.

The 95% confidence interval for the standard deviation of
the family effect includes zero, so the Story 2 coefficients
are not presented here.

Table A4 shows the results of comparing the two models.
The AIC increased for Story 1 and was identical for Story 2

while the BIC increased for both of the more complex
models. In neither case was the likelihood ratio test signifi-
cant, so we conclude the more complex model with a family
random effect is not more predictive.

The analysis was repeated, but this time using cosine
similarity as the response variable. Table A5 shows the es-

timates for Story 1. In this case, there is a small drop in
variance of the residuals between the models, though the
estimate of the standard deviation of the family effect, as
before, contains zero and is so not significant. The estimates

of the fixed effects do not change much between the models

and are not presented here.

Table A6 shows the results of the likelihood ratio test be-
tween the two models. AIC is smaller for the more complex

model, but BIC is larger. The p-value is .077. While not signifi-
cant, (Pinheiro & Bates, 2000) cited in (Bates to be published)
have shown that probabilities generated at the boundary of the
legal values, as is the case here for the standard deviation, are
conservative, by up to a factor of 2. Stepping back and
computing the 90% confidence interval (from 5% to 95%) for the
family standard deviation is (.024, .12), which does not include
zero so indicates significance at the 90% level.

The analysis was repeated for Story 2. There was a small
drop in residual variation adding the family random effect, but
the standard deviationwas not significant. Table A6 shows that

the AICwas the same for themodels, while the BIC increased in
themore complexmodel andwith a p¼ .15, the likelihood ratio
was not significant.

There is a small hint that there might be a family effect,
since the standard deviation for the cosine response in Story 1
was nearly significant. We do not want to overstate the

importance of this result since the three other cases were
clearly not significant. Given the scarcity of families in this

data set it does suggest that further investigation of a family
effect may be warranted. This also may suggest that the
cosine similarity is capturing some part of the recall phe-
nomena that the human scores are not.

Table A4 e Likelihood ratio tests for Story 1 and Story 2 modeling human scores with and without family random effect.

Df AIC BIC logLik Deviance Chisq Chi Df Pr (>Chisq)

Story 1
ID only 7 1676.7 1703.8 $831.35 1662.7
ID þ family 8 1678.3 1709.2 $831.15 1662.3 .40 1 .53

Story 2
ID only 7 1639.4 1666.4 $812.68 1625.4
ID þ family 8 1639.4 1670.3 $811.71 1623.4 1.94 1 .16

Table A5 e Random effects modeling cosine for Story 1
with and without a family random effect.

Groups Name Var. Std. dev. 2.5% 97.5%

ID only
Random effects:
ID Intercept .0073 .086 .11 .14
Residual .0073 .086 .062 .074
Number of obs: 353; ID: 122

ID D family
Random effects:
ID Intercept .0055 .074 .052 .13
Family Intercept .0055 .074 NA .12
Residual .0055 .074 .062 .074
Number of obs: 353; ID: 122; family: 109Table A3 e Random effects modeling human scores for

Story 1 with and without a family random effect.

Groups Name Var. Std. dev. 2.5% 97.5%

ID only
Random effects:
ID Intercept 16.38 4.05 3.52 4.58
Residual 2.29 1.51 1.38 1.65
Number of obs: 353; ID: 122

ID D family
Random effects:
ID Intercept 12.72 3.57 2.32 4.55
Family Intercept 3.70 1.92 NA 3.54
Residual 2.29 1.51 1.38 1.65
Number of obs: 353; ID: 122; family: 109
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Supplementary data

Supplementary data related to this article can be found at
http://dx.doi.org/10.1016/j.cortex.2014.01.021.
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Elvevåg, B., & Goldberg, T. E. (2000). Cognitive impairment in
schizophrenia is the core of the disorder. Critical Reviews in
Neurobiology, 14, 1e21.

First, M., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1997).
User’s guide for the structured clinical interview for DSM-IV axis I
disorders e Clinician version (SCID-CV). Washington, DC:
American Psychiatric Press.

Foltz, P. W., Laham, D., & Landauer, T. K. (1999). Automated essay
scoring: applications to educational technology. In B. Collis, &
R. Oliver (Eds.), Proceedings of EDMedia ’99 (pp. 939e944).
Charlottesville, VA: Association of Computing in Education.

Goldberg, T. E., Torrey, E. F., Gold, J. M., Bigelow, L. B.,
Ragland, R. D., Taylor, E., et al. (1995). Genetic risk of
neuropsychological impairment in schizophrenia: a study of
monozygotic twins discordant and concordant for the
disorder. Schizophrenia Research, 17, 77e84.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of
statistical learning (2nd ed.). New York: Springer.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning
algorithm for deep belief nets. Neural Computation, 18(7),
1527e1554.

Ho, B. C., Milev, P., O’Leary, D. S., Librant, A., Andreasen, N. C., &
Wassink, T. H. (2006). Cognitive and magnetic resonance
imaging brain morphometric correlates of brain-derived

Table A6 e Likelihood ratio tests for Story 1 and Story 2 modeling cosine with and without family random effect.

Df AIC BIC logLik Deviance Chisq Chi Df Pr (>Chisq)

Story 1
ID only 7 $601.34 $574.28 307.67 $615.34
ID þ family 8 $602.48 $571.55 309.24 $618.48 3.13 1 .077

Story 2
ID only 7 $548.50 $521.43 281.25 $562.50
ID þ family 8 $548.54 $517.61 282.27 $564.54 2.04 1 .15

c o r t e x 5 5 ( 2 0 1 4 ) 1 4 8e1 6 6 165



Author's personal copy

neurotrophic factor val66met gene polymorphism in patients
with schizophrenia and healthy volunteers. Archives of General
Psychiatry, 63, 731e740.

Hoffman, R., Grasemann, U., Gueorguieva, R., Quinlan, D.,
Lane, D., & Miikkulainen, R. (2010). Using computational
patients to evaluate illness mechanisms in schizophrenia.
Biological Psychiatry, 69(10), 997e1005.

Hofmann, H., & Theus, M. (2005). Interactive graphics for visualizing
conditional distributions. Unpublished Manuscript. (cited in R
Core Team (2012)).

Hornik, K., Rauch, J., Buchta, C., & Feinerer, I. (2012). Textcat: N-
Gram based text categorization. R package version 0.1-1 http://
CRAN.R-project.org/package¼textcat.

Jastak, S., & Wilkinson, G. S. (1984). The wide range achievement test:
Revised administration manual (rev ed.). Wilmington, DE: Jastak
Associates, Inc.

Jurafsky, D., & Martin, J. H. (2009). Speech and language processing
(2nd ed.). Upper Saddle River, NJ: Pearson Education.

Kalkstein, S., Hurford, I., & Gur, R. C. (2010). Neurocognition in
schizophrenia. Current Topics in Behavioral Neuroscience, 4,
373e390.

Kintsch, W. (1998). Comprehension: A paradigm for cognition. New
York: Cambridge University Press.

Kullback, S., & Leibler, R. A. (1951). On information and
sufficiency. Annals of Mathematical Statistics, 22, 79e86.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s
problem: the latent semantic analysis theory of acquisition,
induction and representation of knowledge. Psychological
Review, 104(2), 211e240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to
latent semantic analysis. Discourse Processes, 25, 259e284.

Lautenschlager, N. T., Dunn, J. C., Bonney, K., Flicker, L., &
Almeida, O. P. (2006). Latent semantic analysis: an improved
method to measure cognitive performance in subjects of non-
English speaking background. Journal of Clinical and
Experimental Neuropsychology, 28(8), 1381e1387.

Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004).
Neuropsychological assessment (4th ed.). New York: Oxford
University Press.

Lim, K. O., Ardekani, B. A., Nierenberg, J., Butler, P. D., Javitt, D. C.,
& Hoptman, M. J. (2006). Voxelwise correlational analyses of
white matter integrity in multiple cognitive domains in
schizophrenia. American Journal of Psychiatry, 163(11),
2008e2010.

Longenecker, J., Genderson, J., Dickinson, D., Malley, J.,
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