To Do Today
1. Hand back assignments

2. FCQs
3. Rob Lindsey

Cool research project involving Gaussian Processes

4. Gaussian Processes



Gaussian Processes
For Regression

(And Classification)

X Y




Problems that GPs Solve

1. Overfitting

Large number of free parameters in models relative to number of training
examples

In practice, GPs useful for problems with limited data

2. Uncertainty in prediction

Want not only to predict, but to estimate uncertainty in prediction

3. Offers a way of specifying prior knowledge In function space,
not parameter space
Prior is specified over function (solution) space

Function space is more intuitive, useful

e.g., smoothness constraints on functions, trends over time, etc.



How Do We Deal With Many Parameters, Little Data?

1. Regularization

e.g., smoothing, L1 regularization, drop out in neural nets, large K for K-NN

2. Bayesian approach
specify probabllity of the data given weights, P(D|W)
specify weight priors given hyperparameter a, P(W|a)
find posterior over weights given data, P(W|a,D)
predict using either MAP weights or Bayesian model averaging:
P(y[x) = 2 p(y|x,w) P(w|a,D)

Although weight prior corresponds to function prior, often difficult to determine
what that function prior looks like

3. Gaussian processes

Bayesian approach using a Gaussian process prior over functions rather than
over weights



Gaussian Distributions: A Reminder

The Gaussian distribution is given by
p(xln. L) = N(wZ) = 2m)P2L " exp (— 3 (x—w) " Z7 (x — )

where  is the mean vector and X the covariance matrix.

Slides stolen from Karl Rasmussen NIPS 2006 tutorial



Conditionals and Marginals of Gaussians

—joint Gaussian

—joint Gaussian
——conditional

——marginal

/\

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.




Stochastic Processes
Generalization of multivariate distribution to infi nitely many
variables
collection of RVs Y(x) indexed by x
Often, x is time index
Today, x is input vector: x; is the I'th input vector; Y(x;) is the output, an RV

joint probability distribution can be specified over any subset of x, e.g.,
(Y(X2), Y(X2), ... Y(Xg))

Dirichlet process: infinite dimensional Dirichlet d Istribution

Infinite dimensional Dirichlet distribution
X: possible word in topic models, possible mixture component in mixture models

joint pdf on any subset of x is a Dirichlet distribution



Gaussian process: infinite dimensional Gaussian dis tribution

Stochastic process in which P(Y(X7), Y(X5), ... Y(Xy)) is multivariate Gaussian

Gaussian distribution is for a finite set of variables, specified by a mean vector and
covariance matrix

Distribution parameters:  p(x;) = E[ Y(Xj) ]
C(xi, X)) = E[ (Y(x) - 1(x))) (Y(x)) - u(x)) |

Gaussian process is defined for an infinite set of variables, specified by a mean
function and covariance function



Graphical Model Depiction of Gaussian Process

O hservations n | Q Yo

Gaussian field ﬁ\f 1 (Lm
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Inputs X1 X2 X Xe

rectangle: observation; round node: free variables

Gaussian field: f is multivariate normal for any setting of x, y
solid bar: each f is connected to each other f

prediction y- depends only on the corresponding latent f.

adding an X, fx, Y« does not influence the distribution



This and other slides stolen from Karl Rasmussen
(NIPS 2006 tutorial)




lllustration of a Gaussian Process |

Example one dimensional Gaussian process:

p(f(x)) ~ GP(m(x) =0, k(x,x') = exp(—3(x —x")?)).

To get an indication of what this distribution over functions looks like, focus on a
finite subset of function values f = (f(x1),f(x2),..., f(x,))", for which

f ~ N(0, X),
where L;; = k(x;, x;).

Then plot the coordinates of f as a function of the corresponding x values.



draws from GP prior

GP psterior

output, f(x)

input, x

input, X



lllustration of Gaussian Process ||
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Figure 1. The first image 1s the realization of white noise
which would be unrealistic for modelling room temperature
due to discontinuity. The second image 1s the realization of
a Gaussian field which show realistic continuous measure-
ments.



lllustration of a Gaussian Process |l
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Quiz

2
How do [, V, O, affect shape of function?



How Do We Deal With Infinite Dimensionality Of GP?

Thinking of a GP as a Gaussian distribution with an infinitely long mean vector
and an infinite by infinite covariance matrix may seem impractical.. .

... luckily we are saved by the marginalization property:

Recall:

For Gaussians:

o e
o
S
@]
=
=)
I
2
=]
=

plxy) = N(|

Unknown values of function domain don’'t matter.

Similar to Dirichlet process



Conjugacy Of Gaussian Processes

GP prior + Gaussian likelihood -> GP posterior

Cransstan likelihood: _
vl fle) My ~ N[ 0]

(Lero mean ) Gaussian process Prior:

fl=lM; ~ §P{m(x) =0, k{x.2"))

Leads toa (raussian process posterior

flaelbx. . My ~ GP{maslx) = kix. x) K% X) + Oogieed] ' ¥

Bl x') = kix 2" — kix, ) Kix, x} + o 01 Heix, x))



Prediction Using Gaussian Processes

Suppose we have | = 1...N training examples

yi = f(x;) and we want to predict function value for a new point y« = f(x«)

Assuming GP with p =0 and covariance function

= [K K+] WithK = C(Xs, Xs)
[ k* k**] K« = C(ﬁ, X*)

we can compute P(Y « | X«, X{...ny Y1---N)» Which Is Gaussian with
fo = kI (K421 ty,
Vif] = k(x.,x) —k] (K+ 0217k,

Prediction can be framed as a linear combination of N kernel functions, each one
centered on a training point

Like SVMs (unlike NNs), training data must be saved.

Cost of prediction is in doing matrix inversion, O(N°)



What Do GPs Buy Us?

e Smoothness hyperparameter on functions seems a good way
to incorporate domain knowledge.

« Benefit of Bayesian methods in general is greatest with
limited data.

e Predictions with error bars!



STOP HERE



Intuitive Introduction to GPs: Linear Regression

Linear regression using a fixed set of ~ m basis functions @ (x)
Y() = 2 W; (%)

Weight space view

assume Gaussian prior on weights: W ~ N(O, ,,) and Gaussian output noise
(likelihood function)

Given these assumptions, posterior on weights is also Gaussian

Therefore, can do Bayesian thing in weight space

Function space view

What sort of functions can be generated from a fixed set of basis functions with
random weights? W ~ N(O, 2,,)

Gaussian Process! i.e., E.[YX)]=0,
C(x,X) = Ey [ Y(X) Y(X) ] = 0" (x) Sw ¢(x)

Two views are equivalent in the case of linear regr  ession, given
@(x) and the weight prior



Gaussian Processes: General Case
Previous example assumed one particular covariance f unction
Many covariance functions are possible
Learning = search for parameters of covariance func  tion

Any covariance function corresponds to a particular (infinite)
choice of basis functions

In general, GPs can be viewed as Bayesian linear regression with an infinite
number of (unspecified) basis functions

Like SVM kernels: kernels specify distance in (unknown and possibly infinite
dimensional) space

Do not need to specify GP over entire function space , but only
over the set of training points and the test point.



Covariance Function

Squared-exponential function
3 1

o ) = e:r'f exp (— F(:ﬂp — ;qug) + Jiﬁpq
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