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Probabilistic model of language

n-gram model

P(word i | wordi-n+1
i-1 )

Typically, trigram model (n=3)

Utility

e.g., speech, handwriting recognition

Challenge

If n too small, doesn’t capture regularities of language

If n too large, insufficient data

Past approaches have used heuristics for choosing appropriate n, or by averaging 
predictions across a range of values of n, or by smoothing hacks of various sorts.

Hierarchical Pitman-Yor probabilistic model addresse s this 
challenge via principled approach with explicit ass umptions.



Pitman not Pittman



Dirichlet Distribution

Distribution over distributionsf over a 
finite set of alternatives

E.g., uncertainty in distribution over a finite set of 
words

Dirichlet Process

Distribution over a distributions over a countably infinite set of 
alternatives
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Pitman-Yor 

Pitman-Yor distribution

Generalization of Dirichlet distribution

No known analytic form for density of PY for finite vocabulary.

Pitman-Yor Process

G ~ PY(d, α, G0)

d: discount parameter, 0 <= d < 1

α: strength parameter, α > –d

Large αααα = more concentration of probability according to G 0

Large d = more uniform a distribution

DP is special case of PY Process 

PY(0, α, G0) = DP(α, , , , G0)

see stick breaking construction



Understanding G 0

With Gaussian Mixture Model, domain of G 0 is real-valued 
vector

G0(θ) is the mean probability of a Gaussian bump with mean µ and covariance Σ, 
where θ is vector (µ Σ).

With natural language, think of domain of G 0 as all letter strings 
(potential words)

G0(w) is the mean probability of “word w”



Drawing Sample Of Words Directly
From PY Process Prior

Chinese restaurant process

person 1 comes into restaurant and sits at table 1

person c+1 comes into restaurant and sits at one of the populated tables, k, 
k ∈ {1, ..., t}, with probability ~ ck (# people at table k) 

... or sits at a new table (t+1) with probability ~ α

Generalized version of CRP

person 1 comes into restaurant and sits at table 1

person c+1 comes into restaurant and sits at one of the populated tables, k, 
k ∈ {1, ..., t}, with probability ~ ck – d

... or sits at a new table (t+1) with probability ~ α + d t



Pitman Yor

Why the restrictions 0 <= d < 1 and α > α > α > α > –d?

Generalized version of CRP

person 1 comes into restaurant and sits at table 1

person c+1 comes into restaurant and sits at one of the populated tables, k, 
k ∈ {1, ..., t}, with probability ~ ck – d

... or sits at a new table (t+1) with probability ~ α + d t



Pitman Yor

Like the CRP, notion that a specific “meal” is serv ed at each 
table

θk ~ G0 is meal for table k

φc = θk is meal instance served to individual c sitting at table k

With DP mixture model, “meal” served was parameters of a gaussian bump

With DP/PY language model, “meal” served is a word 

Types vs. tokens

e.g., The1 mean dog1 ate the2 small dog2.



Algorithm for drawing word c+1 according to Pitman-Y or

if c = 0 /* special case for first word */
t ← 1 /* t: number of tables */
θt ~ G0 /* meal associated with table */
ct ← 1 /* ct: count of customers at table t */
φc ← θt /* φc: meal associated with customer c */

else
choose k ∈ {1, ..., t} with probability ~ ck – d, 
 k = t+1 with probability ~ α + d t

if k = t + 1
t ← t + 1
θt ~ G0 
ct ← 1

else
ck ← ck + 1

 endif

φc ← θk

endif



Pitman Yor Produces Power Law Distribution

d is asymptotic proportion of words appearing only once

note d=0 ⇔ ⇔ ⇔ ⇔ asymptotically no single-token words

Number of unique words as a function of c

d > 0: O(αcd)

d = 0: O(α log c)
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Is This The Same As Zipf’s Law?

Rank words by frequency 

Plot log frequency vs. log word index



Hierarchical Pitman-Yor (or Dirichlet) Process

Suppose you want to model where people hang out in a  town 
(hot spots)

Not known in advance how many locations need to be modeled

Some spots are generally popular, others not so much .

But individuals also have preferences that deviate from the 
population preference.

E.g., bars are popular, but not for individuals who don’t drink.

Need to model distribution over hot spots at level of both 
population and individual.



Hierarchical Pitman-Yor (or Dirichlet) Process

population
distribution

individual
distribution



From Two-Level Hot-Spot Model To Multilevel Word 
Model: Capturing Levels Of Generality

P(hot spot) P(wordi)

P(hot spot | individual) P(wordi|wordi-1)

P(wordi|wordi-1,wordi-2)

Intuition

Use the more general distribution as the basis for the more context-specific 
distribution

P(wordi | wordi-1) is specialized version of P(wordi)

P(wordi | wordi-1,wordi-2) is specialized version of P(wordi | wordi-1)

Formally

Defines Gu recursively, anchored with 

suffix of u consisting of all but 
the earliest word

context (preceding n–1 words)

α

α



Sampling With Hierarchical CRP

Imagine a different restaurant for every possible c ontext u

e.g., “supreme”, “states supreme”, “united states supreme”, “united states of”

... each with its own set of tables and own populat ion of diners

The meals served at the popular tables at restauran t u will tend 
to be same as meals at popular tables at restaurant  ππππ(u)

Consider restaurants (contexts) u and π(u) 

e.g., u = “the united” and π(u) = “united” 

and some past (in generative model) assignments of tables based on

‘united states’
‘united we stand’
‘united under god’
‘the united states’



Notation

cu.k

• number of diners in restaurant u assigned to table k

• number of tokens of the word indexed by k appearing in context u

• But we also need to represent the meal served at a table ...

cuw.

• number of diners in restaurant u assigned to a table with meal w

• number of tokens of word w appearing in context u

• NOTE: unlike DPMM, this count is an observation

cuwk

• number of diners in restaurant u assigned to table k which has meal w

• in context u, number of tokens of word w, when word w is indexed by k



tu..

• formerly just t: number of occupied tables in restaurant u

• number of word types appearing in context u

tuw.

• 1 if restaurant u serves meal w, 0 otherwise

• 1 if word w appears in context u

tuwk

• 1 if restaurant u has meal w assigned to table k, 0 otherwise

Redundant indexing of c and t by both k and w necessary to 
allow for reference either by 

table (for generative model) or 

meal (for probability computation)



Algorithm for drawing word w in context u

Function w = DrawWord(u)

if u = 0
w ~ G0

else
choose k ∈ {1, ..., tu..} with probability ~ cu.k – d|u|, 

k = tu..+1 with probability ~ α|u| + d|u| tu..

if k = tu.. + 1
θuk ← DrawWord(π(u))
w ← θuk 
cuwk ← 1
tuwk ← 1

else
w ← θuk 
cuwk ← cuwk + 1

endif

<- new table drawn or restaurant is
empty

COOL RECURSION!



Inference

Given training data, D, compute predictive posterior over words 
w for a given context, u:

Because of structured relationship among the contex ts, this 
probability depends on more than the empirical coun t.

e.g., p(“of” | “united states”) will be influenced by p(“of” | “states”), p(“of”), p(“of” | 
“altered states”), etc.

Θ Θ Θ Θ = {α {α {α {αm, dm: 0 <= m <= n–1}
 S = seating arrangement



Inference

Given training data, D, compute predictive posterior over words 
w for a given context, u:

Compute P(w|u, S,ΘΘΘΘ) with...

Θ Θ Θ Θ = {α {α {α {αm, dm: 0 <= m <= n–1}
 S = seating arrangement

α
αα



Inference

Given training data, D, compute predictive posterior over words 
w for a given context, u:

Compute P(w|u, S,ΘΘΘΘ) with...

Estimate P( S,Θ|Θ|Θ|Θ|D) with MCMC

Θ Θ Θ Θ = {α {α {α {αm, dm: 0 <= m <= n–1}
 S = seating arrangement

α
αα



Gibbs Sampling of Seat Assignments

For a given individual (l) in a given restaurant (u ), there are only 
a few possible choices for the seat assignment (k ul)

If the individual’s meal is already assigned to a table, they can sit at one of those 
tables.

A new table can be created that serves the individual’s meal.

Sampling of Parameters ΘΘΘΘ
“Parameters are sampled using an auxiliary variable sampler as detailed in Teh 
(2006)”

α
α

α



Implementation

G0(w) = 1/V for all w

d i ~ Uniform(0,1)

ααααi ~ Gamma(1,1)



Results

IKN, MKN = traditional methods in language; HPYLM = hierarchical Pitman-Yor 
with Gibbs sampling; HPYCV= hierarchical Pitman-Yor with some cross validation 
hack to determine parameters; HDLM = hierarchical Dirichlet language model




