
Sequence Prediction
Until now, we’ve focused on complex sequences

speech sounds (HMM)

words (HMM)

human judgments (CRF)

location of person/car (particle filter)

coal mining accidents (OCPD)

stock market returns (OCPD)

saccade perturbations (Kalman filter)

All but last have been with an AI focus

Today, more modeling of human behavior, with very simple, 
binary sequences

X X X X X X X _ _ _

X Y X Y X Y X _ _ _



Simple Choice Task

Measure response latency
mean RT = 310 ms, with standard deviation = 25 ms

X 1 Y 2



Simple Choice Task

Measure response latency
mean RT = 310 ms, with standard deviation = 25 ms

Suppose we condition performance on recent history

X 1 Y 2

X Y Y X X

trial nn–1n–2n–3n–4

A R RA



Response Latencies Conditioned on History

Sequential effects
• explain significant variability in behavior

• give us insight into primitive learning mechanisms

• show how adaptive the brain is to a changing environment

RRRR ARRR RARR AARR RRAR ARAR RAAR AAAR RRRA ARRA RARA AARA RRAA ARAA RAAA AAAA
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What Sequence(s) Causes The Dependencies?

X 1 Y 2

Stimulus identity sequence

Response identity sequence

X X X Y Y X Y X Y Y

1 1 1 2 2 1 2 1 2 2
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X 1 Y 2

Stimulus identity sequence

Response identity sequence

Response repetition sequence
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1 1 1 2 2 1 2 1 2 2

R R A R A A A A R

Stimulus repetition sequence R R A R A A A A R
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X 1 Y 2

Stimulus identity sequence

Response identity sequence

Response repetition sequence

X X X Y Y X Y X Y Y
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Stimulus repetition sequence R R A R A A A A R
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What Sequence(s) Causes The Dependencies?

X 1 Y 2

Stimulus identity sequence

Response identity sequence

Response repetition sequence

X X X Y Y X Y X Y Y

1 1 1 2 2 1 2 1 2 2

R R A R A A A A R

Stimulus repetition sequence R R A R A A A A R

SECOND ORDER



Dynamic Belief Network (Yu & Cohen, 2009)
Represents second-order (stimulus or response) sequence

Model predicts next element in second-order sequence

Three parameters
changepoint prior α

imaginary counts of Beta reset distribution for γ

Assumption
response time inversely related to probability of element that occurs

e.g., P(R = a) = .7 predicts fast response if next element is alternation

C t-1 C t

γ 
t-1 γ 

t

R t-1 R t

γγγγ

R r a,{ }∈

: repetition probability

C 0 1,{ }∈ changepoint



Inference In DBN

Exact inference
P(γt|R1, ..., Rt-1) = P(Ct=1) Beta(α,β) + P(Ct=0) P(γt-1|R1, ..., Rt-1)

P(γt|R1, ..., Rt) ~ P(Rt | γt) P(γt-1|R1, ..., Rt-1)

γt : mixture of beta distributions with t components

Note: related to linear space/time complexity of online changepoint detection

Linear space/time complexity ok for AI, not for cognitive models

Approximate inference
Model γt distribution as discrete in, e.g., {0.00, 0.01, 0.02, 0.03,...,1.00}.

C t-1 C t

γ 
t-1 γ 

t

R t-1 R t

γγγγ

R r a,{ }∈

: repetition probability

C 0 1,{ }∈ changepoint



Exact Inference



DBM Fit to Data of Cho et al. (2002)

Where does the asymmetry between R and A trials come from?
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Dynamic Belief Model Versus Fixed Belief Model

FBM predicts less change in γγγγ with experience 
-> sequential effects diminish



Fixed Belief Model Fails To Fit Data

Conclusion:

Sequential effects are a rational behavior under the assumption 
of nonstationarity in the environment

human data FBM DBM



Key Result (Yu & Cohen, 2009)
For most γγγγ, DBM is well approximated by a model that maintains 
an exponentially decaying trace of recent repetitions/
alternations.

That is, if
• Rt = +1 for repetition
• Rt = –1 for alternation, 
prediction of next trial under DBM is approximately

Rt+1 = ΣΣΣΣi=0
t

 γγγγi Rt-i exact inference
exponential fit



Exact Inference Revisited
Yu & Cohen sampled over histories, but with t-length histories, 
we can exhaustively sum over the 2t possibilities
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DBM Fit to Data of Cho et al. (2002)

Circled points: mismatch between model and data
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First Versus Second Order Predictions
1st order sequence: trial n-k is same/different as trial n

e.g., XYYXX = YXXYY = SDDS

e.g., XXYXX = YYXYY = SSDS

2nd order sequence: trial n-k is a repetition/alternation of n-k+1
e.g., XYYXX = YXXYY = ARAR

e.g., XXYXX = YYXYY = RAAR



First Versus Second Order Predictions
1st order sequence: trial n-k is same/different as trial n

e.g., XYYXX = YXXYY = SDDS

e.g., XXYXX = YYXYY = SSDS

2nd order sequence: trial n-k is a repetition/alternation of n-k+1
e.g., XYYXX = YXXYY = ARAR

e.g., XXYXX = YYXYY = RAAR

First and second order histories 
are one-to-one, but predictions 
can diverge.

P(next element is same as prev. | SSDS) > 
P(next element is same | SDDS)

P(next element is repetition | RAAR) < 
P(next element is alternation | ARAR)
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Cho et al. theorized that sequential dependencies in their data 
are due to both first and second order effects

• neural net leaky integrator model

• biased by recency in both first and second order sequences

Can the same type of account work within a more principled 
(i.e., DBM) framework?



DBM can represent first-order sequence just as well as second-
order sequence
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DBM can represent first-order sequence just as well as second-
order sequence

S x y,{ }∈

C t-1 C t

γ 
t-1 γ 

t

S t-1 S t

γγγγ : repetition probability

C 0 1,{ }∈ changepoint

C t-1 C t

γ 
t-1 γ 

t

R t-1 R t

γγγγ

S x y,{ }∈

: stimulus probability

C 0 1,{ }∈ changepoint

SS

2nd order
1st order



DBM2: Dynamic Belief Mixture Model
(Wilder, Jones, & Mozer, 2009)
Current stimulus/response influenced by both 1st and 2nd 
order sequence properties (base and repetition rates)

Two free parameters: changepoint prior, w

Reset distribution is unbiased Beta(1,1)

C t-1 C t

S t-1 S t

φ 
t-1 φ 

t

γ 
t-1 γ 

t
γγγγ : repetition probability

C 0 1,{ }∈ changepoint

S x y,{ }∈

ϕ : stimulus probability



Fit to Cho et al. (2002)
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95.8% variance explained
3 free parameters
simple architecture

99.2% variance explained
2 free parameters
relatively complex architecture



Jentzsch and Sommer (2002)
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Jentzsch and Sommer (2002)
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Maloney, Dal Martello, Sahm, and Spillman (2005)
Sequential dependencies in perception of apparent motion



Maloney, Dal Martello, Sahm, and Spillman (2005)
Sequential dependencies in perception of apparent motion



Maloney, Dal Martello, Sahm, and Spillman (2005)
Sequential dependencies in perception of apparent motion



Maloney et al. (2005), Experiment 1
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Where Are We At?
DBM2 more complex than DBM

Both models have 3 free parameters

DBM2 fits data a bit better



Further Claim of DBM2
First and second order predictions are prediction are distinct, 
and might correspond to distinct brain mechanisms.

Hypothesis
Base rates (first order) are computed in response system and based on response 
properties.

Repetition rates (second order) are computed in perceptual system and based on 
stimulus properties.



Maloney et al. (2005), Experiment 2

Participants make responses only every 4 trials.

If response mechanisms aren’t operating, then according to our 
hypothesis, base rates will not influence sequential 
dependencies.



Maloney et al. (2005), Experiment 2
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Jentzsch and Sommer (2002)
Measured lateralized readiness potential (LRP)

ERP measure of ipsilateral - contralateral motor activity



Two LRP measures

S-LRP and LRP-R roughly breaks
total RT into stimulus and response
processing components

stimulus

0 200 400 600

0

-1

-2

µV

msec

response

0-200-400-600

0

-1

-2

µV

msec

S-LRP: time from stimulus
presentation to onset of LRP

LRP-R: time from onset of 
LRP to initiation of response

Stim RespLRP

Stim
proc

Resp
proc

RT

Stim RespLRP

Stim
proc

Resp
proc

RT



Jentzsch and Sommer (2002)
Fits of stimulus and response processing

model using same parameters as overall RT fits
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Jones, Curran, Mozer, & Wilder (2010)



Sequential Effects
in Motor Adaptation

Matt Wilder
Department of Computer Science

Alaa Ahmed
Department of Integrative Physiology

Michael Mozer
Department of Computer Science

Matt Jones
Department of Psychology



Reaching Task
Move robotic arm (manipulandum) 
straight toward target — 15 cm — and 
return to starting position

Perpendicular perturbing force applied 
on each trial, either to the left or the right

Force increases with position for first 5 
cm, then constant for last 10

No force on return

Measure error: maximum deviation from 
straight path



Sequential Effects in Reaching Task
Eight subjects

First-order priming, going back at least four trials

z 
sc

or
e



Do Sequential Effects Go Back Further?
For individual subjects,
compute:

Curves are fit based on lags 1-5



Sequential Effects in Driving
Anup Doshi
Cuong Tran

Mohan Trivedi
Department of Electrical Engineering

UCSD

Matt Wilder
Michael Mozer

Department of Computer Science
University of Colorado



Laboratory for Intelligent & 
Safe Automobiles (LISA)
Xbox-like driving simulation 
with realistic physics

Full size steering wheel

Brake, acceleration pedals

Cameras focused on driver’s 
head and eyes, hands, feet



Task
Drive in simulator

• Twisty road, constant turns

• Driver instructed to stay in middle lane of 3-lane highway

• Buildings and objects in the scene

Occasional cues to brake or accelerate
simulate stop-and-go traffic

guide car: brake lights or kicking up dust

traffic light in windshield

Constant velocity travel when no pedal press



Decomposing The Total Response Time
Cameras monitored foot, so we can decompose RT into

SSS DSS SDS DDS SSD DSD SDD DDD
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=

time from
stimulus onset
to foot
movement
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time to move
foot to
pedal



Summary
Systematic discrepancies in DBM ->
elaborated generative model (DBM2)
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Summary
Systematic discrepancies in DBM ->
elaborated generative model (DBM2)

Conceptual organization of DBM2 ->
psychological architecture in which first and second order 
statistics separately represented

Further fits to data (LRP, intermittent responses) ->
tracked statistics are differentially tied to stimuli and responses

First order statistics (a.k.a. baserates, marginal probabilities) of response 
sequence

Second order statistics (a.k.a. repetition rates, transition probabilities) of stimulus 
sequence



Summary
Systematic discrepancies in DBM ->
elaborated generative model (DBM2)

Conceptual organization of DBM2 ->
psychological architecture in which first and second order 
statistics separately represented

Further fits to data (LRP, intermittent responses) ->
tracked statistics are differentially tied to stimuli and responses

First order statistics (a.k.a. baserates, marginal probabilities) of response 
sequence

Second order statistics (a.k.a. repetition rates, transition probabilities) of stimulus 
sequence

Sequential effects in other domains
reaching with perturbations

driving
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	response time inversely related to probability of element that occurs
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	Exact Inference Revisited
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