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In cognitive psychology, theories of human learning aim to describe the basic laws of acquisition and
forgetting. For elegance and parsimony, theories focus on predicting average learning performance for
a population of individuals (e.g., college students) and a collection of homogenous items (e.g., foreign
language vocabulary to be remembered). Because of the focus on aggregate data, theories typically do
an underwhelming job of predicting the memory strength of a specific individual for a particular item.
Individual variability is generally treated as noise. (In these notes, we focus on fact recall, but the approach
could equally well be applied to cognitive skill acquisition.)

To develop AI systems that can guide and schedule practice for optimal learning, one must be funda-
mentally concerned with individual variability. Given a limited amount of time for study, the system may
have to choose whether to practice item A or item B, which in turn depends on specific predictions for the
individual items and a given student. These specific predictions are facilitated by estimates of a student’s
ability or an item’s intrinsic difficulty, but another key source of information for modeling memory is feed-
back from the student. If a student is asked to recall an item, feedback from the student—success or failure
on the task—can provide critical information to adapt predictions in the future.

The field hasn’t had a great deal of clarity with regard to what performance or retrieval success implies.
In Bayesian Knowledge Tracing (Corbett, 1995), the feedback influences the likelihood that the student
has already reached mastery—an inferential effect on knowledge state. In human memory models, recall
success boosts memory strength more than recall failure (Mozer, Pashler, Cepeda, Lindsey, & Vul, 2009;
Raaijmakers, 2003), or recall success slows subsequent memory decay more than recall failure (Pavlik &
Anderson, 2005; Mooney, Sun, & Bomgardner, 2017)—both are causal effects on knowledge state. This
document explores the implications of the fact that feedback affects knowledge state both inferentially and
causally.

A memory model that disentangles the inferential and causal effects of feedback
We propose a model of memory that characterizes the time course of learning and forgetting. We call

the model CIMM for Causal and Inferential Memory Modulations. CIMM is informed by observations of
student performance via testing.

The scenario is that a student practices an item i over a series of trials k ∈ {1, 2, ...,K}. On trial k,
occurring at time tik, the student may fail or succeed, i.e., respond incorrectly or correctly, as denoted by
cik ∈ {0, 1}. The data set to be modeled thus consists of sequences of tuples,

DiK = {(ti1, ci1), (ti2, ci2), . . . (tiK , ciK)},

ordered such that tik ≤ tik+1. The goal is to use CIMM to predict memory state at some future time tiK+1, i.e.,
Pr(ciK+1|DiK , tiK+1). CIMM is intended to encompass both fact retrieval and cognitive skill application.
We use the term “recall” as a shorthand to describe either. We make the simplifying assumption that items do
not interact with one another. Because of this independence, we can simplify notation and drop the explicit
index of item i.
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CIMM treats the time-varying memory strength, s ∈ [0, 1], as a random variable. The strength predicts
the probability of success,

ĉ ∼ Bernoulli(s). (1)

As a simple instantiation of CIMM, suppose that memory strength decays exponentially in time such
that the strength at the start of trial k, denoted sk, can be expressed in terms of the strength immediately
following the previous trial, s(k−1)+ :

sk = e−λk−1(tk−tk−1)s(k−1)+ , (2)

where λk−1 > 0 is a random variable indicating the memory decay rate between trials k− 1 and k. The rate
is constant from one trial to the next, but may change as a consequence of experience, in the same spirit as
the models of Pavlik and Anderson (2005, 2008) and Mooney et al (2017). The initial memory decay rate
and strength are unknown with priors

λ0 ∼ Gamma(µ, ν) and s0 ∼ Beta(α, β).1 (3)

Adapting a proposal of the RPL model (Mooney et al., 2017), CIMM posits that the item’s post-trial
decay rate is deterministically modulated both by the current strength and recall success:

λk = λk−1 [1 + εck(1− sk)γ ]
−1 , (4)

where ε and γ are non-negative free parameters of the model.2 This rule embodies two mechanistic claims
about memory. First, recall success can have causal consequences, consistent with the testing effect. Second,
decay slows more following a successful spaced trial (long inter-trial lag) than a massed trial (short inter-trial
lag), consistent with the distributed-practice effect. In Equation 4, as the inter-trial lag tk − tk−1 increases,
sk+ will decrease monotonically, leading to a larger modulation of λk via (1− sk)γ .

If corrective feedback is provided on each study trial, the studied item should have full strength—at least
momentarily—following the trial. Thus, CIMM assumes that

sk+ = 1. (5)

The graphical model that represents CIMM dynamics is presented in Figure 1. The red arrows indicate
the inferential process in which an observation (success or failure at recall) updates beliefs about memory
decay, and the green arrows indicate the causal process by which an observation influences subsequent
decay.

Comparison of CIMM and RPL
CIMM’s mechanism for updating memory decay is simpler than the mechanism in RPL (Mooney et al.,

2017). The simplification arises because CIMM teases apart causal and inferential effects of feedback. RPL
proposes that the decay rate can rise (i.e., memory decays faster) following a response failure when sk is
large. One might view this rule as approximately capturing the inference that the decay-rate estimate must
be too low if the model overpredicts performance. We eliminate this rule of RPL in CIMM because the
inference is already a consequence of the Bayesian update Pr(λk−1|ck).

1These parameters are item specific.
2These parameters are potentially student specific.
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Figure 1: Dynamics of CIMM. Red arrows indicate inferrential processes from observations to decay rates,
and the green arrow indicates a causal process from observations to subsequent decay rates. The blue nodes
are model parameters. The link from sk to sk+ is greyed out because the basic version of the model in the
text does not carry activation forward from one trial to the next (Equation 5).

RPL posits that forgetting follows a power law, CIMM posits an exponential. The advantage of the
exponential is that it has only one free parameter. The apparent advantage of the power law is that it is
consistent with current characterizations of forgetting by a population of students or by a single student for
a population of items (Wixted & Carpenter, 2007). However, CIMM does predict power-law forgetting for
populations based on the fact that each student-item can have its own exponential decay rate, and a mixture
of exponentials well approximates a power-law function (Mozer et al., 2009).

Extensions to CIMM
Like RPL, CIMM assumes that memory goes to full strength immediately after a trial with corrective

feedback. This assumption is valid only if the student paid attention to the feedback, and a more complete
version of either CIMM or RPL might include a boolean variable that indicates whether the feedback was
absorbed. Students will differ in how reliably they absorb the feedback.

Unlike RPL, CIMM does not include a correction for guessing. CIMM can incorporate this correction
in domains where chance accuracy is significantly nonzero (e.g., where the response options are limited).

CIMM is deterministic except for the uncertainty in λ0 and s0. And the uncertainty in s0 probably
does not matter much. MLE could be used to determine the parameters, {α, β, µ, ν, ε, γ}. It would be
advantageous to treat these parameters as random variables, leading a hierarchical model with student-item
specific λ0 and s0, and student-specific ε∗ and γ∗ (see Figure 2.
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Figure 2: A view of CIMM across students and items. Using hierarchical Bayesian inference, it should be
possible to model the dynamics of forgetting for individual items as well as the dynamics of learning for
individual students.
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