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Count the number of pennies.

Which coin doesn’t touch the 
others?

Find Jefferson.

Are there more heads or tails?

Are all the coins U.S.?

Are any coins the wrong size?



Attentional Control

The ability to deploy attention based on task deman ds



Visual Search

Search for a target  object among distractors .



Visual Search in the Lab

e.g., find the red vertical bar

Examine time to detect target 
presence/absence as a function
of display size

Task difficulty ~ search slope
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Guided Search Model (Wolfe, 1994, 1997, 2007)



Guided Search Model (Wolfe, 1994, 1997, 2007)
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Guided Search Model (Wolfe, 1994, 1997, 2007)

Saliency map prioritizes locations for search.

GS2.0 response rule

Response_time = µµµµ0 + µµµµ1 target_ranking
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Guided Search Model (Wolfe, 1994, 1997, 2007)

Gains guide attention to task-relevant locations.

a.k.a. attentional weights, attentional set
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Guided Search Model (Wolfe, 1994, 1997, 2007)

Noise corruption of saliency map.
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How Guided Search Is Supposed To Work

“find
blue”

“find
vertical”

saliency map



How Are Gains Determined?

Guided Search doesn’t specify

Common intuition

Gain ~ how well feature discriminates targets from nontargets
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How Are Gains Determined?

Guided Search doesn’t specify

Common intuition

Gain ~ how well feature discriminates targets from nontargets
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average activity
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How Are Gains Determined?

Guided Search doesn’t specify

Common intuition

Gain ~ how well feature discriminates targets from nontargets

ρρρρi1111

average activity

ρρρρi 0000 ⇒    low gain

of feature i
at locations

average activity
of feature i
at locations

<<

containing nontargetscontaining target



Experience-Guided Search



Experience-Guided Search

Adopt same basic architecture as Guided Search

• feature extraction

• contrast enhancement

But frame the model’s objective in probabilistic te rms...



Saliency P Tx Fx ρρρρ,( )≡

target at location x? (1=true,  0=false)
feature activity (vector) at location x
task statistics – learned thru experience
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Bayes’ Rule

 is a task-specific model of the environment.

Indicates visual system response (Fx) for targets (Tx=1) vs. nontargets (Tx=0)

Modeling game

Specify a set of qualitative assumptions that define the environment model, 
and explore the consequences.

Saliency P Tx Fx ρρρρ,( )≡

target at location x? (1=true,  0=false)
feature activity (vector) at location x
task statistics – learned thru experience
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P Tx( )P Fx Tx ρρρρ,( )

P Tx t=( )P Fx Tx t= ρρρρ,( )
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P Fx Tx ρρρρ,( )



Key Assumptions

1. Feature responses are conditionally independent

2. Feature detection is carried out by rate-coded sp iking neuron

: count of the number of spikes observed for feature i at location x

: spike rate for feature i if the target is of type t

P Fx Tx ρρρρ,( ) P Fxi Tx ρρρρ,( )
i

∏=

time

N intervals

Fxi

ρit



Consider search for a red object among non-red. 
What will the response of the red feature detector be?
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Consider search for a red object among non-red. 
What will the response of the red feature detector be?

 for N=50
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P Fxi Tx ρρρρ,( ) Binomial ρit N,( )∼

spiking rate of feature i
for target (t=1) or distractor (t=0)

number of time intervals



P Fxi Tx ρρρρ,( ) Binomial ρit N,( )∼

spiking rate of feature i
for target (t=1) or distractor (t=0)

Gaussian Nρit Nρit 1 ρit–( ),( )∼

number of time intervals



These assumptions lead to...
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Because attentional priority depends on relative sa liency, we 
can substitute  for .

P Tx Fx ρρρρ,( ) 1
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P Tx Fx ρρρρ,( ) 1

1 e c1 c2sx+( )–+
---------------------------------------=

response of feature i
in location x
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Differences Between EGS and GS

1. EGS includes terms quadratic in 

2. GS determines gains via heuristics or optimization;
in EGS, gains are function of environment/task statistics
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How Are Environment Statistics ( ρρρρ) Learned?



How Are Environment Statistics ( ρρρρ) Learned?

As locations are inspected during a trial, a superv isory process 
labels each element as target or nontarget.

Given these observations, update (learn) the ρρρρit  via Bayesian 
inference.

target
locations

nontarget
locations



Assumptions Underlying Learning



Assumptions Underlying Learning

1. Prior (bias) that all features are considered rele vant in the 
absence of experience

Achieved by treating  as a Beta random variable with imaginary-count priorρ
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1. Prior (bias) that all features are considered rele vant in the 
absence of experience
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Encode not just the most likely value of , but uncertainty distribution.
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Assumptions Underlying Learning

1. Prior (bias) that all features are considered rele vant in the 
absence of experience

Achieved by treating  as a Beta random variable with imaginary-count prior

Encode not just the most likely value of , but uncertainty distribution.

2. Environment is nonstationary

With probability , environment and/or task can change.
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Assumptions Underlying Learning

1. Bias that all features are considered relevant in  the absence 
of experience

Achieved by treating  as a Beta random variable with imaginary-count prior

Encode not just the most likely value of , but uncertainty distribution.

2. Environment is nonstationary

With probability , environment and/or task can change.

From these two claims, we have three  free parameters total.

Qualitative performance does not depend on parameters as long as >0 and

ρ
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Summary So Far

Under a probabilistic generative model of the task environment, 
we obtain

• an expression for saliency given feature activations and task statistics

• an inference rule for updating task statistics following each trial

Three free parameters in model

• bias that all features are task relevant (2 parameters)

• environmental change probability (1 parameter)

• + a few leftover parameters of GS (e.g., RT scaling)

Attentionaltrial sequence
Control

Guided
Search

gains



What It Boils Down To



What It Boils Down To

• Generate stimulus sequence corresponding to experi ment.



What It Boils Down To

• Generate stimulus sequence corresponding to experi ment.

• Initialize task statistics

αi1 βi0 ϕ= =
ρρρρit

αit

αit βit+( )
------------------------=where

αi0 βi1 θ= =
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• Generate stimulus sequence corresponding to experi ment.

• Initialize task statistics

• On each trial, perform feature extraction on displ ay.



What It Boils Down To

• Generate stimulus sequence corresponding to experi ment.

• Initialize task statistics

• On each trial, perform feature extraction on displ ay.

• Compute saliency at each location x
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What It Boils Down To

• Generate stimulus sequence corresponding to experi ment.

• Initialize task statistics

• On each trial, perform feature extraction on displ ay.

• Compute saliency at each location x

• Determine response time based on ranking

ResponseTime = µµµµ0 + µµµµ1 SaliencyRankingOfTarget



What It Boils Down To

• Generate stimulus sequence corresponding to experi ment.

• Initialize task statistics

• On each trial, perform feature extraction on displ ay.

• Compute saliency at each location x

• Determine response time based on ranking

• Update task statistics based on current trial feat ure activity

Approximate inference, but excellent approximation
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EGS Replicates GS
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 (F) Conjunction Search
Varying Distractor Ratio
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Guiding Search (Wolfe, Cave, & Franzel, 1989)
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Guiding Search (Wolfe, Cave, & Franzel, 1989)
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Varying Distractor Proportion
(Egeth, Virzi, & Garbart, 1984; Poisson & Wilkinson , 1992; Zohary & Hochstein, 1989)
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Varying Distractor Proportion
(Egeth, Virzi, & Garbart, 1984; Poisson & Wilkinson , 1992; Zohary & Hochstein, 1989)

Blocked trials -> 

environment statistics make one feature a 
more discriminable cue ->

EGS gives it greater weighting.
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Varying Distractor Proportion



Varying Distractor Proportion

In these studies, distractor proportion is blocked.

Is efficiency achieved when proportion varies withi n block?
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Wright and Main (unpublished)

Search for T among  T and O

Number of distractors of each type varies trial to trial
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Wright and Main (unpublished)
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EGS makes strong predictions about intertrial priming .

Attentional gains on current trial depends on statistics of recent trials.

Had originally hoped to use Wright data to look at how 
performance on trial n influenced by trial n–1.

Insufficient data



Kristjánsson and Driver (2008)

Intertrial priming with oddball conjunction search
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Sequential effects in RT based on relationship of ta rget and 
distractor on trial t–1 to target and distractor on trial t



Kristjánsson and Driver (2008)
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Kristjánsson and Driver (2008)
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Kristjánsson and Driver (2008)
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Kristjánsson and Driver (2008)
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Kristjánsson and Driver (2008)
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Kristjánsson, Wang, and Nakayama (2002)

Similar oddball study with streaks of repeated targe t/distractor 
combinations
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Kristjánsson, Wang, and Nakayama (2002)
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Kristjánsson, Wang, and Nakayama (2002)

Control processes involved in specifying fixed targ et are 
qualitatively the same as those involved in sequent ial effects.
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Modeler Sleaze

Other findings in literature that priming does not affect search 
slopes (Kunar et al., 2007; Lamy, 2012; Mozer & Roa ds, in 
preparation).
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Long Story Short

EGS with serial search 
prioritized by saliency rank
⇒ search-slope reduction.
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Long Story Short

EGS with serial search 
prioritized by saliency rank
⇒ search-slope reduction.

EGS with stochastic selection 
in which elements compete 
proportional to saliency
⇒ no search-slope reduction.
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Long Story Short

EGS with serial search 
prioritized by saliency rank
⇒ search-slope reduction.

EGS with stochastic selection 
in which elements compete 
proportional to saliency
⇒ no search-slope reduction.

e.g., one-step accumulator model

Lamy talk

“no interaction ⇒ intertrial priming does not affect attentional prioritization”

Modeling provides existence proof otherwise.
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Can We Use EGS To Understand Learning At Longer 
Time Scales?

Initial effort with

• real-world images (MIT LabelMe data base)

• long-term learning to find objects in images

Exactly same EGS model with 

• much lower environment switch probability (~ memory decay)

• image based features (ICA/PCA)
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Wolfe’s theme

“Beyond feature guidance”

Mozer’s theme

How far can feature guidance take us—can we avoid “syntax”, “semantics”, 
“scene gist”, etc.? (Similar philosophy as Zelinsky)

In progress: still need to compare to human fixation data, other models

Saliency−Weighted Image: Person Test Image Saliency−Weighted Image: Car

Saliency−Weighted Image; Person Test Image Saliency−Weighted Image; Car
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What Does EGS Offer?

Formalization of the intuition we share about atten tional gains

A computational-level theory of visual search

Goal of attention: target detection ⇒ saliency: target probability

Control emerges as a consequence of statistical inference on the task 
environment in which an individual operates. 

Adaptation (at every time scale) results from updating beliefs about task 
environment.
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Intertrial priming effects have been viewed as either
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• driven by or modulated by implicit top-down control processes (e.g., Guyer & 
Müller, 2009; Wolfe, Butcher, Lee, & Hyle, 2003) 
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What Does EGS Offer?

Formalization of the intuition we share about atten tional gains

A computational-level theory of visual search

A perspective on attentional control

Learning is the key to a unified, elegant theory of  search.

⇒ parsimonious explanations of data from many different paradigms and tasks 
with the same principles.



STOP HERE MIKE!



Search For Die Bohne



Even when you recognize the object name...

there may be variability in the object’s appearance .



And even when you have a good visual
representation of the target... 

distractor statistics matter.



Control Of Attention Depends On Learning Statistica l 
Regularities On Multiple Time Scales

My hunch

If we successfully understand adaptation on the finest time scale, we’ll be able to 
handle coarser time scales as well.

(Same learning mechanisms, different decay constants)

Time Scale What Is Learned Example

Coarse Visual invariants word ⇒ visual features

Intermediate Structure of 
environments

reward-associated 
features (Anderson);

object categories 
(Shiffrin)

Fine Properties of the
immediate environment

white coffee cups; 
intertrial priming

(Müller, Lamy, Becker)
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Assumptions Of Environment Model

1. Feature detectors are conditionally independent o f one 
another.

2. Feature detectors are rate-coded neurons with fir ing rate ρρρρit .

 is unknown but learned through experience.

3. Prior to experience, all features are 
considered relevant.

 initialized to be greater than 

4. Environment is nonstationary.

With probability , environment and/or task can change.

P Fx Tx ρρρρ,( ) P Fxi Tx ρρρρ,( )
i

∏=
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ρ
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How Are Environment Statistics ( ρρρρ) Estimated?

As locations are inspected during a trial, a superv isory process 
labels each element as target or nontarget.

Given these observations, update the ρρρρit  via Bayesian inference.

Exact inference

ρρρρit is a mixture-of-Betas RV with mixture length 
linear in number time steps

easy to simulate, hard to conceive of as biologically 
plausible

Approximately...

update a decaying average of each ρρρρit based on the 
new observations

target
locations

nontarget
locations
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exact inference

exponential decay
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Target-Distractor Similarity Effects 3
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Target-Distractor Similarity Effects 4
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• Generate stimulus sequence corresponding to experi ment.

• Initialize task statistics

, , such that ρρρρi0 θ∼ ρρρρi1 ϕ∼ θ ϕ<
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What It Boils Down To

• Generate stimulus sequence corresponding to experi ment.

• Initialize task statistics

• On each trial, perform feature extraction on displ ay.

• Compute saliency at each location x

sx
1 2t–

ρρρρit 1 ρρρρit–( )
-------------------------- fxi ρρρρit–( )2
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What It Boils Down To

• Generate stimulus sequence corresponding to experi ment.

• Initialize task statistics

• On each trial, perform feature extraction on displ ay.

• Compute saliency at each location x

• Determine response time based on ranking

Response_time = µµµµ0 + µµµµ1 saliency_ranking_of_target



What It Boils Down To

• Generate stimulus sequence corresponding to experi ment.

• Initialize task statistics

• On each trial, perform feature extraction on displ ay.

• Compute saliency at each location x

• Determine response time based on ranking

• Update task statistics based on current trial feat ure activity

Basically, compute mean activity of feature when target is present and when target 
is absent.

αit λαit
0 1 λ–( ) αit fxi

x χt∈
∑+

 
 
 

+←

βit λβit
0 1 λ–( ) βit 1 fxi–

x χt∈
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+←
ρρρρit

αit

αit βit+( )
------------------------=where
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Noisy rank-based
prioritization of
display elements
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Noisy rank-based
prioritization of
display elements

 ⇓ vertical gain
 ⇑ red gain

TRIAL 1 TRIAL 2

target
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Noisy rank-based
prioritization of
display elements

 ⇓ vertical gain
 ⇑ red gain

A proportion of
green verticals
become less active
than target; excluded
from search

TRIAL 1 TRIAL 2

target



Can we blame oddball task?

Task involves not just search, but comparing display elements to determine which 
is target.



Can we blame oddball task?

Task involves not just search, but comparing display elements to determine which 
is target.

Alternative

Fixed target search

Trial-to-trial variation in distractor statistics

switch

repeat



A Desperate And Failed Effort...



A Desperate And Failed Effort...
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Accumulator Model

Lesson for experimentalists

No interaction ≠ priming effects are post- or pre-attentional

12 24
510

520

530

540

550

560

570

580

590

600

610

S
i
m

u
l
a
t
i
o
n
 
R

T

# distractors

12 24
1

2

3

4

5

6

7

8

%
 
E

r
r

# distractors



* BEGIN DIGRESSION *



Estimating ρρρρ
ρρρρ depends on task environment.

ρρρρ is estimated based on experience performing task.

E.g., what’s the response of a red feature detector for a target 
(ρρρρred,1)?

Collect responses of red feature detector at locations containing a target.

Suppose we observe: .47, .62, .91, .55, .80

Could compute maximum likelihood estimate, i.e.,

ρρρρred,1 = (.47 + .62 + .91 + .55 + .80) / 5

Instead, model uses Bayesian parameter estimation.

Consider all possible values of ρρρρ and determine their plausibility based on how 
well they fit the data.



Intuitive Example

Coin with unknown bias, ρρρρ = probability of heads

Sequence of observations: H T T H T T T H

Maximum likelihood approach

ρρρρ = 3 / 8

Bayesian approach

set of hypotheses, each associated with a different value of ρ



Coin Flip Sequence: H T T H T T T
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Effect of Prior Knowledge
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Bayes’ Rule

Saliency P Tx Fx ρρρρ,( )≡

target at location x? (1=true,  0=false)
feature activity (vector) at location x
task statistics – learned thru experience

P Tx Fx ρρρρ,( )
P Tx( )P Fx Tx ρρρρ,( )

P Tx t=( )P Fx Tx t= ρρρρ,( )
t 0=

1

∑

---------------------------------------------------------------------------=



Bayes’ Rule

 is a task-specific model of the environment.

Indicates visual system response (Fx) for targets (Tx=1) vs. nontargets (Tx=0)

We make specific claims about the form of this model that resides in our head.

This model does not have to match the actual environment.

Generally, models are simplified to be mathematically tractable.

Saliency P Tx Fx ρρρρ,( )≡

target at location x? (1=true,  0=false)
feature activity (vector) at location x
task statistics – learned thru experience

P Tx Fx ρρρρ,( )
P Tx( )P Fx Tx ρρρρ,( )

P Tx t=( )P Fx Tx t= ρρρρ,( )
t 0=

1

∑

---------------------------------------------------------------------------=

P Fx Tx ρρρρ,( )



1. Assume feature responses are conditionally indepe ndent of 
one another, i.e.,

2. Assume feature detection is carried out by a rate -coded 
spiking neuron

: count of the number of spikes observed for feature i at location x

: spike rate for feature i if the target is of type t

P Fx Tx ρρρρ,( ) P Fxi Tx ρρρρ,( )
i

∏=

time

N intervals

Fxi

ρit



Consider search for a red object among non-red. 
What will the response of the red feature detector be?
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Consider search for a red object among non-red. 
What will the response of the red feature detector be?

 for N=50
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P Fxi Tx ρρρρ,( ) Binomial ρit N,( )∼

spiking rate of feature i
for target (t=1) or distractor (t=0)

number of time intervals



P Fxi Tx ρρρρ,( ) Binomial ρit N,( )∼

spiking rate of feature i
for target (t=1) or distractor (t=0)

Gaussian Nρit Nρit 1 ρit–( ),( )∼

number of time intervals



To Recap

Saliency is defined to be the probability that a loc ation contains 
a target, 

Given the following assumptions:

1. Feature responses are conditionally independent of one another.

2. Feature detection is carried out by neurons that spike at rate .

3. The neuron is samples for a time window that would allow >30 spikes.

we get...
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	Summary So Far
	Under a probabilistic generative model of the task environment, we obtain
	• an expression for saliency given feature activations and task statistics
	• an inference rule for updating task statistics following each trial

	Three free parameters in model
	• bias that all features are task relevant (2 parameters)
	• environmental change probability (1 parameter)
	• + a few leftover parameters of GS (e.g., RT scaling)
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	What It Boils Down To
	• Generate stimulus sequence corresponding to experiment.
	• Initialize task statistics
	• On each trial, perform feature extraction on display.
	• Compute saliency at each location x
	• Determine response time based on ranking
	• Update task statistics based on current trial feature activity
	Approximate inference, but excellent approximation
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	Varying Distractor Proportion
	(Egeth, Virzi, & Garbart, 1984; Poisson & Wilkinson, 1992; Zohary & Hochstein, 1989)
	Blocked trials -> environment statistics make one feature a more discriminable cue -> EGS gives it greater weighting.
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	In these studies, distractor proportion is blocked.
	Is efficiency achieved when proportion varies within block?
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	Wright and Main (unpublished)
	Search for T among T and O
	Number of distractors of each type varies trial to trial

	Wright and Main (unpublished)
	Wright and Main (unpublished)
	EGS makes strong predictions about intertrial priming.
	Attentional gains on current trial depends on statistics of recent trials.

	Had originally hoped to use Wright data to look at how performance on trial n influenced by trial n–1.
	Insufficient data
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	Intertrial priming with oddball conjunction search
	Sequential effects in RT based on relationship of target and distractor on trial t–1 to target and distractor on trial t
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	Kristjánsson, Wang, and Nakayama (2002)
	Similar oddball study with streaks of repeated target/distractor combinations

	Kristjánsson, Wang, and Nakayama (2002)
	Kristjánsson, Wang, and Nakayama (2002)
	Control processes involved in specifying fixed target are qualitatively the same as those involved in sequential effects.

	Modeler Sleaze
	Other findings in literature that priming does not affect search slopes (Kunar et al., 2007; Lamy, 2012; Mozer & Roads, in preparation).
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	e.g., one-step accumulator model

	Lamy talk
	“no interaction Þ intertrial priming does not affect attentional prioritization”
	Modeling provides existence proof otherwise.


	Can We Use EGS To Understand Learning At Longer Time Scales?
	Initial effort with
	• real-world images (MIT LabelMe data base)
	• long-term learning to find objects in images

	Exactly same EGS model with
	• much lower environment switch probability (~ memory decay)
	• image based features (ICA/PCA)

	Wolfe’s theme
	“Beyond feature guidance”

	Mozer’s theme
	How far can feature guidance take us—can we avoid “syntax”, “semantics”, “scene gist”, etc.? (Similar philosophy as Zelinsky)
	In progress: still need to compare to human fixation data, other models
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	Formalization of the intuition we share about attentional gains
	A computational-level theory of visual search
	Goal of attention: target detection Þ saliency: target probability
	Control emerges as a consequence of statistical inference on the task environment in which an individual operates.
	Adaptation (at every time scale) results from updating beliefs about task environment.
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	What Does EGS Offer?
	Formalization of the intuition we share about attentional gains
	A computational-level theory of visual search
	A perspective on attentional control
	Learning is the key to a unified, elegant theory of search.
	Þ parsimonious explanations of data from many different paradigms and tasks with the same principles.


	STOP HERE MIKE!
	Search For Die Bohne
	Even when you recognize the object name...
	there may be variability in the object’s appearance.
	And even when you have a good visual representation of the target...
	distractor statistics matter.
	Control Of Attention Depends On Learning Statistical Regularities On Multiple Time Scales
	Time Scale
	What Is Learned
	Example
	Coarse
	Visual invariants
	word Þ visual features
	Intermediate
	Structure of environments
	reward-associated features (Anderson); object categories (Shiffrin)
	Fine
	Properties of the immediate environment
	white coffee cups; intertrial priming (Müller, Lamy, Becker)

	My hunch
	If we successfully understand adaptation on the finest time scale, we’ll be able to handle coarser time scales as well.
	(Same learning mechanisms, different decay constants)
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	initialized to be greater than

	4. Environment is nonstationary.
	With probability , environment and/or task can change.


	How Are Environment Statistics (r) Estimated?
	As locations are inspected during a trial, a supervisory process labels each element as target or nontarget.
	Given these observations, update the rit via Bayesian inference.
	Exact inference
	rit is a mixture-of-Betas RV with mixture length linear in number time steps
	easy to simulate, hard to conceive of as biologically plausible

	Approximately...
	update a decaying average of each rit based on the new observations
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	What It Boils Down To
	• Generate stimulus sequence corresponding to experiment.
	• Initialize task statistics
	• On each trial, perform feature extraction on display.
	• Compute saliency at each location x
	• Determine response time based on ranking
	• Update task statistics based on current trial feature activity
	Basically, compute mean activity of feature when target is present and when target is absent.

	Can we blame oddball task?
	Task involves not just search, but comparing display elements to determine which is target.

	Can we blame oddball task?
	Task involves not just search, but comparing display elements to determine which is target.

	Alternative
	Fixed target search
	Trial-to-trial variation in distractor statistics
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	Accumulator Model
	Accumulator Model
	Accumulator Model
	Lesson for experimentalists
	No interaction ¹ priming effects are post- or pre-attentional


	* BEGIN DIGRESSION *
	Estimating r
	r depends on task environment.
	r is estimated based on experience performing task.

	E.g., what’s the response of a red feature detector for a target (rred,1)?
	Collect responses of red feature detector at locations containing a target.
	Suppose we observe: .47, .62, .91, .55, .80

	Could compute maximum likelihood estimate, i.e.,
	rred,1 = (.47 + .62 + .91 + .55 + .80) / 5

	Instead, model uses Bayesian parameter estimation.
	Consider all possible values of r and determine their plausibility based on how well they fit the data.


	Intuitive Example
	Coin with unknown bias, r = probability of heads
	Sequence of observations: H T T H T T T H
	Maximum likelihood approach
	r = 3 / 8

	Bayesian approach
	set of hypotheses, each associated with a different value of r
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	Bayes’ Rule
	is a task-specific model of the environment.
	Indicates visual system response (Fx) for targets (Tx=1) vs. nontargets (Tx=0)
	We make specific claims about the form of this model that resides in our head.
	This model does not have to match the actual environment.
	Generally, models are simplified to be mathematically tractable.
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