Sequence Prediction

Until now, we’ve focused on complex sequences
speech sounds (HMM)
words (HMM)
human judgments (CRF)
location of person/car (particle filter)
coal mining accidents (OCPD)
stock market returns (OCPD)

saccade perturbations (Kalman filter)

All but last have been with an Al focus

Today, more modeling of human behavior, with very simple,
binary sequences
XXXXXXX___

XYXYXYX___



Simple Choice Task
X1 V-2

Measure response latency

mean RT = 310 ms, with standard deviation = 25 ms
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Measure response latency

mean RT = 310 ms, with standard deviation = 25 ms

Suppose we condition performance on recent history
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Response Latencies Conditioned on History

Jentzsch and Sommer (2002), Experiment 1
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Sequential effects
« explain significant variability in behavior
* give us insight into primitive learning mechanisms

- show how adaptive the brain is to a changing environment



What Sequence(s) Causes The Dependencies?

X—1 Y — 2

Stimulus identity sequence X XXYYXYXVYY

Response identity sequence 1112212122



What Sequence(s) Causes The Dependencies?

X-—1 Y-—2

Stimulus repetition sequence
Stimulus identity sequence XXXYYXYXVYY

Response identity sequence 1112212122
RRA

Response repetition sequence RAAAAR



What Sequence(s) Causes The Dependencies?

X-—1 Y-—2

Stimulus repetition sequence
Stimulus identity sequence X XXYYXYXVYY

Response identity sequence 1112212122

VAV

Response repetition sequence RARAAAAR

FIRST ORDER



What Sequence(s) Causes The Dependencies?

X-—1 Y-—2

Stimulus repetition sequence
Stimulus identity sequence X XXYYXYXVYY

Response identity sequence 1112212122

ey

Response repetition sequence RARAAAAR

SECOND ORDER




Dynamic Belief Network (Yu & Cohen, 2009)

Represents second-order (stimulus or response) sequence

Ce {0,1} changepoint

Y : repetition probability

Re {r,a}

Model predicts next element in second-order sequence

Three parameters
changepoint prior o

imaginary counts of Beta reset distribution for y

Assumption
response time inversely related to probability of element that occurs

e.g., P(R = a) = .7 predicts fast response if next element is alternation



Inference In DBN
Ce {0,1} changepoint

Y : repetition probability

Re {r,a}

Exact inference
P(1iIR4, ..., Ri.q) = P(Ci=1) Beta(a,p) + P(Ci=0) P(y1.1IRq, ..., R.1)
PR+, ..., RY) ~P(R¢ I ) P(1t-11Ry, .., Riq)
Y - mixture of beta distributions with t components
Note: related to linear space/time complexity of online changepoint detection

Linear space/time complexity ok for Al, not for cognitive models

Approximate inference
Model v; distribution as discrete in, e.g., {0.00, 0.01, 0.02, 0.03,...,1.00}.



Exact Inference
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DBM Fit to Data of Cho et al. (2002)
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Where does the asymmetry between R and A trials come from?



Dynamic Belief Model Versus Fixed Belief Model
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FBM predicts less change in y with experience
-> sequential effects diminish



Fixed Belief Model Fails To Fit Data

FBM DBM

human data
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Conclusion:

Sequential effects are a rational behavior under the assumption

of nonstationarity in the environment



Key Result (Yu & Cohen, 2009)

For most vy, DBM is well approximated by a model that maintains
an exponentially decaying trace of recent repetitions/
alternations.

That is, if

* R; = +1 for repetition

* Ry = -1 for alternation,

prediction of next trial under DBM is approximately
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Exact Inference Revisited

Yu & Cohen sampled over histories, but with t-length histories,
we can exhaustively sum over the 2 possibilities
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First Versus Second Order Predictions

1st order sequence: trial n-k is same/different as trial n
e.g., XYYXX = YXXYY = SDDS
e.g., XXYXX = YYXYY = SSDS

2nd order sequence: trial n-k is a repetition/alternation of n-k+1
e.g., XYYXX = YXXYY = ARAR
e.g., XXYXX = YYXYY = RAAR



First Versus Second Order Predictions

First and second order histories 400
are one-to-one, but predictions
can diverge.

380

W
(o2}
o

next element is same as prev. | SSDS) >
next element is same | SDDS)

Response Time
w
Y
o

next element is repetition | RAAR) <
next element is alternation | ARAR)

w
N
o

P(
P(
P(
P(

300+




Cho et al. theorized that sequential dependencies in their data
are due to both first and second order effects

* neural net leaky integrator model

* biased by recency in both first and second order sequences

Can the same type of account work within a more principled
(i.e., DBM) framework?



DBM can represent first-order sequence just as well as second-

order sequence

lapJo pug
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Ce {0,1} changepoint
Y : repetition probability

Re {r, a}

Ce {0,1} changepoint
Y : stimulus probability

Se {x, vy}
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DBM can represent first-order sequence just as well as second-

order sequence
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Y : repetition probability
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Ce {0,1} changepoint
Y : stimulus probability

Se {x, vy}



DBM2: Dynamic Belief Mixture Model
(Wilder, Jones, & Mozer, 2009)

Current stimulus/response influenced by both 1st and 2nd
order sequence properties (base and repetition rates)

Ce {0,1} changepoint

¢ : stimulus probability
Y : repetition probability

Se{x vy}

: Dts Yt 1=X)=wo,+ (1 —w)y
P(Svt = ,-\' (f)t. Yt »Svt_l — }') =S U'(Dt + (l — l[')(l — A‘r‘t)

Two free parameters: changepoint prior, w

Reset distribution is unbiased Beta(1,1)



Fit to Cho et al. (2002)
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Jentzsch and Sommer (2002)
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Maloney, Dal Martello, Sahm, and Spiliman (2005)

Sequential dependencies in perception of apparent motion
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Sequential dependencies in perception of apparent motion



Maloney, Dal Martello, Sahm, and Spillman (2005)

Sequential dependencies in perception of apparent motion

Fig. 1. A motion quartet. The pair of disks marked A appears for 250 ms and
then disappears. After a short delay (250 ms), the pair marked B appears for
250 ms. The observer sees apparent rotational motion that carries the first pair
of dots into the second. The angle # between the two diameters affects the
probability that the direction of apparent motion is clockwise or counter-
clockwise. For many observers, the movement is roughly equally likely to be
clockwise as counterclockwise when 6 = 90°.
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Where Are We At?
DBM2 more complex than DBM

Both models have 3 free parameters

DBM2 fits data a bit better

Table 1: A comparison between the % of data variance explained by DBM and DBM2

Cho | Jentzsch 1 | Maloney 1
DBM 95.8 | 95.5 96.1

DBM2 || 99.2 | 96.5 97.7




Further Claim of DBM2

First and second order predictions are prediction are distinct,
and might correspond to distinct brain mechanisms.

Hypothesis

Base rates (first order) are computed in response system and based on response
properties.

Repetition rates (second order) are computed in perceptual system and based on
stimulus properties.



Maloney et al. (2005), Experiment 2

Participants make responses only every 4 trials.

If response mechanisms aren’t operating, then according to our
hypothesis, base rates will not influence sequential
dependencies.



Maloney et al. (2005), Experiment 2
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Jentzsch and Sommer (2002)

Measured lateralized readiness potential (LRP)

ERP measure of ipsilateral - contralateral motor activity
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Two LRP measures

S-LRP: time from stimulus LRP-R: time from onset of
presentation to onset of LRP LRP to initiation of response
stimulus

uv- uVv

0 200 400 600 msec -600-400 -200 O msec

RT

S-LRP and LRP-R roughly breaks i R
total RT into stimulus and response proc proél
processing components
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Jones, Curran, Mozer, & Wilder (2010)
S-LRP LRP-R
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Sequential Effects
In Motor Adaptation

Matt Wilder
Department of Computer Science

Alaa Ahmed
Department of Integrative Physiology

Michael Mozer
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Matt Jones
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Reaching Task

Move robotic arm (manipulandum)
straight toward target — 15 cm — and
return to starting position

Perpendicular perturbing force applied
on each trial, either to the left or the right

Force increases with position for first 5
cm, then constant for last 10

No force on return

Measure error: maximum deviation from
straight path




Sequential Effects in Reaching Task

Eight subjects
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Do Sequential Effects Go Back Further?

For individual subjects,

compute:
.
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Sequential Effects in Driving
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Laboratory for Intelligent &
Safe Automobiles (LISA)

Xbox-like driving simulation
with realistic physics

Full size steering wheel
Brake, acceleration pedals

Cameras focused on driver’s
head and eyes, hands, feet

Secondary
Monj't_((r

Primary Monitor

Gaze/Head Tracker
Steenng Wheel




Task

Drive in simulator

- Twisty road, constant turns

- Driver instructed to stay in middle lane of 3-lane highway
- Buildings and objects in the scene

Occasional cues to brake or accelerate
simulate stop-and-go traffic
guide car: brake lights or kicking up dust
traffic light in windshield

Constant velocity travel when no pedal press



Decomposing The Total Response Time

Cameras monitored foot, so we can decompose RT into

total
response
time

time from
stimulus onset
to foot
movement

I
time to move

foot to
pedal
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elaborated generative model (DBM2)
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Summary

Systematic discrepancies in DBM ->
elaborated generative model (DBM2)

Conceptual organization of DBM2 ->
psychological architecture in which first and second order
statistics separately represented

Further fits to data (LRP, intermittent responses) ->
tracked statistics are differentially tied to stimuli and responses

First order statistics (a.k.a. baserates, marginal probabilities) of response
sequence

Second order statistics (a.k.a. repetition rates, transition probabilities) of stimulus
sequence

Sequential effects in other domains
reaching with perturbations

driving
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