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The rapid growth of the literature on neuroimaging in humans
has led to major advances in our understanding of human brain
function but has also made it increasingly difficult to aggregate
and synthesize neuroimaging findings. Here we describe and
validate an automated brain-mapping framework that uses
text-mining, meta-analysis and machine-learning techniques

to generate a large database of mappings between neural and
cognitive states. We show that our approach can be used to
automatically conduct large-scale, high-quality neuroimaging
meta-analyses, address long-standing inferential problems in
the neuroimaging literature and support accurate ‘decoding’ of
broad cognitive states from brain activity in both entire studies
and individual human subjects. Collectively, our results have
validated a powerful and generative framework for synthesizing
human neuroimaging data on an unprecedented scale.

The development of noninvasive neuroimaging techniques such
as functional magnetic resonance imaging (fMRI) has spurred
rapid growth of literature on human brain imaging in recent years.
In 2010 alone, more than 1,000 fMRI articles had been published!.
This proliferation has led to substantial advances in our under-
standing of the human brain and cognitive function; however, it
has also introduced important challenges. In place of too little
data, researchers are now besieged with too much. Because indi-
vidual neuroimaging studies are often underpowered and have
relatively high false positive rates?~%, multiple studies are required
to achieve consensus regarding even broad relationships between
brain and cognitive function. It is therefore necessary to develop
new techniques for the large-scale aggregation and synthesis of
human neuroimaging data*-°.

Here we describe and validate a new framework for brain
mapping, NeuroSynth, that takes an instrumental step toward
automated large-scale synthesis of the neuroimaging literature.
NeuroSynth combines text-mining, meta-analysis and machine-
learning techniques to generate probabilistic mappings between
cognitive and neural states that can be used for a broad range
of neuroimaging applications. Whereas previous approaches
have relied heavily on researchers’ manual efforts (for example,
refs. 7,8), which limits the scope and efficiency of resulting

analyses!, our framework is fully automated and allows rapid and
scalable synthesis of the neuroimaging literature. We show that
this framework can be used to generate large-scale meta-analyses
for hundreds of broad psychological concepts; support quantita-
tive inferences about the consistency and specificity with which
different cognitive processes elicit regional changes in brain activ-
ity; and decode and classify broad cognitive states in new data
solely on the basis of observed brain activity.

RESULTS

Overview

Our methodological approach includes several steps (Fig. 1a).
First, we used text-mining techniques to identify neuroimaging
studies that used specific terms of interest (for example, ‘pain,
‘emotion, ‘working memory’ and so on) at a high frequency (>1 in
1,000 words) in the article text. Second, we automatically extracted
activation coordinates from all tables reported in these studies.
This approach produced a large database of term-to-coordinate
mappings; here we report results based on 100,953 activation foci
drawn from 3,489 neuroimaging studies published in 17 journals
(Online Methods). Third, we conducted automated meta-analyses
of hundreds of psychological concepts, producing an extensive set
of whole-brain images that quantified relationships between brain
activity and cognition (Fig. 1b). Finally, we used a machine-learning
technique (naive Bayes classification) to estimate the likelihood that
new activation maps were associated with specific psychological
terms, which allowed relatively open-ended decoding of psychologi-
cal constructs from patterns of brain activity (Fig. 1c).

Automated coordinate extraction

Our approach differs from previous work in its heavy reliance
on automatically extracted information, raising several poten-
tial concerns about data quality. For example, the software might
incorrectly classify noncoordinate information in a table as an
activation focus (a false positive); different articles report foci
in different stereotactic spaces, resulting in potential discrepan-
cies between anatomical locations represented by the same set of
coordinates; and the software did not discriminate activations
from deactivations.
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To assess the effect of these issues on data quality, we conducted
supporting analyses (Supplementary Note). First, we compared auto-
matically extracted coordinates with a reference set of manually entered
foci in the Surface Management System Database (SumsDB)”?, and
found high rates of sensitivity (84%) and specificity (97%). Second,
we quantified the proportion of activation increases versus decreases
reported in the neuroimaging literature. We found that decreases
constituted a small proportion of results and had minimal effect on
our results. Third, we developed a preliminary algorithm (based on
ref. 10) to automatically detect and correct for between-study differences
in stereotactic space (Supplementary Fig. 1). Although automated
extraction missed a minority of valid coordinates, and work remains
to be done to increase the specificity of the extracted information, most
coordinates were extracted accurately and several factors of a priori
concern had relatively small influences on the results.

Large-scale automated meta-analysis
We used the database of automatically extracted activation coordi-
nates to conduct a comprehensive set of automated meta-analyses

Figure 2 | Comparison of previous meta-analysis a
results with forward and reverse inference
maps produced automatically using the
NeuroSynth framework. (a) Meta-analytic maps
produced manually in previous studies4-16,

(b) Automatically generated forward inference
maps showing the probability of activation
given the presence of the term (P(act.|term)).
(c) Automatically generated reverse inference
maps showing the probability of the term given
observed activation (P(term|act.)). Meta-
analyses were carried out for working memory
(top), emotion (middle) and physical pain
(bottom) and mapped to the PALS-B12 atlas3C.
Regions in b were consistently associated with
the term and regions in ¢ were selectively
associated with the term. To account for

base differences in term frequencies, reverse
inference maps assumed uniform priors (equal Pain
50% probabilities of ‘term” and ‘no term’).

Activation in orange or red regions implies

a high probability that a term is present,

and activation in blue regions implies a high

probability that a term is not present. Values

Working
memory

Emotion

Figure 1 | Schematic overview of NeuroSynth framework and applications.
(a) Outline of the NeuroSynth approach. The full text of a large corpus of
articles is retrieved and terms of scientific interest are stored in a database.
Articles are retrieved from the database on the basis of a user-entered
search string (for example, ‘pain’) and peak coordinates from the associated
articles are extracted from tables. A meta-analysis of the peak coordinates
is automatically performed, producing a whole-brain map of the posterior
probability of the term given activation at each voxel (P(pain|activation)).
(b) Outlines of forward and reverse inference in brain imaging. Given a
known psychological manipulation, one can quantify the corresponding
changes in brain activity and generate a forward inference, but given an
observed pattern of activity, drawing a reverse inference about associated
cognitive states is more difficult because multiple cognitive states could
have similar neural signatures. (c) Given meta-analytic posterior probability
maps for multiple terms (for example, working memory, emotion and pain),
one can classify a new activation map by identifying the class with the
highest probability, P, given the new data (in this example, pain).

for several hundred terms of interest. For each term, we identified
all studies that used the term at high frequency anywhere in the
article text!! and submitted all associated activation foci to a meta-
analysis. This approach generated whole-brain maps that showed
the strength of association between each term and every location
in the brain, enabling us to make multiple kinds of quantitative
inference (for example, if the term ‘language’ had been used in a
study, how likely was the study to report activation in Broca’s area?
If activation had been observed in the amygdala, what was the
probability that the study frequently used the term ‘fear’?).

To validate this automated approach, which rests on the
assumption that simple word counts are a reasonable proxy
for the substantive content of articles, we conducted several
supporting analyses (Supplementary Note). First, we found
that NeuroSynth accurately recaptured conventional boundaries
between distinct anatomical regions by comparing lexically
defined regions of interest to anatomically defined regions of
interest (Supplementary Fig. 2). Second, we used NeuroSynth
to replicate previous findings of visual category-specific activation

b Forward inference c Reverse inference

P(act.[term)
B ]

for all images are shown only for regions that survived a test of association between term and activation, with a whole-brain correction for multiple
comparisons (false discovery rate was 0.05). DLPFC, dorsolateral prefrontal cortex; DACC, dorsal anterior cingulate cortex; AI, anterior insula.
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Figure 3 | Comparison of forward and reverse inference in regions of
interest. (a) Labeled regions of interest shown on lateral and medial
brain surfaces. (b) Comparison of forward inference (probability of
activation given term P(act.|term)) and reverse inference (probability of
term given activation P(term|act.)) for the domains of working memory,
emotion and pain as marked. * denotes results at a false discovery rate
threshold of 0.05; (whole-brain false discovery rate, (g) = 0.05). DACC,
dorsal anterior cingulate cortex (stereotactic coordinates in Montreal
Neurological Institute space: +2, +8, +50); Al, anterior insula (+36, +16,
+2); IFJ, inferior frontal junction (-50, +8, +36); PI, posterior insula
(+42, 24, +24); APFC, anterior prefrontal cortex (-28, +56, +8); VMPFC,
ventromedial prefrontal cortex (0, +32, —4). Dashed lines indicate even
odds of a term being used (P(term|act.) = 0.5).

in regions such as the fusiform face area!? and visual word form
area!’ (Supplementary Fig. 3). Third, we found that more con-
servative meta-analyses in which the lexical search space had been
restricted to article titles yielded similar, but less sensitive, meta-
analysis results (Supplementary Fig. 4).

Finally, we compared our results with those produced by
previous manual approaches. Comparison of automated meta-
analyses of three broad psychological terms (‘working mem-
ory, ‘emotion’ and ‘pain’) with previously published meta- or
mega-analytic maps!4-1¢ revealed marked qualitative (Fig. 2)
and quantitative convergence (Supplementary Fig. 5) between
approaches. To directly test the convergence of automated and
manual approaches when applied to similar data, we manually
validated 265 automatically extracted pain studies and performed
a standard multilevel kernel density analysis!® to compare experi-
mental pain stimulation with baseline (66 valid studies). There
was a notable overlap between automated and manual results
(correlation across voxels, 0.84; Supplementary Fig. 6). These
results showed that, at least for broad domains, an automated
meta-analysis approach generated results that were comparable
in sensitivity and scope to those produced with more effort in
previous studies.

Quantitative reverse inference

The relatively comprehensive nature of the NeuroSynth database
enabled us to address a long-standing inferential problem in the
neuroimaging literature, namely how to quantitatively identify
cognitive states from patterns of observed brain activity. This
problem of ‘reverse inference’!” arises because most neuroimaging
studies are designed to identify neural changes that result from
known psychological manipulations and not to determine what
cognitive state(s) a given pattern of activity implies!” (Fig. 1b).
For instance, fear consistently activates the human amygdala, but
this does not imply that people in whom the amygdala is activated
must be experiencing fear because other affective and nonaffec-
tive states have also been reported to activate the amygdala*®18,
True reverse inference requires knowledge of which brain regions
and networks are selectively, and not just consistently, associated
with particular cognitive states!>17.

Because the NeuroSynth database contains a broad set of term-
to-activation mappings, our framework is well suited for drawing
quantitative inferences about mind-brain relationships in both
the forward and reverse directions. We could quantify both the
probability that there would be activation in specific brain regions
given the presence of a particular term (P(activation|term) or ‘for-
ward inference’), and the probability that a term would occur in an

ARTICLES |

a Left IFJ

Right PI
Left APFC 5 !g g ; !Rigm Al
Right DACC
i VMPFC ii

b 03 Forward inference Reverse inference
. *

Working
memory

0.14 *

P(act.term)
o
o N
1
I
I
|
|
P(termlact.)
o o o o
N s o ©
. O[]+
i
it
1
I

O » © & O O N S O
I sl & O e
NSRS R SR
@ v @® ¥
037 , =« 08 *
£ - 3 : ;
€02 B 06
Emotion %_ % 4L T ) I
8 o1 * x e
z 0 |—| bg 04 *
Oy o ol_l 13 0270 N > & <O <O
» Q
Qvo@‘v&«é“ & @QQ Fo & é<‘<<-<§\ K @Q((
R SN SR QN TS
Q;\Q» N Q;\C‘o N3
0.3

*
€ o2 = .
Pain £ - 8 06
g 01 EE_) ’ B 101
~ . * -~
g 2 04
1 ] 1
] ™ O O 02 O

> O ISR 3
F ¥ L KK 7 ¥ L& LK
SRS RIS SRS R R

RPN RS RAPS PR

@® M @® v

article given the presence of activation in a particular brain region
(P(term|activation) or reverse inference). Comparison of these two
analyses allowed us to assess the validity of many common infer-
ences about the relationship between neural and cognitive states.

For illustration, we focused on the sample domains of working
memory, emotion and pain, which are of substantial basic and
clinical interest and have been extensively studied using fMRI (for
additional examples, see Supplementary Fig. 7). These domains
are excellent candidates for quantitative reverse inference, as they
are thought to have confusable neural correlates, with common
activation of regions such as the dorsal anterior cingulate cortex
(DACC)? and anterior insula.

Our results showed differences between the forward and reverse
inference maps in all three domains (Fig. 2). For working memory,
the forward inference map revealed the most consistent associa-
tions in the dorsolateral prefrontal cortex, anterior insula and
dorsal medial frontal cortex, replicating previous findings!>2°.
However, the reverse inference map instead implicated the anterior
prefrontal cortex and posterior parietal cortex as the regions that
were most selectively activated by working memory tasks.

We observed a similar pattern for pain and emotion. In both
domains, frontal regions that have been broadly implicated in

NATURE METHODS | VOL.8 NO.8 | AUGUST 2011 | 667



@.4 © 2011 Nature America, Inc. All rights reserved.

| ARTICLES

Figure 4 | Three-way classification of working a New studies classified as: New subjects classified as:
memory, emotion and pain. (a) Naive Bayes 140 B Working 8 B Working
classifier performance when cross-validated on 120 memory memory
.. . R 100 M Emotion B Emotion
studies in the database (left) or applied to individual O Pain 60 O Pain

subjects from studies not in the database (right).
(b) Whole-brain maximum posterior probability
map; each voxel is colored by the term with the
highest associated probability. (c) Whole-brain
maps showing the proportion of individual subjects
in the three pain studies (n = 79 subjects total)
who showed activation at each voxel (P < 0.05,
uncorrected), averaged separately for subjects who
were classified correctly (n = 51 subjects; top) or c
incorrectly (n = 28 subjects; bottom). Regions are
color-coded according to the proportion of subjects

in the sample who showed activation at each voxel.

Number of studies

memory
Sensitivity: ~ 74% 76%
Specificity:  88%  82%

Pain:
correct

goal-directed cognition?!~2* showed con-

sistent activation in the forward analysis

but were relatively nonselective in the reverse analysis (Fig. 2). For
emotion, the reverse inference map revealed much more selective
activation in the amygdala and ventromedial prefrontal cortex
(Fig. 3). For pain, the regions of maximal pain-related activation
in the insula and DACC shifted from anterior foci in the forward
analysis to posterior ones in the reverse analysis (Fig. 3). This is
consistent with studies of nonhuman primates that have impli-
cated the dorsal posterior insula as a primary integration center
for nociceptive afferents?* and with studies of humans in which
anterior aspects of the so-called ‘pain matrix’ responded nonse-
lectively to multiple modalities?>

Several frontal regions that showed consistent activation for
emotion and pain in the forward analysis were associated with a
decreased likelihood that a study involved emotion or pain in the
reverse inference analysis (Fig. 3). This seeming paradox reflected
the fact that even though lateral and medial frontal regions had
been consistently activated in studies of emotion and pain, they
had been activated even more frequently in studies that did not
involve emotion or pain (Supplementary Fig. 8). Thus, the fact
that these regions showed involvement in pain and emotion prob-
ably reflected their much more general role in cognition (for
example, sustained attention or goal-directed processing®?23)
rather than processes specific to pain or emotion.

These results showed that without the ability to distinguish con-
sistency from selectivity, neuroimaging data can produce misleading
inferences. For instance, neglecting the high base rate of DACC activ-
ity might lead researchers in the areas of cognitive control, pain and
emotion to conclude that the DACC has a key role in each domain.
Instead, because the DACC is activated consistently in all of these
states, its activation may not be diagnostic of any one of them and
conversely, might even predict their absence. The NeuroSynth frame-
work can potentially address this problem by enabling researchers to
conduct quantitative reverse inference on a large scale.

Open-ended classification of cognitive states

An emerging frontier in human neuroimaging is brain ‘decoding’:
inferring a person’s cognitive state from their observed brain activ-
ity. The problem of decoding is essentially a generalization of the
univariate reverse inference problem addressed above: instead of
predicting the likelihood of a particular cognitive state given acti-
vation at a single voxel, one can generate a corresponding predic-
tion based on an entire pattern of brain activity. The NeuroSynth
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framework is well positioned for such an approach: whereas previ-
ous decoding approaches have focused on discriminating between
narrow sets of cognitive states and have required extensive train-
ing on raw fMRI datasets (for example, refs. 26-28), the breadth
of cognitive concepts represented in the NeuroSynth database
affords relatively open-ended decoding, with little or no training
on new datasets.

To assess the ability of our approach to decode and classify
cognitive states, we trained a naive Bayes classifier?® that could
discriminate between flexible sets of cognitive states given new
images as input (Fig. 1c). First, we tested the classifier’s ability to
classify studies in the NeuroSynth database that had been associ-
ated with different terms. In a tenfold cross-validated analysis,
the classifier discriminated between studies of working memory,
emotion and pain with high sensitivity and specificity (Fig. 4a),
showing that each of these domains had a relatively distinct neural
signature (Fig. 4b).

To assess the classifier’s ability to decode cognitive states in
individual human subjects, we applied the classifier to 281 sin-
gle-subject activation maps derived from contrasts between:
n-back working memory performance and rest (94 maps);
negative and neutral emotional photographs (108 maps); and
intense and mild thermal pain (79 maps). The classifier performed
substantially above chance, identifying the originating study type
with sensitivities of 94%, 70% and 65%, respectively (chance =
33%), and specificities of 80%, 86% and 98% (Fig. 4a). Moreover,
there were systematic differences in activation patterns for cor-
rectly and incorrectly classified subjects. For example, incorrectly
classified subjects in physical pain tasks (Fig. 4c) systematically
activated the lateral orbitofrontal cortex and dorsomedial prefrontal
cortex but not secondary somatosensory cortex or the posterior
insula, suggesting that the discomfort owing to noxious heat in
these subjects may have been qualitatively different (for example,
emotionally generated versus physically generated pain). Thus,
these findings demonstrate the viability of decoding cognitive
states in new subjects without training and suggest new hypoth-
eses for exploration.

Next, to generalize beyond working memory, emotion and
pain, we selected 25 broad psychological terms that occurred at
high frequency in the database (Fig. 5). We estimated classifi-
cation accuracy in tenfold cross-validated two-alternative and
multiclass analyses. The classifier performed substantially above
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Figure 5 | Accuracy of the naive Bayes classifier
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74%), which suggests that pain perception
might be a distinctive state that is grouped
neither with other sensory modalities
nor with other affective concepts such as
arousal and emotion. Conversely, concep-
tually related terms such as ‘executive’ and ‘working memory’
could not be distinguished at a rate different from chance, reflect-
ing their closely overlapping usage in the literature.
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DISCUSSION

Using the NeuroSynth framework, first we conducted large-scale
automated neuroimaging meta-analyses of broad psychological
concepts that are lexically well represented in literature. A key
benefit of NeuroSynth is the ability to quantitatively distinguish
forward inference from reverse inference, which should allow
researchers to assess the specificity of mappings between neural
and cognitive function, a long-standing goal of cognitive neuro-
science research. Although considerable work remains to be done
to improve the specificity and accuracy of the tools developed
here, we expect quantitative reverse inference to be increasingly
important in future meta-analytic studies.

Second, we decoded broad psychological states in a relatively
open-ended way in individual subjects; this was, to our know-
ledge, the first application of a domain-general classifier that can
distinguish a broad range of cognitive states based solely on prior
literature. The ability to decode brain activity without previous
training data or knowledge of the ‘ground truth’ for an individ-
ual is particularly promising. Our results raise the prospect that
legitimate ‘mind reading’ of more nuanced cognitive and affective
states might eventually become feasible with additional technical
advances. However, the present NeuroSynth implementation
provides no basis for such inferences, as it distinguishes only
between relatively broad psychological categories.

Third, we designed our platform to support immediate use
in a broad range of neuroimaging applications. To name just a
few potential applications, researchers could use these tools and
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results to define region-of-interest masks or Bayesian priors in
hypothesis-driven analyses; to conduct quantitative compari-
sons between meta-analysis maps of different terms of interest;
to use the automatically extracted coordinate database as a start-
ing point for more refined manual meta-analyses; to draw more
rigorous reverse inferences when interpreting results by refer-
ring to empirically established mappings between specific regions
and cognitive functions; and to extract the terms that are most
frequently associated with an active region or distributed pattern
of activity, thereby contextualizing new research findings on the
basis of published data.

Of course, the NeuroSynth framework is not a panacea for the
many challenges that face cognitive neuroscientists, and several
limitations remain to be addressed. We focus on two in partic-
ular here. First, the present reliance on a purely lexical coding
approach, albeit effective, is suboptimal in that it relies on tradi-
tional psychological terms that do not carve the underlying neural
substrates at their natural joints, do not capitalize on redundancy
across terms (for example, ‘pain, ‘nociception’ and ‘noxious’ over-
lap closely but are modeled separately) and do not allow closely
related constructs to be easily distinguished (for example, physical
versus emotional pain). Future efforts could overcome these limi-
tations by using controlled vocabularies or ontologies for query
expansion, developing extensions for conducting multiterm
analyses and extracting topic-based representations of article text
(Supplementary Note).

Second, although our automated tools accurately extract coor-
dinates from articles, they cannot extract information about
fine-grained cognitive states (for example, different negative
emotions). Thus, the NeuroSynth framework is currently useful
primarily for large-scale analyses involving broad domains and
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should be viewed as a complement to, and not as a substitute for,
manual meta-analysis approaches. We are currently working to
develop improved algorithms for automatic coding of experimen-
tal contrasts, which should substantially improve the specificity of
the resulting analyses. In parallel, we envision a ‘crowd-sourced’
collaborative model in which multiple groups participate in the
validation of automatically extracted data, thereby combining the
best elements of both automated and manual approaches. Such
efforts should further increase the specificity and predictive accu-
racy of the decoding model, and we hope that they will lead to
the development of many other applications that we have not
anticipated here.

To encourage application and development of a synthesis-
oriented approach, we have publicly released most of the tools
and data used in the present study through a web interface (http://
neurosynth.org/). We hope that cognitive neuroscientists will use,
and contribute to, this new resource, with the goal of developing
new techniques for interpreting and synthesizing the wealth of
data generated by modern neuroimaging techniques.

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS

Automated coordinate extraction. To automatically extract
stereotactic coordinate information from published neuroimag-
ing articles, we developed a software library written in the Ruby
programming language. We released the NeuroSynth automated
coordinate extraction (ACE) tools under an open-source license
and encourage other researchers to contribute to the codebase
(http://github.com/neurosynth/). Because the code is freely avail-
able for inspection and use, we provide only a functional, non-
technical overview of the tools here.

In brief, ACE consists of a parsing engine that extracts coor-
dinate information from published articles by making educated
guesses about the contents of the columns reported in tables in
neuroimaging articles (at present, ACE does not attempt to extract
coordinates that are reported in the main text of an article or in
supplementary materials). For each full-text HTML article pro-
vided as input, ACE scans all tables for rows that contain coor-
dinate-like data. Rows or tables that do not contain values that
correspond to a flexible template used to detect coordinates are
ignored. Moreover, all extracted coordinates are subjected to basic
validation to ensure that they reflect plausible locations in stere-
otactic space (for example, all coordinates with absolute values >
100 in any plane are discarded).

Although neuroimaging coordinates are reported in a variety
of stereotactic spaces in the neuroimaging literature®!32, for
technical reasons, the results we reported in the main text ignore
such differences and collapse across different spaces. Moreover,
the parser did not distinguish activations from deactivations,
and aggregates across all reported contrasts in each article, that
is, it makes no attempt to code different tables within an article,
or different contrasts within a table, separately. As extensive
validation analyses showed (Supplementary Note), these fac-
tors appear to exert only a modest influence on results, and in
some cases can be automatically accounted for; however, for
present purposes we simply note that the net effect of these
limitations should be to reduce fidelity rather than to introduce
systematic bias.

As well as extracting coordinates, ACE parses the body of each
article and generates a list of all words that appear at least once
anywhere in the text, along with a corresponding frequency count
for each word. All data are then stored in a relational (MySQL)
database that maintains associations between words, articles and
activation foci, allowing flexible and powerful structured retrieval
of information.

Database. The foci used to generate the results of the present
study were extracted from 17 source journals: Biological
Psychiatry, Brain, Brain and Cognition, Brain and Language,
Brain Research, Cerebral Cortex, Cognitive Brain Research,
Cortex, European Journal of Neuroscience, Human Brain Mapping,
Journal of Neurophysiology, Journal of Neuroscience, Neurolmage,
NeuroLetters, Neuron, Neuropsychologia and Pain. We deliber-
ately focused on journals that contained a high incidence of
functional neuroimaging studies; thus, some important general
neuroscience or science journals (for example, Science, Nature
and Nature Neuroscience) were not included. The range of years
represented varied by journal, with the earliest studies dating to
2000 and the latest to early 2010. The database contains 3,489
articles and 100,953 foci, and is, to our knowledge, the largest
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extant database of neuroimaging foci, though it still captures only
a minority of the published literature®.

The database has considerable potential for additional growth.
Because neuroimaging studies appear in dozens of journals
(besides those analyzed here), which typically require the use of
publisher-specific or journal-specific filters to correctly obtain
coordinates from tables, the database will continue to grow as
new filters are added. An additional limitation is that many jour-
nals have not yet made full-text HTML versions of older articles
available online; as such efforts proceed, the database will grow
correspondingly. Finally, because authors report coordinate
information in a variety of formats, false negatives can occur
(that is, ACE might not extract real coordinate information).
However, these limitations do not bias the present analyses in
any particular way, and suggest that if anything, one can expect
the sensitivity and specificity of the reported results to improve as
the database grows and additional quality assurance procedures
are implemented.

Statistical inference and effect size maps. In keeping with pre-
vious meta-analyses that used multilevel kernel density analysis
(MKDA'®), we represented reported activations from each study
by constructed a binary image mask, with a value of 1 (reported)
assigned to each voxel in the brain if it was within 10 mm of a
focus reported in that article and 0 (not reported) if it was not
within 10 mm of a reported focus!®. These maps used 2 mm x
2 mm x 2 mm voxels, with n,, = 231,202 voxels in the brain mask.
We denote the activation map for study ias A, = (Aj,a length-n,,
binary vector.

A frequency cut-off of 0.001 was used to eliminate studies that
only used a term incidentally (that is, to be considered about pain,
a study had to use the term ‘pain’ at a rate of at least one in every
1,000 words). Subsequent testing revealed that the results were
largely insensitive to the exact cut-off used (including no cut-off
at all), except that very high cut-offs (for example, 0.01 or higher)
tended to leave too few studies for reliable estimation of most
terms. (As the database grows, even very conservative thresholds
that leave no ambiguity at all about the topic of a study should
become viable.) The total number of terms collected was n =
10,000 (although the majority of these were nonpsychological in
meaning—for example, ‘activation’ and ‘normal’). We write the
term indicator for study i as T, = (T};), a length-n binary vec-
tor marking each term ‘present’ (frequency above the cut-off) or
‘absent’ (frequency below the cut off).

For each term of interest in the database (for example, ‘pain,
‘amygdala’) we generated whole-brain meta-analysis maps that
showed the strength of statistical association between the term
and reported activation at each voxel. For each voxel j and term k,
every study can be cross-classified by activation (present or
absent) and term (present or absent), producing a 2 x 2 contin-
gency table of counts.

Statistical inference maps were generated using a x? test
of independence, with a significant result implying the pres-
ence of a dependency between term and activation (that is, a
change in activation status would make the occurrence of the
term more or less likely). This approach departs from the
MKDA approach used in previous meta-analyses®!>1¢ in its
reliance on a parametric statistical test in place of permuta-
tion-based family wise error rate (FWE) correction; however,
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permutation-based testing was not computationally feasible
given the scale of the present meta-analyses (multiple maps for
each of several thousand terms).

To stabilize results and to ensure that all cells had sufficient
observations for the parametric ) test, we excluded all voxels that
were active in fewer than 3% of studies (Supplementary Fig. 10).
The resulting P-value map was false discovery rate (FDR)-
corrected for multiple comparisons using a whole-brain FDR
threshold of 0.05, identifying voxels where there was significant
evidence that term frequency varied with activation frequency.
Intuitively, one can think of regions that survive correction as
those that show differential activation for studies that include a
term versus studies that do not include that term.

We also computed maps of the posterior probability that term
k was used in a study given activation at voxel j

P(Ty =1|A;=1)=P(A; =1|T, = DP(T =1)/P(A))

(generically referred to as P(Term|Activation) in the text). We use the
‘smoothed’ estimates for the likelihood of activation given the term

p(A; =1|T =1) =[2AijTik + mP]/[ZTzk + mj

where p(-) reflects an estimated versus true probability, m is a virtual
equivalent sample size and p is a prior probability. The parameters
mand p are set equal to 2 and 0.5, respectively; this smoothing was
equivalent to adding two virtual studies that have term k present, one
having an activation one, one without. This regularization prevents
rare activations or terms from degrading accuracy®. For P(T, = 1)
we impose a uniform prior for all terms, P(T, = 1) = P(T, = 0) = 0.5.
We use this uniform prior because terms differed widely in fre-
quency of usage, leading to very different posterior probabilities
for different terms. This is equivalent to making an assumption that
the usage and nonusage of the term would be equally likely in the
absence of any knowledge about brain activation. Note that thisisa
conservative approach; using uniform priors will tend to reduce clas-
sifier accuracy relative to using empirically estimated priors (that is,
allowing base rate differences to play a role in classification) because
it increases the accuracy of rare terms at the expense of common
ones. Nonetheless, we used uniform priors because they place all
terms on a level footing and provide more interpretable results.

The estimate of P(Aj = 1) reflects the regularization and the
prior on term frequency:

p(AJ =1)=p(Aj =1|Tk =1)P(Tk =1+ p(A] =1|Tk =0)P(Tk =0)

where

p(A; =1|T; =0)=[2Aij(1—Tik)+ mP]/[Z(l_Tik)"' m]

To ensure that only statistically robust associations were consid-
ered, all posterior probability maps were masked with the FDR-
corrected P-value maps. For visualization purposes, thresholded
maps were mapped to the PALS-B12 surface atlas** in SPM5
stereotaxic space. Average fiducial mapping values are presented.
Datasets associated with Figure 2 and Supplementary Figure 3
are available in the SumsDB database (http://sumsdb.wustl.edu/
sums/directory.do?id=8285126).

NATURE METHODS

Naive Bayes classifier. We used a naive Bayes classifier?® to pre-
dict the occurrence of specific terms using whole-brain patterns
of activation. In classifier terminology, we have ng instances of
feature-label pairs (A,T,). The use of a naive Bayes classifier
allows us to neglect the spatial dependence in the activation maps
A, As simultaneous classification for the presence or absence
of all n; terms is impractical owing to the larger number (2"
of possible labels, for this work, we only considered mutually
exclusive term labels, ranging from binary classification of two
terms (for example, pain versus working memory) to multiclass
classification of ten terms (for example, pain, working memory;,
language, conflict and so on).

For this setting we revised notation slightly from the previous
section describing calculation of the posterior probability maps,
letting scalar T take values 1, ..., n;* for the subset of n* terms
under consideration. For a new study with activation map A, the
probability of term t is

P(T = t|A) = P(A|T = t)P(T = t) / P(A)

P(A) is computed as above for the studies under consideration,
and by independence,

P(A|T:t):HP(A]-|T:t),
j

and we use a regularized estimate for voxel j,

p(A;=1|T=1) =[2A,~J-I(T,~ =t)+ mp]/[zI(Ti =t)+ mJ

p(A]:OlT:t)Zl—P(AJ=1|T=t)

where I(-) is the indicator function (1 if the operand is true,
0 otherwise).

Although the assumption of conditional independence is usu-
ally violated in practice, leading to biased posterior probabilities,
this generally does not affect classification performance because
classification depends on the rank-ordered posterior probabili-
ties of all classes rather than their absolute values. In complex
real-world classification settings, naive Bayes classifiers often
substantially outperform more sophisticated and computation-
ally expensive techniques®.

In the context of the present large-scale analyses, the naive
Bayes classifier has several advantages over other widely used clas-
sification techniques (for example, support vector machines®®37).
First, it requires substantially less training data than many other
techniques because only the cross-classified cell counts are
needed. Second, it is computationally efficient, and can scale
up to extremely large sets of features (for example, hundreds of
thousands of individual voxels) or possible outcomes without dif-
ficulty. Third, it produces easily interpretable results: the naive
Bayes classifier’s assumption of conditional independence ensures
that the strength of each feature’s contribution to the overall clas-
sification simply reflects the posterior probability of class mem-
bership conditioned on that feature (that is, P(T = t|A,).

Cross-validated classification of study-level maps. For cross-val-
idated classification of studies included in the NeuroSynth data-
base (Figs. 3 and 4), we used the NBC to identify the most probable
term from among a specified set of alternatives (for example, ‘pain,
‘emotion and ‘working memory’) for each map. We used fourfold
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cross-validation to ensure unbiased accuracy estimates. Because
the database was known to contain errors, we took several steps
to obtain more accurate classification estimates. First, to improve
the signal-to-noise ratio, we trained and tested the classifier only
on the subset of studies with at least 5,000 ‘active’ voxels (that is,
studies that satisfied X.A,; > 5,000) occurring when there were
more than about four reported foci; ng = 2,107 studies satisfied
this criterion. This step ensured that studies with few reported
activations (a potential marker of problems extracting coordi-
nates) did not influence the classifier. Second, we only considered
voxels that were activated in at least 3% of studies (ZiAlj/nS >
0.03), which ensured that noisy features would not exert undue
influence on classification. Third, any studies in which more than
one target term was used were excluded to ensure that there was
always a correct answer (for example, if a study used both ‘pain’
and ‘emotion’ at a frequency of 0.001 or greater, it was excluded
from classification). No further feature selection was used (all
remaining voxels were included as features).

We calculated classifier accuracy by averaging across classes
(terms) rather than studies (for example, if the classifier correctly
classified 100% of 300 working memory studies, but 0% of 100
pain studies, we would report a value of 50%, reflecting the mean
of 0% and 100%, rather than the study-wise mean of 75%, which
allows for inflation due to differing numbers of studies). Using
this accuracy metric, called balanced loss in the machine learning
literature, eliminated the possibility of the classifier capitalizing
on differences in term base rates and ensured that chance accu-
racy was always 50%. Note that this is the appropriate comparison
for a naive Bayes classifier when uniform prior probabilities are
stipulated because the classifier should not be able to capitalize
on base rate differences even if they exist (as it has no knowledge
of base rates beyond the specified prior).

For binary classification (n;* = 2), we selected 25 terms that
occurred at high frequency in our database (>1 in 1,000 words in
at least 100 studies; Fig. 5 and Supplementary Fig. 3) and ran the
classifier on all possible pairs. For each pair, the set of studies used
included all those with exactly one term present (n, = 23-794;
mean = 178.2, median = 141). Statistical significance for each
pairwise classification was assessed using Monte Carlo simula-
tion. Across all comparisons, the widest 95% confidence interval
was 0.4-0.6, and the majority of observed classification accuracies
(283/300) were statistically significant (P < 0.05; 257/300 were
significant at P < 0.001).

For multiclass analyses involving n* > 2 terms (Supplementary
Fig. 5), an exhaustive analysis of all possible combinations was
not viable owing to combinatorial explosion and the increased
processing time required. We therefore selected 100 random sub-
sets of n* terms from the larger set of 25, repeating the process
for values of n.* between 3 and 10. All procedures were otherwise
identical to those used for binary classification.

Classification of single-subject data. To classify single-subject
data, we used data from several previous studies, including a large
study of n-back working memory®®3?, five studies of emotional
experience and reappraisal?®-4* and three studies of pain!4*>,
Methodological details for these studies can be found in the corres-
ponding references. For working memory, we used single-subject
contrasts that compared n-back working memory blocks to a fixa-
tion baseline. For emotion studies, we used single-subject contrast
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maps that compared negative emotional pictures (from the IAPS
set) to neutral pictures. For pain studies, we compared high and
low thermal pain conditions.

Because the NBC was trained on binary maps (active vs. inac-
tive) and single-subject P-maps varied continuously, all single-
subject maps were binarized before classification. We used an
arbitrary threshold of P < 0.05 to identify ‘active’ voxels. Because
the maps on which the classifier was trained did not distinguish
activations from deactivations, only positively activated voxels
(n-back > fixation, negative emotion > neutral emotion or high
pain > low pain) were considered active. Negatively activated
voxels and nonsignificantly activated voxels were all considered
inactive. To ensure that all single-subject maps had sufficient fea-
tures for classification, we imposed a minimum cut-off of 1% of
voxels—that is, for maps with fewer than 1% of voxels activated
at P < 0.05, we used the top 1% of voxels, irrespective of thresh-
old. Once the maps were binarized, all classification procedures
were identical to those used for cross-validated classification of
study-level maps.

The studies and contrasts included in the single-subject classi-
fication analysis were selected using objective criteria rather than
on the (circular) basis of optimizing performance. The results we
report include all studies that were subjected to the classifier (that
is, we did not selectively include only studies that produced bet-
ter results), despite the fact that there was marked heterogeneity
within studies. For instance, one of the pain studies produced
substantially better results (n = 41; sensitivity = 80%) than the
other two (total n = 34; sensitivity = 47%), probably reflecting
the fact that the former study contained many more trials per
subject, resulting in more reliable single-subject estimates. Thus,
the accuracy levels we report are arguably conservative, as they
do not account for the potentially lower quality of some of our
single-subject data.

Similarly, the contrasts we used for the three sets of studies were
selected a priori on the basis of their perceived construct validity,
and not on the basis of observed classification success. In fact,
post-hoc analyses showed that alternative contrasts would have
produced better results in some cases. Notably, for the emotion
studies, using single-subject maps contrasting passive observation
of negative IAPS pictures with active reappraisal of negative pic-
tures would have improved classifier sensitivity somewhat (from
70% to 75%). Nonetheless, we opted to report the less favorable
results in order to provide a reasonable estimate of single-subject
classifier accuracy under realistic conditions, uncontaminated by
selection bias. Future efforts to optimize the classifier for single-
subject prediction (for example, by developing ways to avoid
binarizing continuous maps, improving the quality of the auto-
matically extracted data through manual verification and so on)
would presumably lead to substantially better performance.
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Supplementary Figures

Supplementary Figure 1

Without
transform

With
transform

MT88 [[Overlap EMNI

Effects of automated stereotactic space detection and correction on meta-analyses for the
term ‘amygdala’. Blue: regions maximally active in an automated meta-analysis of all
studies that reported coordinates in MNI space. Green: regions maximally active when
analyzing all studies reporting coordinates in T88 (i.e., Talairach-Tournoux, 19881). Top
row: overlap between MNI and T88 results space prior to application of any
transformation. Notice the relatively poor alignment of the T88-based results with both the
anatomical underlay and the MNI-based functional results (T88/MNI overlap colored
cyan). Bottom row: following automated application of the Lancaster et al transform?, the
T88-based results are substantially better aligned along the dorsal/ventral axis, though
differences remain along the rostral/caudal axis. The pearson correlation between MNI and
T88 maps across all voxels improved from 0.73 pre-transform to 0.81 post-transform.



Supplementary Figure 2
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Comparison of selected automatically-defined regions with anatomical regions delineated
in the Harvard-Oxford Atlas. Because the posterior probability maps could be thresholded
arbitrarily, we restricted each automatically-generated ROI to the same number of voxels
present in the ROI defined in the Harvard-Oxford atlas.
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Supplementary Figure 3

Category-specific activations in inferotemporal cortex identified with NeuroSynth. (A)
Classification based on functional terms (‘faces’, ‘places’, and ‘words’). (B) Classification
based on putative functionally specialized cortical regions (‘FFA’, ‘PPA’, and ‘VWFA’). Each
voxel was assigned to the class with the highest posterior probability given observed
activation at that voxel (e.g., in (A), observing activation in green voxels would imply a
higher probability that the study was about places rather than faces or words).

Nature Methods: doi:10.1038/nmeth.1635



Supplementary Figure 4

Working memory

Whole-brain reverse inference meta-analysis maps for the terms ‘working memory’,
‘emotion’, and ‘pain’ when articles are coded strictly based on occurrence of terms in article
title rather than in the full article text. Note the close similarity (along with apparent
decreased sensitivity) relative to the full analyses reported in the text (Figure 2),
suggesting that different sections of published articles carry broadly similar information.
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Supplementary Figure 5
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Correlogram displaying pair-wise similarities between manually-generated meta-analysis
and mega-analysis maps (Fig. 2A) and automatically-generated forward inference maps
(Fig. 2B) and reverse inference maps (Fig. 2C) for the domains of WM, emotion, and pain.
For each pair of maps, similarity was computed by binarizing both maps (i.e., distinguishing
between active and inactive voxels) and computing the Pearson correlation (lower
triangle) or Jaccard index (upper triangle) across all voxels. Decimals are omitted for
legibility. MKDA = multi-level kernel density analysis; FI = forward inference; RI = reverse
inference; MA = mega-analysis (for pain, the map reflects pooled estimates from 5 different
pain studies rather than an MKDA meta-analysis; see ref3). Note the high similarity
coefficients for maps within the same domain and low coefficients for pairs of maps from

different domains.
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Supplementary Figure 6

Overlap between meta-analyses based on automatically-coded vs. manually-coded pain
data. Green: regions associated with the term ‘pain’ in a fully-automated (forward
inference) meta-analysis (slices correspond to surface rendering displayed in Figure 2B).
Blue: MKDA* meta-analysis results for a manually validated subset of 66 studies drawn
from the automatically extracted dataset that contained valid contrasts between pain and a
baseline condition. Cyan: overlap of green and blue. To facilitate direct comparison, results
of both analyses are thresholded at the same level (z = 5). Across voxels, the correlation
coefficient (maps unthresholded) and Jaccard similarity index (maps binarized atthe z =5
threshold) were 0.84 and 0.65, respectively.



Supplementary Figure 7
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Whole-brain meta-analytic posterior probability maps for 25 key terms that occurred at
high frequency (> 1 in 1,000 words) in at least 100 different studies in our database. Voxel
values display the probability of the term occurring in a study given observed activation at
that voxel (i.e., P(T|A)). To account for base differences in term frequencies, we assume
uniform priors for all terms (i.e., equal 50% probabilities of Term and No Term). Activation
in orange/red voxels implies a high probability that a term is present, and activation in
blue voxels implies a high probability that a term is not present. Values are displayed only
for voxels that are significant for a test of association between Term & Activation, with a
whole-brain correction for multiple comparisons (FDR =.05). Data available at
http://sumsdb.wustl.edu/sums/directory.do?id=8285126.
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Supplementary Figure 8

Mean probability of activation at each brain voxel across all 3,489 studies in the database.
Frontoparietal regions implicated in cognitive and attentional control were consistently
activated at a higher rate than other regions, highlighting the degree to which these areas
are nonselectively active (see also Figure 1 in ref.>).
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Supplementary Figure 9
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Accuracy of the naive Bayes classifier as a function of the number of terms being classified.
N-sized subsets of terms were repeatedly sampled at random from a set of 25 high-
frequency terms (cf. Figures 4 and S3). Blue: mean classification accuracy for one hundred
random draws. Accuracy was averaged across classes rather than studies to avoid
capitalizing on base rate differences between terms. Errors bars reflect the standard
deviation. Black: performance level that would be expected by chance.

Nature Methods: doi:10.1038/nmeth.1635



10

Supplementary Figure 10
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Histograms showing frequency distributions of (A) proportion of voxels reported active in
each study and (B) proportion of all studies reporting activity at each voxel. Note that all
coordinates reported in articles are convolved with a 10 mm sphere (see Methods); thus,
voxels are considered active if they fall within 10 mm of a reported focus.
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Supplementary Note

In this note we report additional validation analyses of the NeuroSynth framework. The
first section reports a series of supplemental analyses validating the automated coordinate
extraction algorithm. The second section reports analyses validating and extending the
automated content coding. Throughout both sections, we discuss residual limitations of the
NeuroSynth framework and potential directions for future research.

Validation of automated coordinate extraction

As noted in the main text, automated coordinate extraction is susceptible to a number of
potential problems that could affect the resulting data quality. First, false positives could
occur—that is, the software might incorrectly classify information in a table as an
activation focus when it actually represented an entirely different type of information.
Second, different software packages and research groups report foci in different
stereotactic spaces, resulting in potential discrepancies in the anatomical locations
represented by the same set of coordinates across different studies. Third, studies could
differ widely in the rigorousness of their experimental and statistical methods, the size of
their samples, and the quality of their results, potentially adding noise to the database.
Fourth, the software did not discriminate activations from deactivations, and made no
attempt to label or categorize foci according to the type of contrast (e.g., task vs. fixation,
condition A vs. B, etc.). To address these issues, we conducted a series of additional
analyses.

Convergence with manually coded coordinates

To assess the accuracy of the automatic coordinate extraction software, we first compared
a set of automatically extracted coordinates with a manually coded set of foci drawn from
all studies published in the 2006 and 2007 volumes of Cerebral Cortex and available from
SumsDB. Results demonstrated that the automated extraction procedure worked
extremely well overall. Eighty-four percent (2929 / 3501) of the foci in the SumsDB
reference set were successfully detected by the parser. Inspection of the missing
coordinates revealed that in the vast majority of cases, the source of the error was invalid
HTML in the table specification. Although we were able to adjust the parser to correctly
handle many of these errors, some were idiosyncratic and could only have been handled on
a case-by-case basis, which we deemed logistically impractical.

Of the 3334 foci extracted by the automated parser, 405 (12%) were not found in the
SumsDB reference set. Careful inspection revealed that 299 of these represented genuine
activation foci that were absent from SumsDB; only 106 were ‘true’ false alarms (though
some of these were borderline cases—e.g., foci that were valid, but were from MEG or VBM
studies rather than fMRI). Thus, these results suggested an extremely low false positive
rate of approximately 3%. This reflects the fact that the parser was designed to be
conservative—that is, we deliberately calibrated the software to err on the side of caution
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(i.e., to discard any foci that appeared at all questionable). Crucially, there was no reason to
expect either false negatives or false positives to produce a systematic bias in our analyses,
because the coordinate extraction and semantic tagging procedures were entirely
independent of one another. While we are currently working to improve the extraction
procedure by developing a more sophisticated parser that uses machine learning
techniques to improve its performance with experience, the present results suggest that
the current implementation already allows only a small proportion of invalid data into the
database.

Contrast-level validation of automatically extracted coordinates

Accurate extraction of coordinates from published articles is necessary but not sufficient
for an automated meta-analysis to produce accurate results. If the coordinates extracted by
the parser reflect irrelevant experimental contrasts or occur within invalid tables, a meta-
analysis could potentially produce null or even misleading results. Because our parser
currently lacks the ability to automatically code experimental contrasts, we sought to
quantify the loss of signal (if any) associated with the use of a strictly automated approach.

As it was not feasible to manually validate the entire database of over 3,000 studies, we
focused on a single psychological domain for which we were able to directly compare
automated and manual results. Specifically, we used the NeuroSynth framework to identify
265 studies that used either pain-related terms ('pain’, 'painful’, 'painfully’, 'nociceptive', or
'noxious') or touch-related terms ('touch’, 'touched’, 'touching’, or 'tactile') at high
frequency, comprising 8246 activation foci. We then manually inspected and validated all
265 studies. Following inspection, 163 studies (62%) were retained as valid studies that
directly investigated pain and/or touch processing (the majority of the 102 excluded
studies were relevant to pain or touch—e.g., empathy for pain, real vs. sham acupuncture,
etc.—but did not include one or more contrasts directly contrasting relevant pain or touch
conditions (e.g., pain vs. rest, touch vs. rest, etc.). Of the 5395 foci automatically extracted
from the 162 common studies, 3944 (73%) passed validation and were included in the
manually coded dataset (representing 48% of all automatically extracted coordinates).

[t is important to note that the majority of the excluded foci were extracted correctly (i.e.,
the parser identified the correct numerical coordinates), and were excluded because the
associated contrast did not meet the stringent criteria of the manual coding. For instance, a
large proportion of foci reported pain-related activations at the single-subject (rather than
group) level, or reflected contrasts that were only tangentially relevant (e.g., pain empathy
vs. rest, heat vs. cold pain, etc.). Although exclusion of these foci from the manual database
was clearly the appropriate course, it is important to note that the benefits of an automated
approach accrue primarily through large-scale aggregation, and the effects of a decrease in
data quality could potentially be offset or even outweighed by the increase in data quantity.
That is, excluded studies and coordinates could still contribute useful information to a
meta-analysis in the event that the increase in precision and stability of the meta-analytic
results provided by larger amounts of data outweighs the increase in noise.
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As an empirical test, we compared the (forward inference) pain meta-analysis map
produced using the NeuroSynth framework (Figure 2B) with a focused meta-analysis of 66
studies drawn from the manually validated dataset that reported an experimental contrast
between painful stimulation and a baseline condition (N = 66 studies reporting pain vs.
rest). As Supplementary Figure 6 illustrates, the two approaches produced strikingly
similar results (correlation coefficient = .84 across voxels), with partial overlap in virtually
all brain regions active in either map. Thus, these results suggest that for broad content
terms associated with hundreds of studies and thousands of reported foci, an automated
approach can produce largely the same results as a manual approach. However, there is no
question that manual coding will continue to be necessary in many if not most cases (e.g., if
narrower states such as “pain empathy” are to be distinguished from broad ones such as
“pain”), and much of our current work focuses on improving the extraction of metadata
that can support more fine-grained automated coding of the experimental contrasts
associated with individual activation foci.

Quantification of reported activation increases versus activation decreases

Related to the lack of automated contrast coding is another potential concern that the
results generated by our framework inherently confound reported increases and decreases
in activation. Because the coordinate parser has no sense of directionality (i.e., it cannot
distinguish between task > rest and rest > task), some proportion of the coordinates that
reflect reported activation decreases are inevitably treated as activation increases,
potentially biasing the results. Because the extent of this problem depends largely on the
proportion of total coordinates that constitute activation decreases rather than increases,
we sought to quantify the balance between reported increases and decreases in the
neuroimaging literature. In lieu of a full manual coding of the entire database, we used the
manually-validated pain and touch dataset described above, which included a standardized
coding of the contrast corresponding to each valid activation (e.g., pain > rest, high pain >
low pain, rest > touch, etc.).

The results of the manual coding indicated that activation decreases were reported much
less often than activation increases for all major contrasts. For instance, for comparisons
between pain and rest (1863 coordinates), 94% of coordinates were increases (pain > rest)
and only 6% were decreases; for comparisons between touch and rest (1293 coordinates),
95% were increases; and for comparisons between high and low pain (548 coordinates),
83% were increases. These findings suggest that, at least for the tested domains of pain and
touch, activation decreases constitute a relatively small proportion of activations reported
in tables in published neuroimaging articles, and thus appear to exert minimal influence on
meta-analytic results (cf. Supplementary Figure 6). Nonetheless, since the extent to which
this conclusion holds may vary across psychological domains, future efforts should seek to
develop automated ways of coding increases versus decreases or activations versus
deactivations—at least for a subset of contrasts that can be relatively easily identified (e.g.,
those involving terms like ‘rest’, ‘baseline’, etc.).
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Automated stereotactic space detection and coordinate transformation

The Automated Coordinate Extraction software made no attempt to identify the
stereotactic space in which coordinates from different studies were reported, or to correct
for between-study differences in spaces®”. It is unlikely that such space differences heavily
influenced our results, because (a) the great majority of studies (approximately 75 - 80%)
are reported using an MNI-based space, and (b) the spatial specificity of meta-analytic
results is already limited by the use of a 10 mm smoothing kernel and the marked
heterogeneity in preprocessing procedures used in different studies. Nonetheless, the
ability to detect and correct for space differences in an automated way would undoubtedly
help reduce error by maximizing overlap between coordinates. In an effort to implement
an automated space correction procedure, we have begun to develop an algorithm that (a)
identifies the stereotactic space used in each study based on the usage of key terms within
the article text, and (b) uses an existing affine transformation developed by Lancaster and
colleagues?’ to convert coordinates from different spaces to a common reference space.

At present, our algorithm distinguishes only between the two most common stereotactic
spaces—namely, the MNI-based space used by default in SPM and FSL, and the Talaraich &
Tournoux! (T88)-based space used by default in AFNI and BrainVoyager. The algorithm
assigns the label MNI or T88 to a study in the event that one or more keywords associated
predominantly with one space is used at least once in the article text AND there are no
occurrences of words predominantly associated with the opposite space. For instance, the
occurrence of terms such as ‘MNI’, ‘SPM’, and ‘FSL’ in the absence of any terms like
‘Talairach’, ‘AFNTI’, or ‘BrainVoyager’ would be taken to imply that data were reported in
MNI space, and vice versa for T88 space (the exception is that the term ‘Talairach’ is not
taken as evidence for the use of Talairach space, because many researchers use the term to
refer generically to all stereotactic coordinate systems). If the algorithm detects competing
evidence (e.g., the terms ‘BrainVoyager’ and ‘MNI’ are both used), as might happen when
researchers use BrainVoyager software with a non-default template), the label ‘UNKNOWN’
is assigned (9% of all studies), and no transformation is applied.

To validate the accuracy of our algorithm, we selected a random subset of 100 studies from
the database and manually examined each one to identify the originating space. Inspection
revealed that the automated space detection algorithm performed relatively well overall.
Fifty-eight of 66 (88%) of studies in MNI space were correctly labeled MNI (2 were labeled
T88, and 6 unknown), and 15 of 31 (48%) of studies in T88 space were correctly labeled
T88 (12 were labeled MNI, and 4 unknown). The relatively high false negative rate for T88
studies was attributable largely to the fact that 10 studies conducted analyses in MNI space
but reported transformed coordinates in T88 space. While the results reported here are
preliminary, and do not take MNI-to-T88 transformation into account, we anticipate that
modifying the algorithm to account for such transformations will be relatively
straightforward, as a relatively small set of terms appear to be highly diagnostic (e.g., the
terms ‘Brett’, ‘Lancaster’, ‘converted’, or ‘transformed’ in close proximity to the term
‘Talairach’). Thus, we expect a final version of the automated correction algorithm to
perform with high accuracy once fully integrated with the NeuroSynth framework.
However, it is important to note that our current approach only distinguishes between MNI
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and T88 spaces; it does not distinguish between more subtle differences in template (e.g.,
SPM99, SPMO05, and FSL all use slightly different templates by default), and is deliberately
conservative, making no attempt to categorize ambiguous studies (9% of studies are
labeled unknown). Ongoing work aims to directly address these limitations; in the interim,
we expect that relatively limited effort will be required to manually inspect and label the
small proportion of studies that use an unclassified space.

Once space labels are assigned, coordinate can be automatically converted between
stereotactic spaces using existing affine transformations. Because most studies
(approximately two-thirds) report data in MNI space rather than T88, we converted
coordinates from T88 studies to MNI rather than the converse so as to minimize error
induced by transformation. We used an inverted version of the previously validated
icbm_spm2tal affine transformation developed by Lancaster et al?. (We chose the SPM
version of the transformation rather than the FSL or pooled versions because SPM is by far
the most commonly used neuroimaging software package, and the majority of coordinates
in published articles are consequently reported for an SPM-based template. Future
extensions will support software-specific space detection and transformation.)

To validate the automated application of the Lancaster transformation, we compared the
results obtained for studies in TAL space before and after transformation relative to studies
in MNI space. Supplementary Figure 1 presents sample results for a reverse inference
meta-analysis of the term ‘amygdala’ with (top) and without (bottom) the transformation.
The results demonstrate that differences between MNI and T88 in the spatial localization of
the amygdala are substantially reduced following transformation of T88 coordinates,
though they remain noticeable, particularly along the rostral /ventral axis. (It is presently
unclear whether the residual differences reflect sampling error due to the use of mutually
exclusive studies, the misidentification of some T88 studies as MNI studies, or fundamental
limitations of the affine transformation, which cannot account for non-linear differences.)

To quantitatively assess the effects of the coordinate transformation algorithm on our
meta-analysis results, we automatically generated new meta-analysis maps for 30 common
terms drawn from the sets in Figure 5 and Supplementary Figure 2, conducting separate
analyses for studies reporting coordinates in MNI space and in T88 space. We then
computed the correlation coefficient between the MNI and T88 maps across all voxels both
before and after applying the Lancaster transformation. As expected, for virtually all terms
(28 of 30), a stronger correlation was observed post-transformation (mean r = .66) than
pre-transformation (mean r = .60; paired t-test, p <.001), demonstrating that it is possible
to detect and compensate for differences in stereotactic space to a significant extent in an
automated way.

Validation and extension of automated content coding

At present, automated coding of article contents is based exclusively on a lexical approach,
which assumes that usage rates of individual words provide a reasonable proxy for more
effortful manual coding of the psychological processes investigated by individual
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neuroimaging studies. The results presented in the main text provide strong support for
this assumption, as it would not have been possible to successfully classify study-level and
subject-level data if the meta-analysis maps did not accurately reflect stable mappings
between cognitive and neural states. Nonetheless, to ensure the accuracy and robustness of
the lexical approach we conducted additional validation analyses detailed below.

Convergence with anatomically-defined regions

First, we demonstrated that the lexical approach could recapture conventional boundaries
between distinct anatomical regions reasonably accurately. We compared the maps
generated using lexical mapping for key anatomical terms (e.g., ‘amygdala’, ‘hippocampus’,
and ‘parahippocampal’) with the regional boundaries found in the widely used Harvard-
Oxford anatomical atlas®. The anatomical labels we used for the lexical meta-analyses were
derived from the PubBrain neuroanatomical ontology (pubbrain.org); we selected only
those terms that occurred at a high (> 50 studies) frequency, excluding very broad terms
(e.g., frontal lobe, telencephalon, etc.). Supplementary Figure 2 displays boundaries for
selected regions as defined by the lexical analysis versus the Harvard-Oxford atlas. Because
the posterior probability maps could be thresholded arbitrarily, we restricted each lexical
ROI to the same number of voxels present in the ROI defined in the Harvard-Oxford atlas.
The resulting lexically-defined ROIs were reasonably similar to the corresponding
anatomical regions, even for relatively small structures (e.g., the amygdala). Note that
dissimilarities between the two maps are not solely attributable to errors in the automatic
extraction procedure, as researchers often use anatomical labels somewhat
idiosyncratically.

Identification of functionally-selective cortical regions

Second, we used the lexical approach to replicate previous findings of category-specific
activation for visual object recognition in posterior cortical regions. The terms ‘faces’,
‘words’, and ‘places’ were strongly and selectively associated with activations in the
putative fusiform face area (FFA?), visual word form area (VWFA1?), and parahippocampal
place area (PPA11), respectively (Supplementary Fig. 3, top). These mappings were further
confirmed by searches for ‘FFA’, ‘'VWFA’, and ‘PPA’, which aligned closely with the results of
the category-based search (Supplementary Fig. 3, bottom).

Convergence with prior literature

Third, we used the lexical approach to generate whole-brain meta-analysis maps for 25
high-frequency terms corresponding to concepts that have been extensively studied in the
fMRI literature (Supplementary Fig. 7). The results closely replicated numerous previous
studies, with different sets of terms activating expected brain networks. For instance, the
terms ‘conflict’, ‘executive’, ‘interference’, and ‘working memory’ most selectively activated
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medial and lateral frontal regions implicated in working memory and executive control;
language-related terms such as ‘language’, ‘phonology’, ‘semantic’, and ‘verbal’ were
associated with strongly left-lateralized activations in temporal and ventrolateral
prefrontal regions; modality-related terms such as ‘visual’, ‘auditory’, and ‘sensory’ were
associated with selective activations in visual, auditory, and sensory cortices, respectively;
and so on.

Title-based lexical analyses produce similar results

The empirical evidence reported above suggests that, at least for broad psychological
domains, term-based meta-analyses can provide accurate and robust results that converge
with prior findings. Nonetheless, it is clear that the present approach has a number of
limitations that will be important to address in future work. One is that article coding is
currently based solely on the frequency with which terms occurs anywhere in an article
and does not take into account contextual information such as the location of a word or its
relation to other nearby words. A priori, it is plausible that some article sections (e.g., title,
abstract, table captions, or results) might carry more diagnostic information than others
(e.g., the introduction or discussion), or that words should be weighted based on their
immediate context (e.g., greater weight for words with proximal references to tables or
figures). As a preliminary effort in this direction, we conducted a full set of meta-analyses
identical to those reported in the text but based solely on the occurrence of words in article
titles (rather than anywhere in the text). Despite the large reduction in number of studies
associated with each term (most terms, the title-based searches returned only 10 - 20%
the number of studies identified by the full-text search), the results were very similar to (if
somewhat less sensitive than) those obtained using full-text searches (see Supplementary
Fig. 4 for examples), suggesting that the information contained in the full text of articles
overlaps closely with that conveyed by article titles.

In future work, we intend to further refine our approach by modeling terms in different
article sections separately and empirically identifying weightings that maximize the
sensitivity and specificity of the meta-analytic results. Along similar lines, one could also
assign different weights to studies—for instance, assigning greater weight to studies that
are perceived as more authoritative (e.g., having higher citation counts) or are authored by
researchers known to work closely in a particular domain. Our hope is that the availability
of the tools, data, and results introduced here will encourage other researchers to
contribute to such efforts and implement innovative extensions.

Beyond individual terms

A second limitation of the present implementation is that it is based exclusively on counts
of individual words or phrases, whereas the contents of articles are probably better
captured using groups of words that naturally coalesce into coherent topics. To facilitate an
eventual shift from term-based analyses to topic-based analyses, we have developed a
rudimentary syntax for conducting analyses that involve combinations of multiple words.
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Our code (available at http://neurosynth.org) embeds a parsing expression grammar??,
enabling users to recursively nest arbitrarily complex queries. For instance, the query:

“(disgust | sad* | anger | fear* | anx*) &~ (pain* | noxious | nocicept*)”

would select all studies that use one or more negative emotion terms (e.g., disgust, sad,
sadness, anger, etc.) but NOT one or more pain-related terms (e.g., pain, painful, noxious,
etc.). This approach facilitates dynamic analyses that go beyond individual words and allow
users to conduct sophisticated meta-analyses targeting arbitrary word combinations. We
have also begun to explore other approaches that attempt to model latent topics or clusters
in the text of neuroimaging articles (e.g., using latent Dirichlet allocation or
multidimensional scaling); however, such analyses are beyond the scope of the present
article.
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