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1. Introduction

The field of Bayesian networks, and graphical models in general, has grown
enormously over the last few years, with theoretical and computational
developments in many areas. As a consequence there is now a fairly large set
of theoretical concepts and results for newcomers to the field to Jearn. This
tutorial aims to give an overview of some of these topics, which hopefully
will provide such newcomers a conceptual framework for following the more
detailed and advanced work. It begins with revision of some of the basic
axioms of probability theory.

2. Basic axioms of probability

Probability theory, also known as inductive logic, is a system of reason-
ing under uncertainty, that is under the absence of certainty. Within the
Bayesian framework, probability is interpreted as a numerical measure of
the degree of consistent belief in a proposition, consistency being with the
data at hand.

Early expert systems used deductive, or Boolean, logic, encapsulated
by sets of production rules. Attempts were made to cope with uncertainty
using probability theory, but the calculations became prohibitive, and the
use of probability theory for inference in expert systems was abandoned. It
is with the recent development of efficient computational algorithms that
probability theory has had a revival within the AI community.

Let us begin with some basic axioms of probability theory. The prob-
ability of an event A, denoted by P(A), is a number in the interval [0,1],
which obeys the following axioms:

1 P(A) =1 if and only if A is certain.
9
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o If A and B are mutually exclusive, then P(A or B) = P(4) + P(B).

We will be dealing exclusively with discrete random variables and their
probability distributions. Capital letters will denote a variable, or perhaps
s set of variables, lower case letter will denote values of variables. Thus
suppose A is a random variable having a finite number of mutually ezclusive
states (ai,... ,an). Then P(A) will be represented by a vector of non-
negative real numbers P(A) = (z1,... ,Tn) where P(A = a;) = z; is a
scalar, and D ;i = 1.

A basic concept is that of conditional probability, a statement of which
takes the form: Given the event B = b the probability of the event A = a 1is
«, written P(A = a|B = b) = z. It is important to understand that this is
not saying: “If B = b is true then the probability of A = a is z”. Instead it
says: “If B = b is true, and any other information to hand is irrelevant to
A, then P(A = a) = z”. (To see this, consider what the probabilities would
be if the state of A was part of the extra information).

Conditional probabilities are important for building Bayesian networks,
as we shall see. But Bayesian networks are also built to facilitate the calcu-
lation of conditional probabilities, namely the conditional probabilities for
variables of interest given the data (also called evidence) at hand.

The fundamental rule for probability calculus is the product rule!

P(A and B) = P(A| B)P(B). (1)

This equation tells us how to combine conditional probabilities for individ-
ual variables to define joint probabilities for sets of variables.

3. Bayes’ theorem

The simplest form of Bayes’ theorem relates the joint probability P(A and B)
— written as P(A, B) - of two events or hypotheses A and B in terms of
marginal and conditional probabilities:

P(4,B) = P(A| B)P(B) = P(B| A)P(A). (2)

By rearrangement we easily obtain

P(B|A)P(A)

P(B) ' 3)

P(A|B) =

which is Bayes’ theorem.
This can be interpreted as follows. We are interested in A, and we begin
with a prior probability P(A) for our belief about A, and then we observe

'Or more generally P(4 and B|C) = P(A| B,C)P(B|C).
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B. Then Bayes' theorem, (3), tells us that our revised belief for A, the
posterior probability P(A | B) is obtained by multiplying the prior P(4)
by the ratio P(B | A)/P(B). The quantity P(B | A), as a function of varying
A for fixed B, is called the likelihood of A. We can express this relationship
in the form:

posterior « prior x likelihood
P(A|B) « P(A)P(B|A).

Figure 1 illustrates this prior-to-posterior inference process. Each diagram

P(A)P(B| A) P(A, D) P(B)P(A| B)

Figure 1. Bayesian inference as reversing the arrows

represents in different ways the joint distribution P(4, B), the first repre-
sents the prior beliefs while the third represents the posterior beliefs. Often,
we will think of A as a possible “cause” of the “effect” B, the downward
arrow represents such a causal interpretation. The “inferential’ upwards
arrow then represents an “argument against the causal flow”, from the
observed effect to the inferred cause. (We will not go into a definition of
“causality” here.)

Bayesian networks are generally more complicated than the ones in
Figure 1, but the general principles are the same in the following sense.
A Bayesian network provides a model representation for the joint distri-
bution of a set of variables in terms of conditional and prior probabilities,
in which the orientations of the arrows represent influence, usually though
not always of a causal nature, such that these conditional probabilities for
these particular orientations are relatively straightforward to specify (from
data or eliciting from an expert). When data are observed, then typically
an inference procedure is required. This involves calculating marginal prob-
abilities conditional on the observed data using Bayes’ theorem, which is
diagrammatically equivalent to reversing one or more of the Bayesian net-
work arrows. The algorithms which have been developed in recent years

.kv
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allows these calculations to be performed in an efficient and straightfor-
ward manner.

4. Simple inference problems

Let us now consider some simple examples of inference. The first is simply
Bayes’ theorem with evidence included on a simple two node network; the
remaining examples treat a simple three node problem.

4.1. PROBLEM I

Suppose we have the simple model X — Y, and are given: P(X), P(Y | X)
and Y = y. The problem is to calculate P(X |Y = y).

Now from P(X), P(Y |X) we can calculate the marginal distribution
P(Y) and hence P(Y = y). Applying Bayes' theorem we obtain

P(Y =y| X)P(X)

PX|Y =y)= B =)

(4)

4.2. PROBLEM I1

Suppose now we have a more complicated model in which X is a par-
ent of both Y and Z: Z + X — Y with specified probabilities P(X),
P(Y|X) and P(Z| X), and we observe Y = y. The problem is to calculate
P(Z|Y = y). Note that the joint distribution is given by P(X,Y,Z) =
P(Y|X)P(Z|X)P(X). A ‘brute force’ method is to calculate:

1. The joint distribution P(X,Y, Z).
2. The marginal distribution P(Y') and thence P(Y = y).
3. The marginal distribution P(Z,Y) and thence P(Z,Y =y).
4. P(Z|Y =y) = P(Z,Y = y)/P(Y =y).

An alternative method is to exploit the given factorization:

1. Calculate P(X |Y = y) = P(Y =y| X)P(X)/P(Y =y) using Bayes’
theorem, where P(Y =y) =3, P(Y =y| X)P(X).

2.Find P(Z|Y =y) =3 x P(Z| X)P(X|Y =1y).
Note that the first step essentially reverses the arrow between X and Y.
Although the two methods give the same answer, the second is generally
more efficient. For example, suppose that all three variables have 10 states.
Then the first method in explicitly calculating P(X,Y, Z) requires a table
of 1000 states. In contrast the largest table required for the second method
has size 100. This gain in computational efficiency by exploiting the given
factorizations is the basis of the arc-reversal method for solving influence

Plaly-y)
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diagrams, and of the junction-tree propagation aigorithms. The following
example shows the same calculation using propagation on a junction tree.

4.3. PROBLEM III

Suppose now that we are given the undirected structure ZX — X — XY,
and probabilities P(Z, X), P(X) and P(Y,X). Again the problem is to
calculate P(Z|Y = y). Note that:

P(Z,X) = P(Z|X)P(X)
P(Y,X) = P(Y|X)P(X)
’P(X,Y,Z) = P(2Z,X)P(Y,X)/P(X).

The calculational steps now proceeds using a ‘message’ in step 1 which is
‘sent’ in step 2:

1. Calculate P(X) =Y, P(X,Y =y).

2. Find P(Z, X) = P(Z, X)P(X)/P(X).

3. Find P(Z,Y =y) = 3_x P(Z,X).

4. Find P(Z|Y =y) = P(2,Y =y)/ Y.z P(2,Y =)

5. Conditional independence

-In the last example we had that

P(X,Y,Z) = P(Y|X)P(Z| X)P(X),

from which we get

P(X,Y,Z)
P(Z,X)
P(Y|X)P(Z | X)P(X)
P(Z,X)
= P(Y|X)

P(Y|Z,X)

and likewise for P(Z|Y, X) = P(Z | X). Hence given X = z say, we obtain
P(Y|Z,X=z)=P(Y|X =z)and P(Z|Y,X =z) = P(Z| X = z). This
is an example of conditional independence (Dawid(1979)). We associated
the graph Z + X — Y with this distribution, though this is not unique.
In fact the joint probability can be factorized according to three distinct
directed graphs:

Z+X-Y:P(XY 2Z) =PX)PY|X)P(Z|X).

ZX-Y:PX,Y,Z2)=PY|X)P(X|Z)P(Z).

Z«X«Y:PX)Y Z2)=PX|Y)P(Z|X)P(Y).
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Each of these factorizations follows from the conditional independence prop-
erties which each graph expresses, viz Z 1L Y| X, (which is to be read as
«7 is conditionally independent of ¥ given X") and by using the general
factorization property:

P(Xy,...Xa) = P(X1|X2,...,Xn)P(Xg,...,Xn)
= P(X1|X2,..., Xa)P(X2| X3, .. , Xn)P(X3,... 1 Xn)

= P(X1|Xa,.-. , Xn) - P(Xn-1 IXn)P(Xn)-
Thus for the third example
P(X,Y,Z)=P(Z|X, Y)P(X|Y)P(Y) = P(Z|X)P(X|Y)P(Y).

Note that the graph Z — X « Y does not obey the conditional indepen-
dence property Z 1L Y | X and is thus excluded from the list; it factorizes
as P(X,Y,Z) = P(X |Y, Z)P(Z)P(Y).

This example shows several features of general Bayesian networks. Firstly,
the use of the conditional independence properties can be used to simplify
the general factorization formula for the joint probability. Secondly, that
the result is a factorization that can be expressed by the use of directed
acyclic graphs (DAGs).

6. Genperal specification in DAGs

It is these features which work together nicely for the general specification
of Bayesian networks. Thus a Bayesian network is a directed acyclic graph,
whose structure defines a set of conditional independence properties. These
properties can be found using graphical manipulations, eg d-separation (see
eg Pear](1988)). To each node is associated a conditional probability distri-
bution, conditioning being on the parents of the node: P(X |pa(X)). The
joint density over the set of all variables U is then given by the product of
such terms over all nodes:

P(U) = [] P(X | pa(X)).
X

This is called a recursive factorization according to the DAG; we also talk of
the distribution being graphical over the DAG. This factorization is equiv-
alent to the general factorization but takes into account the conditional
independence properties of the DAG in simplifying individual terms in the
product of the general factorization. Only if the DAG is complete will this
formula and the general factorization coincide, (but even then only for one
ordering of the random variables in the factorization).

.
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6.1. EXAMPLE

Consider the graph of Figure 2.
/®\ /\\ /© P(A,B,C,D,E,F,G,H,I)
=P(A)P(B)P(C)
P(D|A)P(E|A,B)P(F|B,C)

\ / \‘ /\‘ P(G|A,D,E)P(H|B,E,F)P(I|C, F).
@ @ @ ,E,F)P(I|C,F)
Figure 2. Nine node example.

1t is useful to note that marginalising over a childless node is equivalent
to simply removing it and any edges to it from its parents. Thus for example,
marginalising over the variable H in the above gives:

P(A,B,C,D,E,F,G,I)=) P(A,B,C,D,E,F,G,H,I)
H
=Y P(4)P(B)P(C)P(D|A)P(E| A, B)P(F|B,C)
H

P(G|A,D,E)P(H|B,E,F)P(I|C,F)
= P(A)P(B)P(C)P(D| A)P(E|A,B)P(F|B,C)

P(G|A,D,E)P(I|C,F)Y P(H|B,E,F)
H

= P(A)P(B)P(C)P(D|A)P(E| A, B)P(F|B,C)
P(G|A,D,E)P(I|C,F),

which can be represented by Figure 2 with H and its incident edges re-
moved.

Directed acyclic graphs can always have their nodes linearly ordered so
that for each node X all of its parents pa(X) precedes it in the ordering.
Such and ordering is called a topological ordering of the nodes. Thus for
example (4,B,C,D,E,F,G,H,I) and (B,A,E,D,G,C,F, I,H) are two
of the many topological orderings of the nodes of Figure 2.

A simple algorithm to find a topological ordering is as follows: Start
with the graph and an empty list. Then successively delete from the graph
any node which does not have any parents, and add it to the end of the
list. Note that if the graph is not acyclic, then at some stage a graph will
be obtained in which no node has no parent nodes, hence this algorithm
can be used as an efficient way of checking that the graph is acyclic.
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Another equivalent way is to start with the graph and an empty list,
and successively delete nodes which have no children and add them to the
beginning of the list (cf. marginalisation of childless nodes.)

6.‘2. DIRECTED MARKOV PROPERTY

An important property is the directed Markov property. This is a condi-
tional independence property which states that a variable is conditionally
independent of its non-descendents given it parents:

X 1l nd(X)|pa(X).

Now recall that the conditional probability P(X | pa{X)) did not necessarily
mean that if pa(X) = «* say, then P(X = z) = P(z|7*), but included
the caveat that any other information is irrelevant to X for this to hold.
For the DAGs this ‘other information’ means, from the directed Markov
property, knowledge about the node itself or any of its descendents. For
if all of the parents of X are observed, but additionally observed are one
or more descendents Dy of X, then because X influences Dy, knowing
Dx and pa(X) is more informative than simply knowing about pa(X)
alone. However having information about a non-descendent does not tell us
anything more about X, because either it cannot influence or be influenced
by X either directly or indirectly, or if it can influence X indirectly, then
only through influencing the parents which are all known anyway.

For example, consider again Figure 2. Using the previous second topo-
logical ordering we may write the general factorization as:

P(A,B,C,D,E,F,G,I,H) =P(B)
+ P(A|B)
+ P(E|B, A)
« P(D|B, A, E)
+ P(G|B, A, E, D) (5)
«P(C|B,A,E,D,G)
« P(F|B,A,E,D,G,C)
«P(I|B,A,E,D,G,C,F)
«P(H|B,A,E,D,G,C,FI)

but now we can use A {L B from the directed Markov property to simplify
P(A|B) — P(A), and similarly for the other factors in (5) etc, to obtain
the factorization in Figure 2. We can write the general pseudo-algorithm of
what we have just done for this example as
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Topological ordering +
General factorization +
Directed Markov property
== Recursive factorization.

7. Making the inference engine

We shall now move on to building the so called “inference engine” to in-
troduce new concepts and to show how they relate to the conditional in-
dependence/recursive factorization ideas that have already been touched
upon. Detailed justification of the results will be omitted, the aim here is
to give an overview, using the use the fictional ASIA example of Lauritzen
and Spiegelhalter.

7.1. ASIA: SPECIFICATION

Lauritzen and Spiegelhalter describe their fictional problem domain as fol-
lows:

Shortness-of-breath (Dyspnoea) may be due to Tuberculosis, Lung can-
cer or Bronchitis, or none of them, or more than one of them. A recent
visit to Asia increases the chances of Tuberculosis, while Smoking is
known to be a risk factor for both Lung cancer and Bronchitis. The
results of a single X-ray do not discriminate between Lung cancer and
Tuberculosis, as neither does the presence or absence of Dyspnoea.

® ®
| /N
© ©

N/
o |
®\@

Figure 3. ASIA

P(U) =P(A)P(S)
P(T|A)P(L|S)
P(B|S)P(E|L,T)
P(D|B,E)P(X | E)
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The network for this fictional example is shown in Figure 3. Each vari-
able is a binary with the states (“yes”, “no”). The E node is a logical node
taking value “yes” if either of its parents take a “yes” value, and “no” oth-
erwise; its introduction facilitates modelling the relationship of X-ray to
Lung cancer and Tuberculosis.

Having specified the relevant variables, and defined their dependence
with the graph, we must now assign (conditional) probabilities to the nodes.
In real life examples such probabilities may be elicited either from some
large database (if one is available) as frequency ratios, or subjectively from
the expert from whom the structure has been elicited (eg using a fictitious
gambling scenario or probability wheel), or a combination of both. However
as this is a fictional example we can follow the third route and use made-up
values. (Specific values will be omitted here.)

7.2. CONSTRUCTING THE INFERENCE ENGINE

With our specified graphical model we have a representation of the joint
density in terms of a factorization:

11 PV Ipa(v)) (6)
\'4

= P(A)...P(X|E). )

P(U)

Recall that our motivation is to use the model specified by the joint distri-
bution to calculate marginal distributions conditional on some observation
of one or more variables. In general the full distribution will be computa-
tionally difficult to use directly to calculate these marginals directly. We
will now proceed to outline the various stages that are performed to find a
representation of P(U) which makes the calculations more tractable. (The
process of constructing the inference engine from the model specification is
sometimes called compiling the model.)

The manipulations required are almost all graphical. There are five
stages in the graphical manipulations. Let us first list them, and then go
back and define new terms which are introduced.

1. Add undirected edges to all co-parents which are not currently joined )

(a process called marrying parents).

2. Drop all directions in the graph obtained from Stage 1. The result is
the so-called moral graph.

3. Triangulate the moral graph, that is, add sufficient additional undi-
rected links between nodes such that there are no cycles (ie. closed
paths) of length 4 or more distinct nodes without a short-cut.

4. Identify the cliques of this triangulated graph.

5. Join the cliques together to form the junction tree.
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Now let us go through these steps, supplying some justification and defining
the new terms just introduced as we go along. Consider first the joint
density again. By a change of notation this can be written in the form

Ha(V, pa(V)) (8)
v

= a(A)...a(X,E). (9)

where a(X,pa(X)) = P(V|pa(V)). That is, the conditional probability
factors for V can be considered as a function of V' and its parents. We call
such functions potentials. Now after steps 1 and 2 we have an undirected
graph, in which for each node both it and its set of parents in the original
graph form a complete subgraph in the moral graph. (A complete graph is
one in which every pair of nodes is joined together by an edge.) Hence, the
original factorization of P(U) on the DAG G goes over to an equivalent fac-
torization on these complete subsets in the moral graph G™. Technically we
say that the distribution is graphical on the undirected graph G™. Figure 4
illustrates the moralisation process for the Asia network. Now let us de-

@

/ /
\ | \

® ® ©

Figure 4. Moralising Asia: Two extra links are required, A~ S and L — B. Directionality
is dropped after all moral edges have been added.

note the set of cliques of the moral graph by C™. (A clique is a complete
subgraph which is not itself a proper subgraph of a complete subgraph, so
it is a maximal complete subgraph.) Then each of the complete subgraphs
formed from {V'} Upa(V) is contained within at least one clique. Hence we
can form functions a¢c such that

= [] acVe)

ceC™

where ac(Vc) is a function of the variables in the cligue C. Such a factoriza-
tion can be constructed as follows: Initially define each factor as unity, i.e.,
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ac(Vc) = 1 for all cliques in C™. Then for each factor P(V | pa(V)) find one
and only one clique which contains the complete subgraph of {V'} U pa(V)
and multiply this conditional distribution into the function of that clique
to obtain a new function. When this is done the result is a potential rep-
resentation of the joint distributions in terms of functions on the cliques of
the moral G™.

Note that by adding the extra edges in the moralisation process it is
not possible to read of all of the conditional independences of the original
DAG, though they are still there “buried” in the numerical specification.
Those which remain “visible” in the moral graph are used to exploit the
efficient local computations which will be described later.

8. Aside: Markov properties on ancestral sets

In fact the moral graph is a powerful construction for elicudating condi-
tional independence. First we require some more definitions. A node A4 is
an ancestor of a node B if either (i) A is a parent of B or (ii) A is an
ancestor of (at least) one of the parents of B. The ancestral set of a node
is the node itself and the set of its ancestors. The ancestral set of a set
of nodes Y is the union of the ancestral sets of the nodes in Y. A set S
separates the sets 4 and B if every path between a node a € A and b € B
passes through some node of S. With these definitions we have:

Lemma 1
Let P factorize recursively according to G. Then

Al B|S

whenever A and B are separated by S in (Gan(auBus))™, the moral graph
of the smallest ancestral set containing AUBUS.

Lemma 2
Let A, B and S be disjoint subsets of a directed, acyclic graph G. Then S
d-separates A from B if and only if S separates A from B in (Gan(ausus))™.

What these lemmas tell us is that if we want to check conditional in-
dependences we can either look at d-separation properties or the smallest
ancestral sets of the moral graphs — they are alternative ways of calculation.

To understand why ancestral set come into the picture, let us consider
the following simple algorithm for finding them. Suppose that we have the
graph G and that we wish to find the ancestral set of a set of nodes ¥ C U.
Then successively delete nodes from G which have no children, provided
they are not in the set Y. When it is not possible any longer delete any
nodes, the subgraph left is the minimal ancestral set.
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Now recall that deleting a childless node is equivalent to marginalising
over that node. Hence the marginal distribution of the minimal ancestral
set containing A 1l B|S factorizes according to the sub-factors of the
original joint distribution. So these lemmas are saying that rather than go
through the numerical exercise of actually calculating such marginals we
can read it off from the graphical structure instead, and use that to test
conditional independences. (Note also that the directed Markov property
is also lurking behind the scenes here.) The “moral” is that when ancestral
sets appear in theorems like this it is likely that such marginals are being
considered.

9. Making the junction tree

The remaining three steps of the inference-engine construction algorithm
seem more mysterious, but are required to ensure we can formulate a con-
sistent and efficient message passing scheme. Consider first step 3 - adding
edges to the moral graph G™ to form a triangulated graph G*. Note that
adding edges to the graph does not stop a clique of the moral graph formed
from being a complete subgraph in G Thus for each clique in C™ of the
moral graph there is at least one clique in the triangulated graph which
contains it. Hence we.can form a potential representation of the joint prob-
ability in terms of products of functions of the cliques in the triangulated

graph:
P) = I ec(Xc)

ceCt

by analogy with the previous method outline for the moral graph. The
point is that after moralisation and triangulation there exists for each a
node-parent set at least one clique which contains it, and thus a potential
representation can be formed on the cliques of the triangulated graph.

While the moralisation of a graph is unique, there are in general many
alternative triangulations of a moral graph. In the extreme, we can al-
ways add edges to make the moral graph complete. There is then one large
clique. The key to the success of the computational algorithms is to form
triangulated graphs which have small cliques, in terms of their state space
size.

Thus after finding the cliques of the triangulated graph — stage 4 — we
are left with joining them up to form a junction tree. The important prop-
erty of the junction tree is the running intersection property which means
that if variable V is contained in two cliques, then it is contained in every
clique along the path connecting those two cliques. The edge joining two
cliques is called a separator. This joining up property can always be done,
not necessarily uniquely for each triangulated graph. However the choice of
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tree is immaterial except for computational efficiency considerations. The
junction tree captures many, but not necessarily all, of the conditional inde-
pendence properties of the distribution on the original DAG. It loses some
of the conditional independences by the process of adding extra edges to
the moral graph. However it does retain conditional independence betwee.n
(not necessarily neighbouring) cliques given separators between them. It is
because of this fact that local computation with message passing becomes
possible. The running intersection property ensures consistenc.e in t'he mes-
sage passing between cliques, and the cliques become the basic unit of the
local computation, ie., they define the granularity of the computatiogal
algorithms. If the cliques are of manageable size then local computat'lon
is possible. Figure 5 shows a triangulated version of Asia and a possible

junction tree.

Figure 5. Junction tree for Asia

10. Inference on the junction tree

We will summarise some of the basic results of message passing on the
junction tree. We have seen that we can form a potential representation of
the joint probability using functions defined on the cliques:

PW) = [] sc(Xe).
cect

This can be generalized to include functions on the separators (the int.:er-
sections of neighbouring cliques) to form the following so called generalized
potential representation:

_ Teect sc(Xe)

PUO) = s bs(Xs)
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(for instance by making the separator functions the identity). Now, by
sending messages between neighbouring cliques consisting of functions of
the separator variables only, which modify the intervening separator and
the clique receiving the message, but in such a way that the overall ra-
tio of products remains invariant, we can arrive at the following marginal
representation:

- HCEC P(C)
Hsas p(S) ’

Marginals for individual variables can be obtained from these clique (or
separator) marginals by further marginalisation.

Suppose that we observe “evidence” £ : X4 = z%. Define a new function
P* by

p(U) (10)

vy _ | Plz) fXs=2*
Pz) = { 0 othe/r‘wis:.A (11)
Then P*(U) = P(U,€) = P(E)P(U| ). We can rewrite (11) as
P*(U) = P() [] iw), (12)
vEA

where I(v) is 1 if z, = z, 0 otherwise. Thus [(v) is the likelihood function
based on the partial evidence X, = z}. Clearly this also factorizes on the
junction tree, and by message passing we may obtain the following clique-
marginal representation

_ HoecP(C)€)
[lsesp(S1€)

or by omitting the normalization stage,

_ gecp(C,E)

Again marginal distributions for individual variables, conditional upon the
evidence, can be obtained by further marginalisation of individual clique

tables, as can the probability (according to the model) of the evidence,
P(&).

p(V[€) (13)

11. Why the junction tree?

Given that the moral graph has nice properties, why is it necessary to go on
to form the junction tree? This is best illustrated by an example, Figure 6:



®

(®)
AN

%Y

Figure 6. A non-triangulated graph

The cliques are (4, B, C), (A,C, D), (C,D, F), (C,E, F) and (B, C, E) with
successive intersections (A4, C), (C, D), (C, F), (C, E) and (B, C). Suppose
we have clique marginals P(A, B, C) etc.. We cannot express P(A, B,C, D)
in terms of P(A, B,C) and P(A,C, D) - the graphical structure does not
imply B 1L D{(A,C). In general there is no closed for expression for the
joint distribution of all six variables in terms of its cliques marginals.

12. Those extra edges again

Having explained why the cliques of the moral graph are generally not up
to being used for local message passing, we will now close by indicating
where the extra edges to form a triangulated graph come from.

Our basic message passing algorithm will be one in which marginals of
the potentials in the cliques will form the messages on the junction tree.
So let us begin with our moral graph with a potential representation in
terms of functions on the cliques, and suppose we marginalise a variable ¥’
say,which belongs to more than one clique of the graph, say two cliques, C;
and C,, with variables Y U Z; and Y U Z, respectively. They are cliques,
but the combined set of variables do not form a single clique, hence there
must be at least one pair of variables, one in each clique, which are not
joined to each other, u; and ue say.

Now consider the effect of marginalisation of the variable Y. We will
have

> e, (YU Z)ac,(Y U Z) = f(Z1U Zo),
Y

a function of the combined variables of the two cliques minus Y. Now
this function cannot be accommodated by a clique in the moral graph
because the variables u; and u, are not joined (and there may be others).
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Hence we cannot form a potential representation of the joint distribution of
P(U ~Y) on the moral graph with node Y removed. However, if we fill in
the missing edges between the pairs of variables of the two cliques, then this
marginal can be accommodated, and we can find a potential representation
for P(U —Y) on the reduced moral graph having these extra edges. This
is why one adds edges to the moral graph, to be able to accommodate
such intermediate marginal expressions. It turns out that one must fill-in
sufficiently to form a triangulated graph, and doing so results in being able
to set up a consistent message passing scheme.

13. Suggested further reading

Pearl is one of the pioneers who helped Bayesian methods for uncertain
reasoning become popular in the artificial intelligence community. His text-
book (Pearl, 1988) contains a wealth of material, from introducing prob-
ability theory and arguments for its use; axiomatics for graphical models;
Markov properties; etc, to propagation in singly connected DAGs (ie prior
to the development of making junction trees and propagating with them.) A
good collection of papers on uncertain reasoning is Shafer and Pearl(1990),
which covers not only probabilistic reasoning but also other formalisms for
handling uncertainty. This also contains good overviews by the editors ex-
plaining the historical significance of the selected papers. An introductory
review for probabilistic expert systems is (Spiegelhalter et al., 1993). Each
of these three references contain a large number of references for further
reading.

Dawid(1979) introduced the axiomatic basis for treating conditional in-
dependence. More recent accounts of conditional independence with em-
phasis on graphical models and their Markov properties are given by Whit-
taker(1990) and Lauritzen(1996). (The latter also contains proofs of the
lemmas stated in section 8.)

The Asia example was given by Lauritzen and Spiegelhalter(1988), who
showed how to do consistent probability calculations in multiply connected
DAG'’s using propagation, (it is also reprinted in (Shafer and Pearl, 1990)).
Junction trees arise in other areas and are known by different names (eg join
trees in relational databases); see (Lauritzen and Spiegelhalter, 1988) for
more on this and also the discussion section of that paper. A recent and gen-
eral formulation of propagation in junction trees is given by Dawid(1992).
A recent introductory textbook on Bayesian networks is (Jensen, 1996).
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6. Modelling with continuous variables

All examples and discussion has have been restricted to the special case
of discrete random variables. In principle, however, there is no reason why
we should not build models having continuous random variables as well
as, or instead of, discrete random variables, with more general conditional
probability densities to represent the joint density, and use local message
passing to simplify the calculations. In practice the barrier to such general
applicability is the inability of performing the required integrations in closed
form representable by a computer. (Such general models can be analyzed
by simulation, for example Gibbs sampling.)

However there is a case for which such message passing is tractable, and
that is when the random variables are such that the overall distribution is
multivariate-Gaussian. This further extends to the situation where both
discrete and continuous random variables coexist within a model having a
so called conditional-gaussian joint distribution.

We will first discuss Gaussian models, and then discuss the necessary
adjustments to the theory enabling analysis of mixed models with local
computation.

7. Gaussian models

Structurally, the directed Gaussian model looks very much like the discrete
models we have already seen. The novel aspect is in their numerical specifi-
cation. Essentially, the conditional distribution of a node given its parents
is given by a Gaussian distribution with expectation linear in the values
of the parent nodes, and variance independent of the parent nodes. Let us
take a familiar example:

[¥Y]-[X]=[z]

Node Y, which has no parents, has a normal distribution given by

-y - I-‘Y)2> )

s ) 02

where py and oy are constants. Node X has node Y as a parent, and has
the conditional density:

—(z - px - BX,Y'.U)2>

Nx(ux + Bxyyio%) °<exP< 202
Ox
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where e ﬁx,y‘ and oy are constants. Finally, node Z has only X as a
parent; its conditional density is given by

Nz(pz + Bz xz; 022) o exp (d(z Rz~ ﬁz,xz)2> .

2
20%

In ge-neral, if a node X had parents {Y1,... ,Y,} it would have a conditional
density:

Nx(ux + ZﬁX,Y,-yi; 0%) x exp (_(z —BX 2— :[‘i ﬂx’}"yi)z’) )
i Tx

Now the joint density is obtained by multiplying together the separate
component Gaussian distributions:

P(X,Y,Z) = Ny(uyio¥)Nx(ux + Bx,yy;0%)Nz(uz + Bz xz,0%)

1
& €xp <_§(I—P’X)y_IJ'sz—#Z)K(I_IJ'Xay—AU'YHZ—/J'Z)T) 1

where K is a symmetric (positive definite) 3 x 3 matrix, and T denotes
transpose. In a more general model with n nodes, one obtains a similar
expression with an n x n symmetric (positive definite) matrix

Expanding the exponential, the joint density can be written as:

hx K K
1 xx Kxy Kx z
exp ((-"3 y 2z (hY> =3 (z y 2) (KYX Kyy K);) y
hz Kzx Kzy Kgzz/ \z

where hx = px/o% + 1zBz x /0% etc. This form of the joint density is
th_e most'useful for constructing local messages, and indeed local messages
will consist of functions of this type. Let us now define them and list the
properties we shall be using.

7.1. GAUSSIAN POTENTIALS

Suppose we have n continuous random variables X 1.--- ,Xn. A Gaussian

potential in a subset {Y;,...,¥;} of variables is a function of the form:
h 1 K 11 - Kig n
e .
xplg+(y - w)| ¢ —§(y1 cee UR) ) :
hi Ky ... Kix y‘k

where K is a constant positive definite k x k matrix, h is a k dimen-

sional constant vector and g is a number. For shorthand we write this as a
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triple, ¢ = (g, h, K). Gaussian potentials can be multiplied by adding their
respective triples together:

é1 * ¢2 = (g1 + g2, b1 + ha, K1 + K2).
Similarly division is easily handled:
$1/d2 = (g1 — g2, b1 — ha, K1 — K2).

These operations will be used in passing the “update factor” from separator

to clique.
To initialize cliques we shall require the extension operation combined

with multiplication. Thus a Gaussian potential defined on a set of variables
Y is extended to a larger set of variables by enlarging the vector h and
matrix K to the appropriate size and setting the new slots to zero. Thus
for example: ¢(z) = exp(g + z7h — % T K r) extends to

otz = ot =oxw (94 = 9) (5) -3 = 9 (5 9)(5)):

Finally, to form the messages we must define marginalisation, which is now
an integration. Let us take Y and Y to be two sets of distinct variables,

and

#(y1,32) = exp (9+ W ) (’}:l) -5 w (ﬁi ﬁ:) @;))

so that the A and K are in blocks. Then integrating over Y yields a new
vector h and matrix K as follows:

h=hy— Kglel:%hl

K=Kyp— K2,1K[11K1,2-

(Discussion of the normalization will be omitted, because it is not required
except for calculating probability densities of evidence.) Thus integration

has a simple algebraic structure.

7.2. JUNCTION TREES FOR GAUSSIAN NETWORKS

Having defined the directed Gaussian model, the construction of the junc-
tion tree proceeds exactly as for the discrete case, as far as the structure is
" concerned. The difference is with the initialization.
A Gaussian potential of correct size is allocated to each clique and
separator. They are initialized with all elements equal to zero.

ADVANCED INFERENCE IN BAYESIAN NETWORKS 41
' Next for each conditional density for the DAG model, 2 Gauss;

tial is constructed to represent it and multiplied into an, one lﬁlaﬂ P0t<_3n-

contains the node and its parents, using extension if req}:lired claue which

‘ The re.sult Is a junction tree representation of the joint der;sit A

ing no evidence, then sending the clique marginals as messages )’- SSurfl-

the clique marginal representation, as for the discrete case: ges results in

P(U) =[] P(xo)/ ] P(Xs).
c s

1C/a.v:‘-’(: E::.t lﬁ] t:ta.ken 1:0 p(lj'opagate evidence. By evidence £ on a set of nodes
n that each node in Y is observed to take a defini
i ' . . efinite value. (This i
;_)lzilk; ;f: ::lkiscrete case 111; which some states of a variable could be e;gcludelg
an one could still be entertained.) Evid i
must be entered into every cli or in which o2 variable
que and separator in which it occu is i
. ; rs. Th
b;ca.use v;:hen evidence is entered on a variable it reduces the dimensilzri:
of every h vector and XK matrix i i i
of ever matrix in the cliques and separators in which it

Thus for example, let us i
ariabl o p again take Y) and Y5 to be two sets of distinct

o) o (0 w0 (32) - 5 6 ) (K0 f12) (u)
2,1 2.2/ \Y2

3(; ;;:&t th(fe ; and K are again in blocks. Suppose we now observe the

i es o* 2 to take values y3. Then the potentials become modified t
—hl—y2K2,1 B.IldK=K11. °

After such evidence has béen en i i
tered in every clique and separato
- . . ’ th
::;ei Osza.n(.ita}.lrd r:\;opaga.tlon will yield the clique-marginal denspi)ty reprrese(;n
with evidence included. Further within clique i ves
. . 0 mar
the (Gaussian) distributions on individual nodes.q Einel then gives

7.3. EXAMPLE

Let us take out three nod i
ce S o o
o e out xample again, with initial conditional distribu-

M —[X—[Z]

N(Y) = N(0,1)
N(X|Y) = N(y1)
N(Z|X) = N(z,1)
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42
The cli for this t e and . After initializing and are not allowed to have dis.crete chz'ldﬂen,' 1:e: discrete nodes can only have
e cliques for this tree ar discrete parents. The conditional probabilities specified for discrete nodes
propagating, the clique potentials are differ in character to those of continuous nodes. The former are again sim-
1 1 =1\ /z ple tables, as for discrete models, the latter are Gaussian potentials, but
¢(z,y) o« exp ("5 (z v) (._1 2 ) (y)) with the constants g, vectors A and matrices K indexed by the parent con-
: 15 —1\ (z figurations of the discrete parents. Also, because certain sub configurations
é(z,2) o exp (_._ (z z) (_ 11 > (z)) of discrete variables might not be allowed, we need to include indicator
functions on the Gaussian potentials and we have to more careful with the
normalization constants g.
with separator ¢(z) o exp(—z%/4); Now if we enter evidence X = 1.5, say, . . ’_I‘he following is a _brief guide to the‘ theory, for more details see the
then'the potentials reduce to: original paper by Lauritzen, whose notation we follow closely here.
$(X = 1.5,y) o exp(1.5y — ¢?) : 8.1. CG-POTENTIALS

The set of variables V' is partitioned into the discrete variables (A) and
continuous variables (T'), thus V = AUT. Let z = (t,y) denote a typical
element of the joint state space with i denoting the values of the discrete
variables and y the values of the continuous variables. The joint density is
assumed to be a CG distribution, which means that it has the form f with

f(z) = f(i,y) = x(8) exp {g(3) + y"h(i) - yTK (3)y/2}

where x (i) € {0, 1} indicates whether f is positive at i. The triple (g, h, K)
is called the canonical characteristics of the distribution; it is only defined
for x(i) > 0 but when that is the case one can define the moment charac-
teristics, denoted by the triple {p,¢, T} and given by

and

(1.52 — lzz)
¢(X = 1.5,z) x exp(l. 3% )

because in this example X makes up the separator between the two cliques.
The marginal densities are then:

P(Y) = N(0.75,0.5) and P(Z) = N(1.5,1).

Alternatively, suppose we take as the root clique, and enter ev-

idence that Z = 1.5. Then the message from to is given Py
#(X) o exp(1.5z — 0.75z?) so that after propagation the clique potential

on is of the form:

#(z,y) o< exp ((z v) (165) -3 9) (—21 _21> @)

with marginal densities

P(X) = N(1,2/3) and P(Y) = N(1/2,2/3).

£(6) = K(&)7'h(i), (i) = K(i)™".

Inverting, we have the canonical characteristics are K (1) =@E)7Y, h{H) =
K (i)¢(4), and

9(i) = log p(i) + {log det K (i) — T'| log(2r) ~ £(i)T K (i)¢(4)} /2.

As for the Gaussian networks, we generalize CG distributions to CG po-
tentials which are any functions ¢ of the form

$(z) = ¢(i, y) = x(i) exp{g(s) + yTh(s) - yT K (3)y/2}.

K (i) is restricted to be symmetric, though not necessarily invertible. How-
ever we still call the triple (g, h, K) the canonical characteristics, and if for
all 4, x() > 0 and K (3) is positive definite then the moment characteristics
are given as before.

Multiplication, division and extension proceed as for the Gaussian po-
tentials have already been discussed. Marginalisation is however different,

8. Conditional Gaussian models

As we have seen, the treatment of Gaussian networks is much the same
as for discrete models. The minor differences are in (1) t‘he nature of- the
potentials employed, and (2) evidence has to be entered into every clique
and separator. ' . .

The passage to mixed models proceeds with some more u.:nporta.nt d}ﬂﬂ
ences. The first is a restriction in the modeling stage: continuous variables
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because adding two CG potentials in general will result in a mixture of CG
potentials — a function of a different algebraic structure. Thus we need to
distinguish two types of marginalisation - strong and weak.

8.2. MARGINALISATION

Marginalising continuous variables corresponds to integration. Let

) h1 Ky K
4 <y2>’ (hz)’ <K21 Kzz)
with y; having dimension p and y, dimension g with K3, is positive definite.

Then the integral [ ¢(i,y1,y2) dy is finite and equal to a CG potential ¢
with canonical characteristics given as

Gl) = g(6) + {plog(2m) — logdet K11 (3) + hi (i) Kip()) " ha ()} /2
RG) = ha(i) - Ka@Eu (@)™ k)
K@) = Kao(i) — Ka1 () K11 () 1 K12 (3).

Marginalising discrete variables corresponds to summation. Since in gen-
eral addition of CG potentials results is a mixture of CG potentials, an
alternative definition based upon the moment characteristics {p,¢, L} is
used which does result in a CG potential; however it is only well defined for
K(i,7) positive definite. Specifically, the marginal over the discrete states
of ¢ is defined as the CG potential with moment characteristics {g, &, X}

where _
Bi) =Y pi,g), €)= €(7)p(i,5)/B(i), and
J ]
) = Y 6, 4)p(, 5)/66) + Y (€67~ £@)7 (i, 5) — €(4))p(i, 5)/B0)-
j Jj

Note that the latter can be written as

(i) (B6) +EOTED ) = T plird) (B,1) +£(00)76(04)) -
J

so that if $(4,7) and £(i,j) are independent of j then they can be taken
through the summations as constants. This observation is used to de-
fine a marginalisation over both continuous and discrete variables: First
marginalise over the the continuous variables and then over the discrete
variables. If, after marginalising over the continuous variables the result-
ing pair (h, K) is independent of the discrete variables to be marginalised
over, (summation over these discrete variables then leaves the pair (h, K)
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unmodified), we say that we have a 1
. strong marginalisation. Ot i
sums over th.e dx.screfte variables using the moment cha.racteristihcermsfi the
overall marginalisation is called a weak marginalisation " an the
Weak and strong marginalisation satisfy composition:

; (; ¢AUBUC) = Z $auBUC,

AuUB

but in general only the strong marginalisation satisfies

> (bausws) = 5 (Z ¢AUB) ‘

A A

Under both type of marginalisati i
ginalisation, a ‘mar ised’ i i
the correct moments to order 2, i.e. Binelsed density will then have

PI=1)=p(), B(Y|I=4)=£4), V(Y|I=i)=5),

where the correct CG distribution is used to take expectations

8.3. MAKING THE JUNCTION TREE

zlzae‘nn:?};dfsure of cg—potex.ltials under marginalisation of discrete variables
e messa we.ha’ve to adjust to how we construct the junction tree and
pa moml'a.g(:; u}) it. ’Ijhe first step is to construct the Jjunction tree. First
s moral :’zne i seriAqusl the. fLilsul:;,l way. Then we triangulate by a restricted
ng.© specifically, we first eliminate all of i
variables, and then we eliminat i oo, Then feon imuous
e the discrete variables. Th
sulting cliques we can construct a, j i o et s e
i 0 a Junction tree. Now wi
Vnlike the meevirn 8 e must select a root.
' pure cases, we cannot freely choose any cli
¢ y clique of th
Junction tree. Instead we choose a so called strong root defined ac.ls followsfa

Any cligue R which for an ; i
y pair A, B of cl ]
on the tree with A closer to R than’B sitis_;’g:ses fhemsetves neighbours

(B\A)CTor(BnA)CA.

Thu
s, when a separator between two neighbouring cliques is not purely

dISCIete the c.hque furthest away from the root ha.s n y t Vv
y ! 0 l continuous ertheS

2
One way to trian i es an
gulate a graph is to tak i al
@ : e an ordering of th gl
it € ?qgisnii:he stlatus. unmf—uked’. One then works througg each Z:gg in tu(:n Vmea.rkl’ o
and joining all pairs of its unmarked neighbours. The ordering is called a.n, elimi:::zg

tion ordering. Findi i ions i
orderings g ing good triangulations is then equivalent to finding good elimination
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8.4. PROPAGATION ON THE JUNCTION TREE

The point of this restriction is that on the collect operation, only strong
marginalisations are required to be performed. This is because our restricted
elimination ordering - getting rid of the continuous variables first, is equiva-
lent to doing the integrations over the continuous variables before marginal-
ising any of the discrete variables.

Thus our message passing algorithm takes the form:

1. Initialization: Set all clique and separator potentials to zero with unit
indicators, and muitiply in the model specifying potentials using the
extension operation where appropriate.

2. Enter evidence into all clique and separator potentials, reducing vector
and matrix sizes as necessary.

3. Perform a collect operation to the strong root, where the messages are
formed by strong marginalisation by first integrating out, the redundant
continuous variables, and then summing over discrete variables.

4. Perform a distribute operation, using weak marginalisation where ap-
propriate when mixtures might be formed on marginalising over the
discrete variables.

The result is a representation of the joint CG-distribution including
evidence, because of the invariant nature of the message passing algorithm.
Furthermore, because of the use of weak marginalisation for the distribute
operation, the marginals on the cliques will themselves be CG-distributions
whose first two moments match that of the full distribution. The following
is an outline sketch of why this could be.

First by the construction of the junction tree, all collect operations are
strong marginals, so that after a collect-to-root operation the root clique
contains a strong marginal. Now suppose, for simplicity, that before the
distribute operation we move to a set-chain representation (cf. section 2.2).
Then apart from the strong root, each clique will have the correct joint
density P(Xc,\s, | Xs;) where S; is the separator adjacent to the clique C;
on the path between it and the strong root. Now on the distribute oper-
ation the clique C; will be multiplied by a CG-potential which will either
be a strong marginal or a weak marginal. If the former then the clique
potential will be the correct marginal joint density. If the latter then we
may write the clique potential as the product P(Xc,\s;) * Q(Xg,) where Q
is the correct weak marginal for the variables Xs,. Now consider taking an
expectation of any linear or quadratic function of the Xc; with respect to
this “density”. We are free to integrate by parts. However, choosing to inte-
grate wrt. X¢,\s, first means that we form the expectation wrt the correct
CG-density P(Xc,\s; | Xs,), and will thus end up with a correct expecta-
tion (which will be a linear or quadratic function in the Xs,) multiplied
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by th.(;l cotl)':e(.:t ‘tr;fak marginal Q(Xs,). Hence performing these integrations
we will obtain the correct expectation of the original functio

oot density. gi 1on wrt the true
' For brevity some details have been skipped over here, such as show-
ing .that Fhe separator messages sent are correct weak marginals. Detailed
justifications and proofs use induction combined with a careful analysis of
th.e messages sent from the strong root on the distribute operation. See the
original paper for more details.

9. Summary

'.I‘his .tutoria.l has shown the variety of useful applications to which the
junction-tree propagation algorithm can be used. It has not given the most
genera.l. or efficient versions of the algorithms, but has attempted to present
the main points of each so that the more detailed descriptions in the orig-
inal articles will be easier to follow. There are other problems, to which

tl.le junction-tree propagation algorithm can be applied or adapted to, not
discussed here, such as: ’

- Inﬂuenf:e-: fiiagrams: Discrete models, with random variables, decisions
and ut_xhtxes. Potentials are now doublets representing probabilities
and utl}i.ties. Junction tree is generated with a restricted elimination
generz?hsmg that for cg-problems to emulate solving the decision tree.

- !'_,t'aarnmg probabilities. Nodes presenting parametrisations of probabil-
mfas can be attached to networks, and Bayesian updating performed
using the same framework.

— Time series. A network can represent some state at a given time, and
th(.ey can be chained together to form a time-window for dynamic ;nod—
elling. The junction tree can be expanded and contracted to allow
forward-prediction or backward smoothing.

Doubtless new examples will appear in the future.

10. Suggested further reading

P_robabilistic logic sampling for Bayesian networks is described by Hen-
'non(l'988). A variation of the method - likelihood-weighting sampling -
in which rejection steps are replaced by a weighting scheme is given by
.Shachte.r and Peot(1989). Drawing samples directly from the junction tree
is de.scnbed by Dawid(1992), which also shows how the most likely config-
uration can be found from the junction tree. The algorithm for finding the
N- most likely configurations is due to Nilsson(1994), who has also devel-
pred a more efficient algorithm requiring only one max-propagation on the
Junction tree. LP-propagation is not described anywhere but here.



48 ROBERT COWELL

Fast retraction is introduced in (Dawid, 1992) and developed in more
detail in (Cowell and Dawid, 1992).

Gaussian networks are described by Shachter and Kenley(1989), who
use arc-reversal and barren-node reduction algorithms for their evaluation.
(The equivalence of various evaluation schemes is given in (Shachter et al,
1994).) The treatment of Gaussian and conditional-gaussian networks is

based on the original paper by Lauritzen(1992). For pedagogical reasons
this chapter specialized the conditional-gaussian presentation of (Lauritzen,
1992) to the pure gaussian case, to show that the latter is not so different
from the pure discrete case. Evaluating influence diagrams by junction-trees
is treated in (Jensen et al, 1994). For an extensive review on updating
probabilities (Buntine, 1994). Dynamic junction trees for handling time
series is described by Kjeerulff(1993). See also (Smith et al., 1995) for an
application using dynamic junction trees not derived from a DAG model.

/
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